1
|
Wu CC, Chen MS, Lee TY, Cheng YJ, Tsou HH, Huang TS, Cho DY, Chen JY. Screening and identification of emodin as an EBV DNase inhibitor to prevent its biological functions. Virol J 2023; 20:148. [PMID: 37443068 PMCID: PMC10339607 DOI: 10.1186/s12985-023-02107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The Epstein-Barr virus (EBV) is a prevalent oncovirus associated with a variety of human illnesses. BGLF5, an EBV DNase with alkaline nuclease (AN) activity, plays important roles in the viral life cycle and progression of human malignancies and has been suggested as a possible diagnostic marker and target for cancer therapy. Methods used conventionally for the detection of AN activity, radioactivity-based nuclease activity assay and DNA digestion detection by gel electrophoresis, are not suitable for screening AN inhibitors; the former approach is unsafe, and the latter is complicated. In the present study, a fluorescence-based nuclease activity assay was used to screen several natural compounds and identify an EBV DNase inhibitor. RESULTS Fluorescence-based nuclease activity assays, in which the DNA substrate is labelled with PicoGreen dye, are cheaper, safer, and easier to perform. Herein, the results of the fluorescence-based nuclease activity assay were consistent with the results of the two conventional methods. In addition, the PicoGreen-labelling method was applied for the biochemical characterisation of viral nucleases. Using this approach, we explored EBV DNase inhibitors. After several rounds of screening, emodin, an anthraquinone derivative, was found to possess significant anti-EBV DNase activity. We verified the efficacy of emodin using the conventional DNA-cleavage assay. Furthermore, using comet assay and micronucleus formation detection, we confirmed that emodin can inhibit DNase-induced DNA damage and genomic instability. Additionally, emodin treatment inhibited EBV production. CONCLUSIONS Using a PicoGreen-mediated nuclease activity assay, we successfully demonstrated that emodin has the potential to inhibit EBV DNase nuclease activity. Emodin also inhibits EBV DNase-related biological functions, suggesting that it is a potential inhibitor of EBV DNase.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan.
| | - Mei-Shu Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hsiao-Hui Tsou
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Tze-Sing Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung City, 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Town, Miaoli County, Taiwan.
| |
Collapse
|
2
|
Wu CC, Lee TY, Cheng YJ, Cho DY, Chen JY. The Dietary Flavonol Kaempferol Inhibits Epstein-Barr Virus Reactivation in Nasopharyngeal Carcinoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238158. [PMID: 36500249 PMCID: PMC9736733 DOI: 10.3390/molecules27238158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Kaempferol (KP, 3,4',5,7-tetrahydroxyflavone), a dietary flavonol, has anti-cancer, antioxidant, anti-inflammatory, antimicrobial, and antimutagenic functions. However, it is unknown whether kaempferol possesses anti-Epstein-Barr virus (EBV) activity. Previously, we demonstrated that inhibition of EBV reactivation represses nasopharyngeal carcinoma (NPC) tumourigenesis, suggesting the importance of identifying EBV inhibitors. In this study, Western blotting, immunofluorescence staining, and virion detection showed that kaempferol repressed EBV lytic gene protein expression and subsequent virion production. Specifically, kaempferol was found to inhibit the promoter activities of Zta and Rta (Zp and Rp) under various conditions. A survey of the mutated Zp constructs revealed that Sp1 binding regions are critical for kaempferol inhibition. Kaempferol treatment repressed Sp1 expression and decreased the activity of the Sp1 promoter, suggesting that Sp1 expression was inhibited. In conclusion, kaempferol efficiently inhibits EBV reactivation and provides a novel choice for anti-EBV therapy and cancer prevention.
