1
|
Gems D, Virk RS, de Magalhães JP. Epigenetic clocks and programmatic aging. Ageing Res Rev 2024; 101:102546. [PMID: 39414120 DOI: 10.1016/j.arr.2024.102546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The last decade has seen remarkable progress in the characterization of methylation clocks that can serve as indicators of biological age in humans and many other mammalian species. While the biological processes of aging that underlie these clocks have remained unclear, several clues have pointed to a link to developmental mechanisms. These include the presence in the vicinity of clock CpG sites of genes that specify development, including those of the Hox (homeobox) and polycomb classes. Here we discuss how recent advances in programmatic theories of aging provide a framework within which methylation clocks can be understood as part of a developmental process of aging. This includes how such clocks evolve, how developmental mechanisms cause aging, and how they give rise to late-life disease. The combination of ideas from evolutionary biology, biogerontology and developmental biology open a path to a new discipline, that of developmental gerontology (devo-gero). Drawing on the properties of methylation clocks, we offer several new hypotheses that exemplify devo-gero thinking. We suggest that polycomb controls a trade-off between earlier developmental fidelity and later developmental plasticity. We also propose the existence of an evolutionarily-conserved developmental sequence spanning ontogenesis, adult development and aging, that both constrains and determines the evolution of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom.
| | - Roop Singh Virk
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, B15 2WB, United Kingdom
| |
Collapse
|
2
|
Rotics S, Groenewoud F, Manser M, Clutton-Brock T. Pregnancy reduces concurrent pup care behaviour in meerkats, generating differences between dominant and subordinate females. J Anim Ecol 2023; 92:1431-1441. [PMID: 37277989 DOI: 10.1111/1365-2656.13963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/19/2023] [Indexed: 06/07/2023]
Abstract
In some mammals, and particularly in cooperative breeding ones, successive bouts of reproduction can overlap so that a female is often pregnant while still nurturing dependent young from her previous litter. Such an overlap requires females to divide their energetic budget between two reproductive activities, and pregnancy costs would consequently be expected to reduce investment in concurrent offspring care. However, explicit evidence for such reductions is scarce, and the potential effects they may have on work division in cooperative breeders have not been explored. Using 25 years of data on reproduction and cooperative behaviour in wild Kalahari meerkats, supplemented with field experiments, we investigated whether pregnancy reduces contributions to cooperative pup care behaviours, including babysitting, provisioning and raised guarding. We also explored whether pregnancy, which is more frequent in dominants than subordinates, could account for the reduced contributions of dominants to the cooperative pup care behaviours. We found that pregnancy, particularly at late stages of gestation, reduces contributions to cooperative pup care; that these reductions are eliminated when the food available to pregnant females is experimentally supplemented; and that pregnancy effects accounted for differences between dominants and subordinates in two of the three cooperative behaviours examined (pup provisioning and raised guarding but not babysitting). By linking pregnancy costs with reductions in concurrent pup care, our findings illuminate a trade-off between investment in successive, overlapping bouts of reproduction. They also suggest that some of the differences in cooperative behaviour between dominant and subordinate females in cooperative breeding mammals can be a direct consequence of differences in their breeding frequency.
Collapse
Affiliation(s)
- Shay Rotics
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Tel-Aviv University, Tel Aviv, Israel
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
| | - Tim Clutton-Brock
- Department of Zoology, University of Cambridge, Cambridge, UK
- Kalahari Research Centre, Kuruman River Reserve, Van Zylsrus, South Africa
- Department of Zoology, Mammal Research Institute, University of Pretoria, RSA, Pretoria, South Africa
| |
Collapse
|
3
|
Oka K, Yamakawa M, Kawamura Y, Kutsukake N, Miura K. The Naked Mole-Rat as a Model for Healthy Aging. Annu Rev Anim Biosci 2023; 11:207-226. [PMID: 36318672 DOI: 10.1146/annurev-animal-050322-074744] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-lived rodents with a maximum life span exceeding 37 years. They exhibit a delayed aging phenotype and resistance to age-related functional decline/diseases. Specifically, they do not display increased mortality with age, maintain several physiological functions until nearly the end of their lifetime, and rarely develop cancer and Alzheimer's disease. NMRs live in a hypoxic environment in underground colonies in East Africa and are highly tolerant of hypoxia. These unique characteristics of NMRs have attracted considerable interest from zoological and biomedical researchers. This review summarizes previous studies of the ecology, hypoxia tolerance, longevity/delayed aging, and cancer resistance of NMRs and discusses possible mechanisms contributing to their healthy aging. In addition, we discuss current issues and future perspectives to fully elucidate the mechanisms underlying delayed aging and resistance to age-related diseases in NMRs.
