1
|
Mukerjee N, Maitra S, Roy S, Modak S, Hasan MM, Chakraborty B, Ghosh A, Ghosh A, Kamal MA, Dey A, Ashraf GM, Malik S, Rahman MH, Alghamdi BS, Abuzenadah AM, Alexiou A. Treatments against Polymorphosal discrepancies in Glioblastoma Multiforme. Metab Brain Dis 2023; 38:61-68. [PMID: 36149588 DOI: 10.1007/s11011-022-01082-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/30/2022] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardah, West Bengal, Kolkata, 700118, India.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Subhradeep Roy
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardah, West Bengal, Kolkata, 700118, India
| | - Shaswata Modak
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardah, West Bengal, Kolkata, 700118, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Biswajit Chakraborty
- Department of Biochemistry and Biophysics, University of Kalyani Nadia, Kalyani, West Bengal, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Asmita Ghosh
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee place, Habersham , NSW, 2770, Australia
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, 834001, India
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, Korea
| | - Badrah S Alghamdi
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel Mohammad Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
- AFNP Med, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Dhinakaran AK, Ganesh S, Haldavnekar R, Tan B, Das S, Venkatakrishnan K. Holistic Analysis of Glioblastoma Stem Cell DNA Using Nanoengineered Plasmonic Metasensor for Glioblastoma Diagnosis. SMALL METHODS 2022; 6:e2200547. [PMID: 35908161 DOI: 10.1002/smtd.202200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The clinical relevance of liquid biopsy for glioblastoma (GBM) remains undetermined due to practical and biological limitations such as absence of a reliable GBM-specific biomarker, trace levels in circulation due to the blood-brain-barrier, and lack of a sensitive method to detect the trace levels of biomarkers. It is hypothesized that GBM stem cell (GSC)-associated cell free DNA can function as reliable biomarker for GBM because it accounts for tumor heterogeneity and provide accurate molecular information about the cancer. An integrative methodology is used for GBM diagnosis by utilizing the sub-single molecular sensitivity of nanoengineered plasmonic metasensors for real-time genomic profiling of GSC DNA. The nanoengineered metasensors can detect the rare circulating GSC-DNA accurately from just 5 µL of blood and the test can be performed in under 10 min. Analysis of clinical serum samples from GBM patients and healthy volunteers demonstrates that the technology yielded an accurate classification of GBM in an independent validation cohort (accuracy 98.3%, specificity 100%). The methodology detects GBM-signatures from the patient blood rapidly within the half-life period of cfDNA in circulation, non-invasively and amplification-free with a high diagnostic accuracy. With clinical validation, this methodology can evolve as a clinically viable diagnostic tool for fatal and hard-to-detect cancer like GBM.
Collapse
Affiliation(s)
- Ashok Kumar Dhinakaran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Swarna Ganesh
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Ryerson University and St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Bo Tan
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Sunit Das
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, M5B1W8, Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Nano-Bio Interface facility, Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
3
|
Khan AU, Mahjabeen I, Malik MA, Hussain MZ, Khan S, Kayani MA. Modulation of brain tumor risk by genetic SNPs in PARP1gene: Hospital based case control study. PLoS One 2019; 14:e0223882. [PMID: 31609976 PMCID: PMC6791555 DOI: 10.1371/journal.pone.0223882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
PARP-1 gene plays an essential part in base excision repair pathway and its functional variations result in several types of cancer. In this study we have explored the effect of genetic variations in PARP-1 gene in brain tumorigenesis. This case control study comprised of 500 brain tumor cases along with 500 healthy controls. Three polymorphisms of PARP-1 gene, rs1136410 (Val762Ala), rs1805404 (Asp81Asp) and rs1805414 (Ala284Ala) were analyzed using AS-PCR method followed by DNA sequencing. Joint effect model, haplotype analysis and linkage disequilibrium of these polymorphisms was assessed using Haploview 4.2. In rs1136410 (Val762Ala) heterozygous mutant genotype (CT) was observed notably lower (OR: 0.44., 95% CI: 0.33-0.57., p<0.0001) in brain tumor patients compared to controls and ~2 fold increased frequency of homozygous mutant genotype (CC) was observed in brain tumor patients versus controls (OR: 1.51., 95%CI: 1.16-1.96, p = 0.001). In rs1805414 (Ala284Ala), frequency of heterozygous mutant genotype (CT) was observed lower (OR: 0.77., 95% CI: 0.60-0.99., p = 0.05) in patients versus controls. In rs1805404 (Asp81Asp), heterozygous mutant genotyping (CT) was observed lower in brain tumor patients compared with the healthy controls (OR: 0.63., 95% CI: 0.48-0.83., p = 0.001). However, homozygous mutant genotype (TT) was observed increased in patients compared to controls (OR: 1.41., 95% CI:1.07-1.85., p = 0.01). We assessed the fact that in combination the PARP-1 gene SNPs, rs1136410 (Val762Ala), rs1805414 (Ala284Ala) and rs1805404 (Asp81Asp) may increase the brain pathogenesis at least in Pakistani population.