Collapse
Affiliation(s)
- Chung-Chun Wu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| | - Ting-Ying Lee
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Der-Yang Cho
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan 35053, Taiwan
- Correspondence: (C.-C.W.); (J.-Y.C.)
| |
Collapse
|
3
|
Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 2017; 91:JVI.00736-17. [PMID: 28490592 DOI: 10.1128/jvi.00736-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Rta, an Epstein-Barr virus (EBV) immediate-early protein, reactivates viral lytic replication that is closely associated with tumorigenesis. In previous studies, we demonstrated that in epithelial cells Rta efficiently induced cellular senescence, which is an irreversible G1 arrest likely to provide a favorable environment for productive replications of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV). To restrict progression of the cell cycle, Rta simultaneously upregulates CDK inhibitors and downregulates MYC, CCND1, and JUN, among others. Rta has long been known as a potent transcriptional activator, thus its role in gene repression is unexpected. In silico analysis revealed that the promoter regions of MYC, CCND1, and JUN are common in (i) the presence of CpG islands, (ii) strong chromatin immunoprecipitation (ChIP) signals of CCCTC-binding factor (CTCF), and (iii) having at least one Rta binding site. By combining ChIP assays and DNA methylation analysis, here we provide evidence showing that Rta binding accumulated CpG methylation and decreased CTCF occupancy in the regulatory regions of MYC, CCND1, and JUN, which were associated with downregulated gene expression. Stable residence of CTCF in the viral latency and reactivation control regions is a hallmark of viral latency. Here, we observed that Rta-mediated decreased binding of CTCF in the viral genome is concurrent with virus reactivation. Via interfering with CTCF binding, in the host genome Rta can function as a transcriptional repressor for gene silencing, while in the viral genome Rta acts as an activator for lytic gene loci by removing a topological constraint established by CTCF.IMPORTANCE CTCF is a multifunctional protein that variously participates in gene expression and higher-order chromatin structure of the cellular and viral genomes. In certain loci of the genome, CTCF occupancy and DNA methylation are mutually exclusive. Here, we demonstrate that the Epstein-Barr virus (EBV) immediate-early protein, Rta, known to be a transcriptional activator, can also function as a transcriptional repressor. Via enriching CpG methylation and decreasing CTCF reloading, Rta binding efficiently shut down the expression of MYC, CCND1, and JUN, thus impeding cell cycle progression. Rta-mediated disruption of CTCF binding was also detected in the latency/reactivation control regions of the EBV genome, and this in turn led to viral lytic cycle progression. As emerging evidence indicates that a methylated EBV genome is a preferable substrate for EBV Zta, the other immediate-early protein, our results suggest a mechanistic link in understanding the molecular processes of viral latent-lytic switch.
Collapse
|
4
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
5
|
Wu CC, Fang CY, Hsu HY, Chen YJ, Chou SP, Huang SY, Cheng YJ, Lin SF, Chang Y, Tsai CH, Chen JY. Luteolin inhibits Epstein-Barr virus lytic reactivation by repressing the promoter activities of immediate-early genes. Antiviral Res 2016; 132:99-110. [PMID: 27185626 DOI: 10.1016/j.antiviral.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/27/2016] [Accepted: 05/09/2016] [Indexed: 02/08/2023]
Abstract
The lytic reactivation of Epstein-Barr virus (EBV) has been reported to be strongly associated with several human diseases, including nasopharyngeal carcinoma (NPC). Inhibition of the EBV lytic cycle has been shown to be of great benefit in the treatment of EBV-associated diseases. The administration of dietary compounds is safer and more convenient than other approaches to preventing EBV reactivation. We screened several dietary compounds for their ability to inhibit EBV reactivation in NPC cells. Among them, the flavonoid luteolin showed significant inhibition of EBV reactivation. Luteolin inhibited protein expression from EBV lytic genes in EBV-positive epithelial and B cell lines. It also reduced the numbers of EBV-reactivating cells detected by immunofluorescence analysis and reduced the production of virion. Furthermore, luteolin reduced the activities of the promoters of the immediate-early genes Zta (Zp) and Rta (Rp) and also inhibited Sp1-luc activity, suggesting that disruption of Sp1 binding is involved in the inhibitory mechanism. CHIP analysis revealed that luteolin suppressed the activities of Zp and Rp by deregulating Sp1 binding. Taken together, luteolin inhibits EBV reactivation by repressing the promoter activities of Zp and Rp, suggesting luteolin is a potential dietary compound for prevention of virus infection.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Ju Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan; Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
|
7
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
8
|
Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol 2014; 88:4962-75. [PMID: 24554665 DOI: 10.1128/jvi.00063-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg(2+), Mn(2+), and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions. IMPORTANCE Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.