Collapse
Affiliation(s)
- Kaori Oka
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Masanori Yamakawa
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; ,
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , ,
| | - Nobuyuki Kutsukake
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan; , .,Research Center for Integrative Evolutionary Science, Sokendai (The Graduate University for Advanced Studies), Kanagawa, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; , , .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Pup Recruitment in a Eusocial Mammal-Which Factors Influence Early Pup Survival in Naked Mole-Rats? Animals (Basel) 2023; 13:ani13040630. [PMID: 36830417 PMCID: PMC9951735 DOI: 10.3390/ani13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
In eusocial insects, offspring survival strongly depends on the quality and quantity of non-breeders. In contrast, the influence of social factors on offspring survival is more variable in cooperatively breeding mammals since maternal traits also play an important role. This difference between cooperative insects and mammals is generally attributed to the difference in the level of sociality. Examining offspring survival in eusocial mammals should, therefore, clarify to what extent social organization and taxonomic differences determine the relative contribution of non-breeders and maternal effects to offspring survival. Here, we present the first in-depth and long-term study on the influence of individual, maternal, social and environmental characteristics on early offspring survival in a eusocial breeding mammal, the naked mole-rat (Heterocephalus glaber). Similarly to other mammals, pup birth mass and maternal characteristics such as body mass and the number of mammae significantly affected early pup survival. In this eusocial species, the number of non-breeders had a significant influence on early pup survival, but this influence was negative-potentially an artifact of captivity. By contrasting our findings with known determinants of survival in eusocial insects we contribute to a better understanding of the origin and maintenance of eusociality in mammals.
Collapse
|
5
|
Szafranski K, Wetzel M, Holtze S, Büntjen I, Lieckfeldt D, Ludwig A, Huse K, Platzer M, Hildebrandt T. The Mating Pattern of Captive Naked Mole-Rats Is Best Described by a Monogamy Model. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.855688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naked mole-rats form colonies with a single reproductively active female surrounded by subordinate workers. Workers perform offspring care, construction and defense of the burrow system, and food supply. Such division of labor, called “cooperative breeding,” is strongly associated with the evolution of monogamous mating behavior, as seen in several mammalian lineages. This association is explained by the evolutionary theory of kin selection, according to which a subordinate adult may help to raise other’s offspring if they are in full sibling relationship. In conflict with this theory, the naked mole-rat is widely considered to be polyandrous, based on reports on multiple males contributing to a colony’s progeny. In order to resolve this contrast, we undertook an in-depth microsatellite-based kinship analysis on captive colonies. Four independent colonies comprising a total of 265 animals were genotyped using a panel of 73 newly established microsatellite markers. Our results show that each mole-rat colony contains a single monogamous breeder pair, which translates to a reproductive skew of 100% for both sexes. This finding, also in conjunction with previously published parental data, favors monogamy as the best-fitting model to describe naked mole-rat reproduction patterns. Polyandry or other polygamous reproduction models are disfavored and should be considered as exceptional. Overall, the empirical genetic data are in agreement with the kin selection theory.