Collapse
Affiliation(s)
- Asad ullah Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Muhammad Zahid Hussain
- Department of Medicine, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Sarfraz Khan
- Department of Physiotherapy, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
4
|
Bashir K, Sarwar R, Saeed S, Mahjabeen I, Kayani MA. Interaction among susceptibility genotypes of PARP1 SNPs in thyroid carcinoma. PLoS One 2018; 13:e0199007. [PMID: 30183716 PMCID: PMC6124699 DOI: 10.1371/journal.pone.0199007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/16/2018] [Indexed: 01/21/2023] Open
Abstract
Polymorphisms in DNA repair genes may alter the repair mechanism which makes the person susceptible to DNA damage. Polymorphic variants in these DNA repair pathway genes such as Poly (ADP-ribose) polymerase- 1 (PARP1) have been associated with susceptibility of several types of cancer including thyroid. Many studies have been published on PARP1 gene polymorphisms and carcinogenesis with inconsistent results. The present study was designed to explore the link between the PARP1 polymorphisms and thyroid cancer risk. This case-control study was comprised of 456 thyroid cancer patients and 400 healthy controls. Three SNPs of PARP1 gene; rs1136410, rs1805414 and rs1805404 were analyzed using ARMS-PCR. The combined genotype and haplotype analysis were performed using haploview software 4.2. Major allele homozygote (CC) of rs1136410 and combined genotype (TT+TC) of rs180414 showed a significant association with thyroid cancer risk (OR = 1.30; 95% CI 0.99–1.77; P = 0.05) and (OR = 0.43; 95% CI = 0.27–0.67; P = 0.03). Histological subtype analysis showed the significant association of selected PARP1 SNPs with papillary, follicular and anaplastic subtypes in thyroid cancer patients. Haplotype analysis showed that TCT (p = 0.01), CTT (p = 0.02) and CTC (p = 0.03) were significantly higher in controls when compared to cases. However, TTC (p = 0.05) and TCC (p = 0.01) haplotype frequency was significantly higher in cases compared to controls. Global haplotype analysis showed that there was an overall significant difference between cases and controls (p = 0.001). Identification of these genetic risk markers may provide evidence for exploring insight into mechanisms of pathogenesis and subsequently aid in developing novel therapeutic strategies for thyroid cancer.
Collapse
Affiliation(s)
- Kashif Bashir
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Romana Sarwar
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Soma Saeed
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
5
|
Wu MY, Huang SJ, Yang F, Qin XT, Liu D, Ding Y, Yang S, Wang XC. Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology. Oncotarget 2017; 8:52708-52723. [PMID: 28881764 PMCID: PMC5581063 DOI: 10.18632/oncotarget.17085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/17/2017] [Indexed: 01/18/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer with high incidence in South China and East Asia. To provide a theoretical basis for NPC risk screening and early prevention, we conducted a meta-analysis of relevant literature on the association of single nucleotide polymorphisms (SNP)s with NPC susceptibility. Further, expression of 15 candidate SNPs identified in the meta-analysis was evaluated in a cohort of NPC patients and healthy volunteers using next-generation sequencing technology. Among the 15 SNPs detected in the meta-analysis, miR-146a (rs2910164, C>G), HCG9 (rs3869062, A>G), HCG9 (rs16896923, T>C), MMP2 (rs243865, C>T), GABBR1 (rs2076483, T>C), and TP53 (rs1042522, C>G) were associated with decreased susceptibility to NPC, while GSTM1 (+/DEL), IL-10 (rs1800896, A>G), MDM2 (rs2279744, T>G), MDS1-EVI1 (rs6774494, G>A), XPC (rs2228000, C>T), HLA-F (rs3129055, T>C), SPLUNC1 (rs2752903, T>C; and rs750064, A>G), and GABBR1 (rs29232, G>A) were associated with increased susceptibility to NPC. In our case-control study, an association with increased risk for NPC was found for the AG vs AA genotype in HCG9 (rs3869062, A>G). In addition, heterozygous deletion of the GSTM1 allele was associated with increased susceptibility to NPC, while an SNP in GABBR1 (rs29232, G>A) was associated with decreased risk, and might thus have a protective role on NPC carcinogenesis. This work provides the first comprehensive assessment of SNP expression and its relationship to NPC risk. It suggests the need for well-designed, larger confirmatory studies to validate its findings.