Collapse
|
9
|
Zaman A, Rahaman MH, Razzaque S. Kaposi's sarcoma: a computational approach through protein-protein interaction and gene regulatory networks analysis. Virus Genes 2012; 46:242-54. [PMID: 23266878 DOI: 10.1007/s11262-012-0865-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Interactomic data for Kaposi's Sarcoma Associated Herpes virus (KSHV)-the causative agent of vascular origin tumor called Kaposi's sarcoma-is relatively modest to date. The objective of this study was to assign functions to the previously uncharacterized ORFs in the virus using computational approaches and subsequently fit them to the host interactome landscape on protein, gene, and cellular level. On the basis of expression data, predicted RNA interference data, reported experimental data, and sequence based functional annotation we also tried to hypothesize the ORFs role in lytic and latent cycle during viral infection. We studied 17 previously uncharacterized ORFs in KSHV and the host-virus interplay seems to work in three major functional pathways-cell division, transport, metabolic and enzymatic in general. Studying the host-virus crosstalk for lytic phase predicts ORF 10 and ORF 11 as a predicted virus hub whereas PCNA is predicted as a host hub. On the other hand, ORF31 has been predicted as a latent phase inducible protein. KSHV invests a lion's share of its coding potential to suppress host immune response; various inflammatory mediators such as IFN-γ, TNF, IL-6, and IL-8 are negatively regulated by the ORFs while Il-10 secretion is stimulated in contrast. Although, like any other computational prediction, the study requires further validation, keeping into account the reproducibility and vast sample size of the systems biology approach the study allows us to propose an integrated network for host-virus interaction with good confidence. We hope that the study, in the long run, would help us identify effective dug against potential molecular targets.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | | |
Collapse
|
10
|
Epstein-Barr virus BGLF4 kinase downregulates NF-κB transactivation through phosphorylation of coactivator UXT. J Virol 2012; 86:12176-86. [PMID: 22933289 DOI: 10.1128/jvi.01918-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle.
Collapse
|
11
|
Wu CC, Chuang HY, Lin CY, Chen YJ, Tsai WH, Fang CY, Huang SY, Chuang FY, Lin SF, Chang Y, Chen JY. Inhibition of Epstein-Barr virus reactivation in nasopharyngeal carcinoma cells by dietary sulforaphane. Mol Carcinog 2012; 52:946-58. [PMID: 22641235 DOI: 10.1002/mc.21926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/25/2012] [Accepted: 04/24/2012] [Indexed: 01/16/2023]
Abstract
Epstein-Barr virus (EBV) has been associated with several human malignancies including nasopharyngeal carcinoma (NPC). Reactivation of latent EBV has been considered to contribute to the carcinogenesis of NPC. Blocking the EBV lytic cycle has been shown effective in the treatment of EBV-associated diseases. We have searched for natural dietary compounds inhibiting EBV reactivation in NPC cells. Among them, sulforaphane (SFN) was found to be effective in the inhibition of EBV reactivation in latent EBV-positive NPC cells, NA and HA. SFN is a histone deacetylase (HDAC) inhibitor and has been recognized as an antioxidant and antitumor compound for chemoprevention. However, its antiviral effect is less well elucidated. In this study, after determination of the cytotoxicity of SFN on various epithelial cells, we showed that SFN treatment inhibits EBV reactivation, rather than induction, by detection of EBV lytic gene expression in EBV-positive NPC cells. We also determined that the number of cells supporting the EBV lytic cycle is decreased using immunofluorescence and flow cytometric analysis. Moreover, we have found that this inhibitory effect decreases virus production. To elucidate the inhibitory mechanism of SFN on the EBV lytic cycle, luciferase reporter assays were carried out on the Zta and Rta promoters. The results show that SFN inhibits transactivation activity of the EBV immediate-early gene Rta but not Zta. Together, our results suggest that SFN has the capability to inhibit EBV lytic cycle and the potential to be taken as a dietary compound for prevention of EBV reactivation.