Collapse
|
6
|
Carmeli-Ligati S, Shipov A, Dumont M, Holtze S, Hildebrandt T, Shahar R. The structure, composition and mechanical properties of the skeleton of the naked mole-rat (Heterocephalus glaber). Bone 2019; 128:115035. [PMID: 31421251 DOI: 10.1016/j.bone.2019.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/29/2022]
Abstract
The naked mole-rat (NMR) is a small rodent with a remarkable array of properties, such as unique physiology, extremely long life-span and unusual social life. However, very little is known regarding its skeleton. The aim of this study was to describe the structure, composition and mechanical properties in an ontogenetic series of naked mole-rat bones. Since common small rodents like mice and rats have an unusual structure of cortical bone, which includes a central region of non-lamellar (disordered) bone, mineralized cartilaginous islands and total lack of remodeling, this study could also determine if these are features of all small rodents. Sixty-one NMRs were included in the study and were divided into the following four age groups: 0-0.5 years old (n = 17), 0.5-3 years old (n = 25), 3-10 years old (n = 13), and >10 years (n = 6). Femora, vertebrae and mandibulae were examined using micro-CT, light microscopy, polarized light microscopy and scanning electron microscopy, thermogravimetric analysis was used to determine their dry ash content and their derived elastic modulus and hardness were determined using micro-indentation. Our findings show that NMR bones are similar in composition and mechanical properties to those of other small rodents. However, in contrast to other small rodents, the cortical bone of NMRs is entirely circumferential-lamellar and lacks mineralized cartilage islands. Furthermore, despite their long life-span, their bones did not show evidence of remodeling at any of the age groups, thus proving that lack of cortical remodeling in small rodents is not caused by their short life-span, but characteristic of this order of mammals.
Collapse
Affiliation(s)
- Shira Carmeli-Ligati
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Anna Shipov
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Maïtena Dumont
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Ron Shahar
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Bens M, Szafranski K, Holtze S, Sahm A, Groth M, Kestler HA, Hildebrandt TB, Platzer M. Naked mole-rat transcriptome signatures of socially suppressed sexual maturation and links of reproduction to aging. BMC Biol 2018; 16:77. [PMID: 30068345 PMCID: PMC6090939 DOI: 10.1186/s12915-018-0546-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Naked mole-rats (NMRs) are eusocially organized in colonies. Although breeders carry the additional metabolic load of reproduction, they are extremely long-lived and remain fertile throughout their lifespan. This phenomenon contrasts the disposable soma theory of aging stating that organisms can invest their resources either in somatic maintenance, enabling a longer lifespan, or in reproduction, at the cost of longevity. Here, we present a comparative transcriptome analysis of breeders vs. non-breeders of the eusocial, long-lived NMR vs. the polygynous and shorter-lived guinea pig (GP). Results Comparative transcriptome analysis of tissue samples from ten organs showed, in contrast to GPs, low levels of differentiation between sexes in adult NMR non-breeders. After transition into breeders, NMR transcriptomes are markedly sex-specific, show pronounced feedback signaling via gonadal steroids, and have similarities to reproductive phenotypes in African cichlid fish, which also exhibit social status changes between dominant and subordinate phenotypes. Further, NMRs show functional enrichment of status-related expression differences associated with aging. Lipid metabolism and oxidative phosphorylation—molecular networks known to be linked to aging—were identified among most affected gene sets. Remarkably and in contrast to GPs, transcriptome patterns associated with longevity are reinforced in NMR breeders. Conclusion Our results provide comprehensive and unbiased molecular insights into interspecies differences between NMRs and GPs, both in sexual maturation and in the impact of reproduction on longevity. We present molecular evidence that sexual maturation in NMRs is socially suppressed. In agreement with evolutionary theories of aging in eusocial organisms, we have identified transcriptome patterns in NMR breeders that—in contrast to the disposable soma theory of aging—may slow down aging rates and potentially contribute to their exceptional long life- and healthspan. Electronic supplementary material The online version of this article (10.1186/s12915-018-0546-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Bens
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany.
| | - Karol Szafranski
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Arne Sahm
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany
| | - Hans A Kestler
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany.,Institute of Medical Systems Biology, Ulm University, James-Franck-Ring, 89069, Ulm, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Matthias Platzer
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenberg Str. 11, 07745, Jena, Germany
| |
Collapse
|
8
|
Stern M. Evidence that a mitochondrial death spiral underlies antagonistic pleiotropy. Aging Cell 2017; 16:435-443. [PMID: 28185435 PMCID: PMC5418193 DOI: 10.1111/acel.12579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 01/01/2023] Open
Abstract
The antagonistic pleiotropy (AP) theory posits that aging occurs because alleles that are detrimental in older organisms are beneficial to growth early in life and thus are maintained in populations. Although genes of the insulin signaling pathway likely participate in AP, the insulin‐regulated cellular correlates of AP have not been identified. The mitochondrial quality control process called mitochondrial autophagy (mitophagy), which is inhibited by insulin signaling, might represent a cellular correlate of AP. In this view, rapidly growing cells are limited by ATP production; these cells thus actively inhibit mitophagy to maximize mitochondrial ATP production and compete successfully for scarce nutrients. This process maximizes early growth and reproduction, but by permitting the persistence of damaged mitochondria with mitochondrial DNA mutations, becomes detrimental in the longer term. I suggest that as mitochondrial ATP output drops, cells respond by further inhibiting mitophagy, leading to a further decrease in ATP output in a classic death spiral. I suggest that this increasing ATP deficit is communicated by progressive increases in mitochondrial ROS generation, which signals inhibition of mitophagy via ROS‐dependent activation of insulin signaling. This hypothesis clarifies a role for ROS in aging, explains why insulin signaling inhibits autophagy, and why cells become progressively more oxidized during aging with increased levels of insulin signaling and decreased levels of autophagy. I suggest that the mitochondrial death spiral is not an error in cell physiology but rather a rational approach to the problem of enabling successful growth and reproduction in a competitive world of scarce nutrients.