Collapse
Affiliation(s)
- Mu-Yun Wu
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Oncology, The Fifth People's Hospital of Wuhu, Wuhu, China
| | - Shu-Jing Huang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Tian Qin
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong Liu
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Ding
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shu Yang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Cheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Backes C, Harz C, Fischer U, Schmitt J, Ludwig N, Petersen BS, Mueller SC, Kim YJ, Wolf NM, Katus HA, Meder B, Furtwängler R, Franke A, Bohle R, Henn W, Graf N, Keller A, Meese E. New insights into the genetics of glioblastoma multiforme by familial exome sequencing. Oncotarget 2016; 6:5918-31. [PMID: 25537509 PMCID: PMC4467411 DOI: 10.18632/oncotarget.2950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant subtype of human brain tumors. While a family clustering of GBM has long been acknowledged, relevant hereditary factors still remained elusive. Exome sequencing of families offers the option to discover respective genetic factors.We sequenced blood samples of one of the rare affected families: while both parents were healthy, both children were diagnosed with GBM. We report 85 homozygous non-synonymous single nucleotide variations (SNVs) in both siblings that were heterozygous in the parents. Beyond known key players for GBM such as ERBB2, PMS2, or CHI3L1, we identified over 50 genes that have not been associated to GBM so far. We also discovered three accumulative effects potentially adding to the tumorigenesis in the siblings: a clustering of multiple variants in single genes (e.g., PTPRB, CROCC), the aggregation of affected genes on specific molecular pathways (e.g., Focal adhesion or ECM receptor interaction) and genomic proximity (e.g., chr22.q12.2, chr1.p36.33). We found a striking accumulation of SNVs in specific genes for the daughter, who developed not only a GBM at the age of 12 years but was subsequently diagnosed with a pilocytic astrocytoma, a common acute lymphatic leukemia and a diffuse pontine glioma.The reported variants underline the relevance of genetic predisposition and cancer development in this family and demonstrate that GBM has a complex and heterogeneous genetic background. Sequencing of other affected families will help to further narrow down the driving genetic causes for this disease.
Collapse
Affiliation(s)
- Christina Backes
- Clinical Bioinformatics, University of Saarland, Saarbrücken, Germany
| | - Christian Harz
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Ulrike Fischer
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Jana Schmitt
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Nicole Ludwig
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Haus Niemannsweg, Kiel, Germany
| | - Sabine C Mueller
- Clinical Bioinformatics, University of Saarland, Saarbrücken, Germany.,Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Yoo-Jin Kim
- Department of Pathology, University of Saarland, Medical School, Building, Homburg, Germany
| | - Nadine M Wolf
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Rhoikos Furtwängler
- Pediatric Hematology and Oncology, University of Saarland, Medical School, Homburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Haus Niemannsweg, Kiel, Germany
| | - Rainer Bohle
- Department of Pathology, University of Saarland, Medical School, Building, Homburg, Germany
| | - Wolfram Henn
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| | - Norbert Graf
- Pediatric Hematology and Oncology, University of Saarland, Medical School, Homburg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, University of Saarland, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, University of Saarland, Medical School, Homburg, Germany
| |
Collapse
|
7
|
Ghosh M, Sodhi SS, Sharma N, Mongre RK, Kim N, Singh AK, Lee SJ, Kim DC, Kim SW, Lee HK, Song KD, Jeong DK. An integrated in silico approach for functional and structural impact of non- synonymous SNPs in the MYH1 gene in Jeju Native Pigs. BMC Genet 2016; 17:35. [PMID: 26847462 PMCID: PMC4741023 DOI: 10.1186/s12863-016-0341-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/25/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND This study was performed to identify the non- synonymous polymorphisms in the myosin heavy chain 1 gene (MYH1) association with skeletal muscle development in economically important Jeju Native Pig (JNP) and Berkshire breeds. Herein, we present an in silico analysis, with a focus on (a) in silico approaches to predict the functional effect of non-synonymous SNP (nsSNP) in MYH1 on growth, and (b) molecular docking