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hui KF, Ho DN, Tsang CM, Middeldorp JM, Tsao GSW, Chiang AKS. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma. Int J Cancer 2012; 131:1930-40. [PMID: 22261816 DOI: 10.1002/ijc.27439] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/03/2012] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is strongly associated with Epstein-Barr virus (EBV). We reported that suberoylanilide hydroxamic acid (SAHA) induced EBV lytic cycle in EBV-positive gastric carcinoma cells and mediated enhanced cell death. However, expression of EBV lytic proteins was thought to exert antiapoptotic effect in EBV-infected cells. Here, we examined the in vitro and in vivo effects of SAHA on EBV lytic cycle induction in NPC cells and investigated the cellular consequences. Micromolar concentrations of SAHA significantly induced EBV lytic cycle in EBV-positive NPC cells. Increased apoptosis and proteolytic cleavage of poly(ADP-ribose) polymerase and caspase-3, -7 and -9 in EBV-positive versus EBV-negative NPC cells were observed. More than 85% of NPC cells expressing immediate-early (Zta), early (BMRF1) or late (gp350/220) lytic proteins coexpressed cleaved caspase-3. Tracking of expression of EBV lytic proteins and cleaved caspase-3 over time demonstrated that NPC cells proceeded to apoptosis following EBV lytic cycle induction. Inhibition of EBV DNA replication and late lytic protein expression by phosphonoformic acid did not impact on SAHA's induced cell death in NPC, indicating that early rather than late phase of EBV lytic cycle contributed to the apoptotic effect. In vivo effects of SAHA on EBV lytic cycle induction and tumor growth suppression were also observed in NPC xenografts in nude mice. Taken together, our data indicated that activation of lytic cycle from latent cycle of EBV by SAHA leads to apoptosis and tumor growth suppression of NPC thereby providing experimental evidence for virus-targeted therapy against EBV-positive cancer.
Collapse
Affiliation(s)
- K F Hui
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
13
|
Tsai WH, Wang PW, Lin SY, Wu IL, Ko YC, Chen YL, Li M, Lin SF. Ser-634 and Ser-636 of Kaposi's Sarcoma-Associated Herpesvirus RTA are Involved in Transactivation and are Potential Cdk9 Phosphorylation Sites. Front Microbiol 2012; 3:60. [PMID: 22371709 PMCID: PMC3283893 DOI: 10.3389/fmicb.2012.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/05/2012] [Indexed: 11/13/2022] Open
Abstract
The replication and transcription activator (RTA) of Kaposi’s sarcoma-associated herpesvirus (KSHV), K-RTA, is a lytic switch protein that moderates the reactivation process of KSHV latency. By mass spectrometric analysis of affinity purified K-RTA, we showed that Thr-513 or Thr-514 was the primary in vivo phosphorylation site. Thr-513 and Thr-514 are proximal to the nuclear localization signal (527KKRK530) and were previously hypothesized to be target sites of Ser/Thr kinase hKFC. However, substitutions of Thr with Ala at 513 and 514 had no effect on K-RTA subcellular localization or transactivation activity. By contrast, replacement of Ser with Ala at Ser-634 and Ser-636 located in a Ser/Pro-rich region of K-RTA, designated as S634A/S636A, produced a polypeptide with ∼10 kDa shorter in molecular weight and reduced transactivation in a luciferase reporter assay relative to the wild type. In contrast to prediction, the decrease in molecular weight was not due to lack of phosphorylation because the overall Ser and Thr phosphorylation state in