Collapse
Affiliation(s)
- Michael Stern
- Department of BioSciences, Program in Biochemistry and Cell Biology; Rice University; Houston TX USA
| |
Collapse
|
9
|
Scheiber IBR, Weiß BM, Kingma SA, Komdeur J. The importance of the altricial - precocial spectrum for social complexity in mammals and birds - a review. Front Zool 2017; 14:3. [PMID: 28115975 PMCID: PMC5242088 DOI: 10.1186/s12983-016-0185-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems.
Collapse
Affiliation(s)
- Isabella B R Scheiber
- The University of Groningen, Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Brigitte M Weiß
- Behavioural Ecology Research Group, University of Leipzig, Faculty of Bioscience, Pharmacy and Psychology, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany.,Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Sjouke A Kingma
- The University of Groningen, Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Komdeur
- The University of Groningen, Behavioural and Physiological Ecology, Groningen Institute for Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Schmidt K, Steiner K, Petrov B, Georgiev O, Schaffner W. Short-lived mammals (shrew, mouse) have a less robust metal-responsive transcription factor than humans and bats. Biometals 2016; 29:423-32. [PMID: 27067444 PMCID: PMC4879176 DOI: 10.1007/s10534-016-9926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/30/2022]
Abstract
Non-essential "heavy" metals such as cadmium tend to accumulate in an organism and thus are a particular threat for long-lived animals. Here we show that two unrelated, short-lived groups of mammals (rodents and shrews, separated by 100 Mio years of evolution) each have independently acquired mutations in their metal-responsive transcription factor (MTF-1) in a domain relevant for robust transcriptional induction by zinc and cadmium. While key amino acids are mutated in rodents, in shrews an entire exon is skipped. Rodents and especially shrews are unique regarding the alterations of this region. To investigate the biological relevance of these alterations, MTF-1s from the common shrew (Sorex araneus), the mouse, humans and a bat (Myotis blythii), were tested by cotransfection with a reporter gene into cells lacking MTF-1. Whereas shrews only live for 1.5-2.5 years, bats, although living on a very similar insect diet, have a lifespan of several decades. We find that bat MTF-1 is similarly metal-responsive as its human counterpart, while shrew MTF-1 is less responsive, similar to mouse MTF-1. We propose that in comparison to most other mammals, the short-lived shrews and rodents can afford a "lower-quality" system for heavy metal homeostasis and detoxification.