and dynamic simulation of MYH1 to predict the effects of those nsSNP on protein-protein association. RESULTS The NextGENe (V 2.3.4.) tool was used to identify the variants in MYH1 from JNP and Berkshire using RNA seq. Gene ontology analysis of MYH1 revealed significant association with muscle contraction and muscle organ development. The 95 % confidence intervals clearly indicate that the mRNA expression of MYH1 is significantly higher in the Berkshire longissimus dorsi muscle samples than JNP breed. Concordant in silico analysis of MYH1, the open-source software tools identified 4 potential nsSNP (L884T, K972C, N981G, and Q1285C) in JNP and 1 nsSNP (H973G) in Berkshire pigs. Moreover, protein-protein interactions were studied to investigate the effect of MYH1 mutations on association with hub proteins, and MYH1 was found to be closely associated with the protein myosin light chain, phosphorylatable, fast skeletal muscle MYLPF. The results of molecular docking studies on MYH1 (native and 4 mutants) and MYLFP demonstrated that the native complex showed higher electrostatic energy (-466.5 Kcal mol(-1)), van der Walls energy (-87.3 Kcal mol(-1)), and interaction energy (-835.7 Kcal mol(-1)) than the mutant complexes. Furthermore, the molecular dynamic simulation revealed that the native complex yielded a higher root-mean-square deviation (0.2-0.55 nm) and lower root-mean-square fluctuation (approximately 0.08-0.3 nm) as compared to the mutant complexes. CONCLUSIONS The results suggest that the variants at L884T, K972C, N981G, and Q1285C in MYH1 in JNP might represent a cause for the poor growth performance for this breed. This study is a pioneering in-depth in silico analysis of polymorphic MYH1 and will serve as a valuable resource for further targeted molecular diagnosis and population-based studies conducted for improving the growth performance of JNP.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Neelesh Sharma
- Sher-e-Kashmir University of Agricultural Sciences and Technology, R.S. Pura, Jammu, India.
| | - Raj Kumar Mongre
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Nameun Kim
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Amit Kumar Singh
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-governing Province, Jeju-Do, 690-756, Republic of Korea.
| | - Sung Woo Kim
- Animal Genetic Resources Station, National Institute of Animal Science, Rural Administration, Namwon, Republic of Korea.
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| | - Dong Kee Jeong
- Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju-Do, 690-756, Republic of Korea.
| |
Collapse
|
8
|
Chen C, Liu J, Zhou F, Sun J, Li L, Jin C, Shao J, Jiang H, Zhao N, Zheng S, Lin B. Next-generation sequencing of colorectal cancers in chinese: identification of a recurrent frame-shift and gain-of-function Indel mutation in the TFDP1 gene. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:625-35. [PMID: 25133581 DOI: 10.1089/omi.2014.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Re-sequencing of target genes is a highly effective approach for identifying mutations in cancers. Mutations, including indels (insertions, deletions, and the combination of the two), play important roles in carcinogenesis. Combining genomic DNA capture using high-density oligonucleotide microarrays (NimbleGen, Inc.) with next-generation high-throughput sequencing, we identified approximately 1600 indels for colorectal cancers in the Chinese population. Among them, 5 indels were localized to exonic regions of genes, including the TFDP1 (transcription factor Dp-1) gene. TFDP1 is an important transcription factor that coordinates with E2F proteins, thereby promoting transcription of E2F target genes and regulating the cell cycle and differentiation. We report here the identification of a recurrent frame-shift indel mutation (named indel84) in the TFDP1 gene in colorectal cancers by next-generation sequencing. We found in a validation set that TFDP1 indel84 is present in 70% of colorectal cancer (CRC) tissues. Wild-type TFDP1 encodes a protein of 410 amino acids with a potential DNA binding site at its N-terminal followed by several functional protein domains. The TFDP1 indel cDNA would generate an alternative TFDP1 protein missing the first 120 amino acids and potentially affecting the DNA binding domain. We further demonstrated that the TFDP1 indel84 mutation generated a gain-of-function phenotype by increasing cell proliferation, migration, and invasion of CRC cells. Our study identified a key molecular event for CRC that might have great diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Chen Chen