K-RTA and S634A/S636A were similar, excluding that Ser-634 or Ser-636 motif served as docking sites for consecutive phosphorylation. Interestingly, S634A/S636A lost ∼30% immuno-reactivity to MPM2, an antibody specific to pSer/pThr-Pro motif, indicating that 634SPSP637 motif was in vivo phosphorylated. By in vitro kinase assay, we showed that K-RTA is a substrate of CDK9, a Pro-directed Ser/Thr kinase central to transcriptional regulation. Importantly, the capability of K-RTA in associating with endogenous CDK9 was reduced in S634A/S636A, which suggested that Ser-634 and Ser-636 may be involved in CDK9 recruitment. In agreement, S634A/S636A mutant exhibited ∼25% reduction in KSHV lytic cycle reactivation relative to that by the wild type K-RTA. Taken together, our data propose that Ser-634 and Ser-636 of K-RTA are phosphorylated by host transcriptional kinase CDK9 and such a process contributes to a full transcriptional potency of K-RTA.
Collapse
Affiliation(s)
- Wan-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes Zhunan Town, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ko YC, Tsai WH, Wang PW, Wu IL, Lin SY, Chen YL, Chen JY, Lin SF. Suppressive regulation of KSHV RTA with O-GlcNAcylation. J Biomed Sci 2012; 19:12. [PMID: 22300411 PMCID: PMC3395832 DOI: 10.1186/1423-0127-19-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored. METHODS By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA. RESULTS We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes. CONCLUSIONS KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Huang SY, Hsieh MJ, Chen CY, Chen YJ, Chen JY, Chen MR, Tsai CH, Lin SF, Hsu TY. Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol 2011; 93:139-149. [PMID: 21918011 DOI: 10.1099/vir.0.034405-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many herpesviral immediate-early proteins promote their robust lytic phase replications by hijacking the cell cycle machinery. Previously, lytic replication of Epstein-Barr virus (EBV) was found to be concurrent with host cell cycle arrest. In this study, we showed that ectopic expression of EBV immediate-early protein Rta in HEp-2 cells resulted in increased G1/S population, hypophosphorylation of pRb and decreased incorporation of 5-bromo-2'-deoxyuridine. In addition, EBV Rta transcriptionally upregulates the expressions of p21 and 14-3-3σ in HEp-2 cells, 293 cells and nasopharyngeal carcinoma TW01 cells. Although p21 and 14-3-3σ are known targets for p53, Rta-mediated p21 and 14-3-3σ transactivation can be detected in the absence of p53. In addition, results from luciferase reporter assays indicated that direct binding of Rta to either promoter sequences is not required for activation. On the other hand, a special class of Sp1-responsive elements was involved in Rta-mediated transcriptional activation on both promoters. Finally, Rta-induced p21 expression diminished the activity of CDK2/cyclin E complex, and, Rta-induced 14-3-3σ expression sequestered CDK1 and CDK2 in the cytoplasm. Based on these results, we hypothesize that through the disruption of CDK1 and CDK2 activities, EBV Rta might contribute to cell cycle arrest in EBV-infected epithelial cells during viral reactivation.
Collapse
Affiliation(s)
- Sheng-Yen Huang
- Institute of Biotechnology, Department of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, ROC.,National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC
| | - Min-Jie Hsieh
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Chu-Ying Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Yen-Ju Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC.,Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Hsinchu 300, Taiwan, ROC.,Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Mei-Ru Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 350, Taiwan, ROC
| | - Tsuey-Ying Hsu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan, ROC
| |
Collapse
|