Collapse
Affiliation(s)
- Katharina Schmidt
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Kurt Steiner
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland
| | - Boyan Petrov
- National Museum of Natural History, 1000, Sofia, Bulgaria
| | - Oleg Georgiev
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
| | - Walter Schaffner
- Institute of Molecular Life Sciences, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Bens M, Sahm A, Groth M, Jahn N, Morhart M, Holtze S, Hildebrandt TB, Platzer M, Szafranski K. FRAMA: from RNA-seq data to annotated mRNA assemblies. BMC Genomics 2016; 17:54. [PMID: 26763976 PMCID: PMC4712544 DOI: 10.1186/s12864-015-2349-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Background Advances in second-generation sequencing of RNA made a near-complete characterization of transcriptomes affordable. However, the reconstruction of full-length mRNAs via de novo RNA-seq assembly is still difficult due to the complexity of eukaryote transcriptomes with highly similar paralogs and multiple alternative splice variants. Here, we present FRAMA, a genome-independent annotation tool for de novo mRNA assemblies that addresses several post-assembly tasks, such as reduction of contig redundancy, ortholog assignment, correction of misassembled transcripts, scaffolding of fragmented transcripts and coding sequence identification. Results We applied FRAMA to assemble and annotate the transcriptome of the naked mole-rat and assess the quality of the obtained compilation of transcripts with the aid of publicy available naked mole-rat gene annotations. Based on a de novo transcriptome assembly (Trinity), FRAMA annotated 21,984 naked mole-rat mRNAs (12,100 full-length CDSs), corresponding to 16,887 genes. The scaffolding of 3488 genes increased the median sequence information 1.27-fold. In total, FRAMA detected and corrected 4774 misassembled genes, which were predominantly caused by fusion of genes. A comparison with three different sources of naked mole-rat transcripts reveals that FRAMA’s gene models are better supported by RNA-seq data than any other transcript set. Further, our results demonstrate the competitiveness of FRAMA to state of the art genome-based transcript reconstruction approaches. Conclusion FRAMA realizes the de novo construction of a low-redundant transcript catalog for eukaryotes, including the extension and refinement of transcripts. Thereby, results delivered by FRAMA provide the basis for comprehensive downstream analyses like gene expression studies or comparative transcriptomics. FRAMA is available at https://github.com/gengit/FRAMA. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2349-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Bens
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Arne Sahm
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Marco Groth
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Niels Jahn
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Michaela Morhart
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.
| | - Matthias Platzer
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| | - Karol Szafranski
- Leibniz Institute on Ageing - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
12
|
Martins NSDF, Carneiro LT, Dantas HDM, Esperança C, Marroquim RG, Oliveira LFD, Machado JC. Generation of 3D ultrasound biomicroscopic images: technique validation and in vivo volumetric imaging of rat lateral gastrocnemius. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/1517-3151.0209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | | | | | | | - João Carlos Machado
- Universidade Federal do Rio de Janeiro, Brasil; Universidade Federal do Rio de Janeiro, Brasil
| |
Collapse
|
13
|
Flores LE, Hildebrandt TB, Kühl AA, Drews B. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy. Reprod Biol Endocrinol 2014; 12:38. [PMID: 24886361 PMCID: PMC4037759 DOI: 10.1186/1477-7827-12-38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/26/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. METHODS In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. RESULTS The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart beat. Corresponding histology showed apoptotic cells in the embryo while the placenta was still intact. In the subsequent resorption process first the embryo and then its membranes disappeared. CONCLUSIONS Our results provide a temporal time course of embryo resorption. With this method, animals exhibiting embryo resorption can be targeted, enabling the investigation of underlying mechanisms before the onset of total embryo disintegration.
Collapse
Affiliation(s)
- Luis E Flores
- Department Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thomas B Hildebrandt
- Department Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Anja A Kühl
- Charité – Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology, Research Center ImmunoSciences / Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Barbara Drews
- Department Reproduction Management, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| |
Collapse
|
14
|
Hood WR, Kessler DS, Oftedal OT. Milk composition and lactation strategy of a eusocial mammal, the naked mole-rat. J Zool (1987) 2014. [DOI: 10.1111/jzo.12126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- W. R. Hood
- Department of Biological Sciences; Auburn University; Auburn AL USA
| | - D. S. Kessler
- Smithsonian National Zoological Park; Washington DC USA
| | - O. T. Oftedal
- Smithsonian Environmental Research Center; Edgewater MD USA
| |
Collapse
|
15
|
Effects of extrinsic mortality on the evolution of aging: a stochastic modeling approach. PLoS One 2014; 9:e86602. [PMID: 24466165 PMCID: PMC3897743 DOI: 10.1371/journal.pone.0086602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022] Open
Abstract
The evolutionary theories of aging are useful for gaining insights into the complex mechanisms underlying senescence. Classical theories argue that high levels of extrinsic mortality should select for the evolution of shorter lifespans and earlier peak fertility. Non-classical theories, in contrast, posit that an increase in extrinsic mortality could select for the evolution of longer lifespans. Although numerous studies support the classical paradigm, recent data challenge classical predictions, finding that high extrinsic mortality can select for the evolution of longer lifespans. To further elucidate the role of extrinsic mortality in the evolution of aging, we implemented a stochastic, agent-based, computational model. We used a simulated annealing optimization approach to predict which model parameters predispose populations to evolve longer or shorter lifespans in response to increased levels of predation. We report that longer lifespans evolved in the presence of rising predation if the cost of mating is relatively high and if energy is available in excess. Conversely, we found that dramatically shorter lifespans evolved when mating costs were relatively low and food was relatively scarce. We also analyzed the effects of increased predation on various parameters related to density dependence and energy allocation. Longer and shorter lifespans were accompanied by increased and decreased investments of energy into somatic maintenance, respectively. Similarly, earlier and later maturation ages were accompanied by increased and decreased energetic investments into early fecundity, respectively. Higher predation significantly decreased the total population size, enlarged the shared resource pool, and redistributed energy reserves for mature individuals. These results both corroborate and refine classical predictions, demonstrating a population-level trade-off between longevity and fecundity and identifying conditions that produce both classical and non-classical lifespan effects.