- 1 Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jones MA, Rhodenizer D, da Silva C, Huff IJ, Keong L, Bean LJH, Coffee B, Collins C, Tanner AK, He M, Hegde MR. Molecular diagnostic testing for congenital disorders of glycosylation (CDG): detection rate for single gene testing and next generation sequencing panel testing. Mol Genet Metab 2013; 110:78-85. [PMID: 23806237 DOI: 10.1016/j.ymgme.2013.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/20/2013] [Accepted: 05/20/2013] [Indexed: 11/19/2022]
Abstract
Congenital disorders of glycosylation (CDG) are comprised of over 60 disorders with the majority of defects residing within the N-glycosylation pathway. Approximately 20% of patients do not survive beyond five years of age due to widespread organ dysfunction. A diagnosis of CDG is based on abnormal glycosylation of transferrin but this method cannot identify the specific gene defect. For many individuals diagnosed with CDG the gene defect remains unknown. To improve the molecular diagnosis of CDG we developed molecular testing for 25 CDG genes including single gene testing and next generation sequencing (NGS) panel testing. From March 2010 through November 2012, a total of 94 samples were referred for single gene testing and 68 samples were referred for NGS panel testing. Disease causing mutations were identified in 24 patients resulting in a molecular diagnosis rate of 14.8%. Coverage of the 24 CDG genes using panel testing and whole exome sequencing (WES) was compared and it was determined that many exons of these genes were not adequately covered using a WES approach and a panel approach may be the preferred first option for CDG patients. A collaborative effort between physicians, researchers and diagnostic laboratories will be very important as NGS testing using panels and exome becomes more widespread. This technology will ultimately improve the molecular diagnosis of patients with CDG in hard to solve cases.
Collapse
Affiliation(s)
- Melanie A Jones
- Emory Genetics Laboratory, 2165 N. Decatur Road, Decatur, GA 30033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Guan YF, Li GR, Wang RJ, Yi YT, Yang L, Jiang D, Zhang XP, Peng Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. CHINESE JOURNAL OF CANCER 2012; 31:463-70. [PMID: 22980418 PMCID: PMC3777453 DOI: 10.5732/cjc.012.10216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the development and improvement of new sequencing technology, next-generation sequencing (NGS) has been applied increasingly in cancer genomics research over the past decade. More recently, NGS has been adopted in clinical oncology to advance personalized treatment of cancer. NGS is used to identify novel and rare cancer mutations, detect familial cancer mutation carriers, and provide molecular rationale for appropriate targeted therapy. Compared to traditional sequencing, NGS holds many advantages, such as the ability to fully sequence all types of mutations for a large number of genes (hundreds to thousands) in a single test at a relatively low cost. However, significant challenges, particularly with respect to the requirement for simpler assays, more flexible throughput, shorter turnaround time, and most importantly, easier data analysis and interpretation, will have to be overcome to translate NGS to the bedside of cancer patients. Overall, continuous dedication to apply NGS in clinical oncology practice will enable us to be one step closer to personalized medicine.
Collapse
Affiliation(s)
- Yan-Fang Guan
- Shenzhen Clinical Molecular Diagnostic Engineering Laboratory, BGI-Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Haas J, Katus HA, Meder B. Next-generation sequencing entering the clinical arena. Mol Cell Probes 2011; 25:206-11. [PMID: 21914469 DOI: 10.1016/j.mcp.2011.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
Over the last decade the genetic etiology of many heritable diseases could be resolved. For heart muscle diseases, so called cardiomyopathies, mutations in more than 40 different genes have been identified. Due to this large genetic heterogeneity and missing of adequate gene-diagnostic tools, most patients are not genetically characterized, which would be important for individualized patient care. Currently, next-generation sequencing technologies are revolutionizing genetic and epigenetic research, since they are capable to produce billions of bases of sequence information in a single experiment. Accordingly, this powerful technology can now also open avenues for genetic diagnostics. The scope of this article is to illustrate technical approaches, clinical applications, and yet unsolved problems of next-generation sequencing entering the clinical arena.
Collapse
Affiliation(s)
- Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 350, Heidelberg 69120, Germany
| | | | | |
Collapse
|