Collapse
|
16
|
Santos J, Fonseca E, van Melis J, Miglino MA. Morphometric analysis of fetal development of Cavia porcellus (Linnaeus, 1758) by ultrasonography--pilot study. Theriogenology 2014; 81:896-900. [PMID: 24560548 DOI: 10.1016/j.theriogenology.2014.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/09/2013] [Accepted: 01/03/2014] [Indexed: 11/15/2022]
Abstract
Measurements on the growth process and placental development of the embryo and fetuses of Cavia porcellus were carried out using ultrasonography. Embryo, fetus, and placenta were monitored from Day 15 after mating day to the end of gestation. Based on linear and quadratic regressions, the following morphometric analysis showed a good indicator of the gestational age: placental diameter, biparietal diameter, renal length, and crown rump. The embryonic cardiac beat was first detected at an average of 22.5 days. The placental diameter showed constant increase from beginning of gestation then remained to term and presented a quadratic correlation with gestational age (r(2) = 0.89). Mean placental diameter at the end of pregnancy was 3.5 ± 0.23 cm. By Day 30, it was possible to measure biparietal diameter, which followed a linear pattern of increase up to the end of gestation (r(2) = 0.95). Mean biparietal diameter in the end of pregnancy was 1.94 ± 0.03 cm. Kidneys were firstly observed on Day 35 as hyperechoic structures without the distinction of medullar and cortical layers, thus the regression model equation between kidney length and gestational age presents a quadratic relationship (r(2) = 0.7). The crown rump presented a simple linear growth, starting from 15 days of gestation, displaying a high correlation with the gestational age (r(2) = 0.9). The offspring were born after an average gestation of 61.3 days. In this study, we conclude that biparietal diameter, placental diameter, and crown rump are adequate predictive parameters of gestational age in guinea pigs because they present high correlation index.
Collapse
Affiliation(s)
| | - Erika Fonseca
- Federal University of Tocantins, Araguaína, Tocantins, Brazil
| | | | | |
Collapse
|
17
|
Carter AM, Enders AC, Jones CJP, Keovichit PK, Hugot JP. A new form of rodent placentation in the relict species, Laonastes aenigmamus (Rodentia: Diatomyidae). Placenta 2013; 34:548-58. [PMID: 23643068 DOI: 10.1016/j.placenta.2013.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The Laotian rock rat is a relict species in a sister group relationship to hystricognath rodents (Hystricognathi). We asked whether there were similarities in placentation that might reflect this relationship or differences that might cast light on the evolution of Hystricognathi. METHODS We examined the reproductive tract of nonpregnant (n = 5), early (n = 3) and mid to late gestation (n = 2) females. Selected characters were mapped to a phylogenetic tree to examine their evolution in rodents. RESULTS The chorionic placenta was discoid and labyrinthine with a spongy zone but without internal lobes. The interhemal region was hemodichorial with syncytiotrophoblast lining maternal blood spaces and an inner layer of vacuolated cytotrophoblast. There was no subplacenta. The yolk sac was well developed with a villous portion that faced the placental disk but no fibrovascular ring. There was a single fetus that very likely would be precocial at birth. DISCUSSION A lobulated labyrinth and the presence of a subplacenta and a fibrovascular ring emerged as synapomorphies for Hystricognathi. Laonastes, Ctenodactylus and stem Hystricognathi all had precocial young, whereas altriciality was the plesiomorphic condition for rodents. A hemomonochorial interhemal region was plesiomorphic for rodents and Hystricognathi, and the hemodichorial condition found in Laonastes, and possibly in Ctenodactylus, was unlike that of any rodent studied to date. CONCLUSION Similar to Hystricognathi, Laonastes bears precocial young, but this species lacks placental adaptations such as the subplacenta, suggesting they were evolved subsequent to a change in reproductive strategy in the common ancestor of Laonastes and Hystricognathi.
Collapse
Affiliation(s)
- A M Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | | | | | | | | |
Collapse
|
18
|
Pregnancy in Hystricomorpha: gestational age and embryonic-fetal development of agouti (Dasyprocta prymnolopha, Wagler 1831) estimated by ultrasonography. Theriogenology 2012; 78:1278-85. [PMID: 22898012 DOI: 10.1016/j.theriogenology.2012.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 05/02/2012] [Accepted: 05/20/2012] [Indexed: 11/21/2022]
Abstract
Thirty-one pregnant agoutis, between Days 9 and 103 of gestation (Day 1 = day of detection of sperm in the vaginal smear), underwent B-mode ultrasonography; gestational sac diameter (GSD), crown-rump length (CRL), embryonic-fetal diameter (EFD), and placenta diameter (PD) were measured. There were positive correlations (P < 0.05) between GSD and CRL (r = 0.98), GSD and PD (r = 0.88), CRL and PD (r = 0.86), days of gestation (DG) and CRL (r = 0.85), and DG and PD (r = 0.73). The gestational sac was first observed on Day 14. The embryo was first seen on Day 18 in 9/31 of pregnant agoutis and on Day 22 in 20/31 of pregnant agoutis. Heartbeats were detected from the Day 25 and placentas were observed in 100% of the animals from Day 25. Early limb bud and ossification of the fetal skull were identified on Days 27 (15/31) and 45 (24/31), respectively. Fetal orientation (head and body) was evident from Day 40, the stomach, liver and lungs were identified on Day 50, the kidneys were reliably seen only on Day 55, and the aorta and vena cava were seen on Day 70. The fetal bowel and the urinary bladder were the last structures to be observed (Day 85). Ultrasonography was effective for early pregnancy diagnosis in agouti and for obtaining information on embryonic and fetal structures that could be used to predict gestational age and birth, thereby contributing to their reproductive management in captivity.
Collapse
|
19
|
|
20
|
van der Horst G, Maree L, Kotzé SH, O'Riain MJ. Sperm structure and motility in the eusocial naked mole-rat, Heterocephalus glaber: a case of degenerative orthogenesis in the absence of sperm competition? BMC Evol Biol 2011; 11:351. [PMID: 22142177 PMCID: PMC3247228 DOI: 10.1186/1471-2148-11-351] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022] Open
Abstract
Background We have studied sperm structure and motility in a eusocial rodent where reproduction is typically restricted to a single male and behaviourally dominant queen. Males rarely compete for access to the queen during her estrus cycle, suggesting little or no role for sperm competition. Results Our results revealed an atypical mammalian sperm structure with spermatozoa from breeding, subordinate and disperser males being degenerate and almost completely lacking a "mammalian phylogenetic stamp". Sperm structure is characterized by extreme polymorphism with most spermatozoa classified as abnormal. Sperm head shapes include round, oval, elongated, lobed, asymmetrical and amorphous. At the ultrastructural level, the sperm head contains condensed to granular chromatin with large open spaces between the chromatin. Nuclear chromatin seems disorganized since chromatin condensation is irregular and extremely inconsistent. The acrosome forms a cap (ca 35%) over the anterior part of the head. A well defined nuclear fossa and neck with five minor sets of banded protein structures are present. The midpiece is poorly organized and contains only 5 to 7 round to oval mitochondria. The flagellar pattern is 9+9+2. A distinct degenerative feature of the tail principal piece is the absence of the fibrous sheath. Only 7% motile spermatozoa were observed which had exceptionally slow swimming speeds. Conclusion In this species, sperm form has simplified and degenerated in many aspects and represents a specialised form of degenerative orthogenesis at the cellular level.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| | | | | | | |
Collapse
|