1
|
Habets B, Ye Z, Jansma BM, Heldmann M, Münte TF. Brain imaging and electrophysiological markers of anaphoric reference during speech production. Neurosci Res 2025; 213:110-120. [PMID: 39788350 DOI: 10.1016/j.neures.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Pronouns create cohesive links in discourse by referring to previously mentioned elements. Here, we focus on pronominalization during speech production in three experiments employing ERP and fMRI methodologies. Participants were asked to produce two short sentences describing a man or woman using an object. In the second sentence, they were instructed to use a pronoun to refer to the same person and a noun to refer to a different person. The first ERP experiment revealed that noun conditions elicited more negative ERPs starting at 220 ms, with significant differences in early and later time windows, particularly in the left hemisphere. The second ERP experiment showed divergence at 280 ms, with significant differences between 300 and 400 ms at midline electrodes, again indicating more negative ERPs for nouns. The fMRI experiment identified greater activations for nouns than pronouns in regions like the superior temporal gyrus (STG) and cerebellar vermis, suggesting higher working memory load and lexical retrieval demands for nouns compared to pronouns. Moreover, pronouns elicited an enhanced centro-parietal positivity, indicating increased attentional demands. These findings suggest that while noun processing requires greater working memory and lexical retrieval, pronoun processing engages more attentional resources. This study advances our understanding of the neural mechanisms underlying pronominalization during speech production, highlighting distinct neural responses for nouns and pronouns.
Collapse
Affiliation(s)
- Boukje Habets
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bernadette M Jansma
- Department of Psychology, Maastricht University, Maastricht, the Netherlands
| | - Marcus Heldmann
- Department of Neurology, University of Lübeck, Germany; Center for Brain Behavior and Metabolism, University of Lübeck, Germany
| | - Thomas F Münte
- Center for Brain Behavior and Metabolism, University of Lübeck, Germany.
| |
Collapse
|
2
|
Gu J, Buidze T, Zhao K, Gläscher J, Fu X. The neural network of sensory attenuation: A neuroimaging meta-analysis. Psychon Bull Rev 2025; 32:31-51. [PMID: 38954157 DOI: 10.3758/s13423-024-02532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
Sensory attenuation refers to the reduction in sensory intensity resulting from self-initiated actions compared to stimuli initiated externally. A classic example is scratching oneself without feeling itchy. This phenomenon extends across various sensory modalities, including visual, auditory, somatosensory, and nociceptive stimuli. The internal forward model proposes that during voluntary actions, an efferent copy of the action command is sent out to predict sensory feedback. This predicted sensory feedback is then compared with the actual sensory feedback, leading to the suppression or reduction of sensory stimuli originating from self-initiated actions. To further elucidate the neural mechanisms underlying sensory attenuation effect, we conducted an extensive meta-analysis of functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) studies. Utilizing activation likelihood estimation (ALE) analysis, our results revealed significant activations in a prominent cluster encompassing the right superior temporal gyrus (rSTG), right middle temporal gyrus (rMTG), and right insula when comparing external-generated with self-generated conditions. Additionally, significant activation was observed in the right anterior cerebellum when comparing self-generated to external-generated conditions. Further analysis using meta-analytic connectivity modeling (MACM) unveiled distinct brain networks co-activated with the rMTG and right cerebellum, respectively. Based on these findings, we propose that sensory attenuation arises from the suppression of reflexive inputs elicited by self-initiated actions through the internal forward modeling of a cerebellum-centered action prediction network, enabling the "sensory conflict detection" regions to effectively discriminate between inputs resulting from self-induced actions and those originating externally.
Collapse
Affiliation(s)
- Jingjin Gu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Tatia Buidze
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Ke Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jan Gläscher
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Xiaolan Fu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Kluskens TJ, Kessler PA, Jansma BM, Kaas A, van de Ven V. Neural Correlates of Tooth Clenching in Patients with Bruxism and Temporomandibular Disorder-Related Pain. J Oral Facial Pain Headache 2023; 37:139-148. [PMID: 37389840 PMCID: PMC10627198 DOI: 10.11607/ofph.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/18/2022] [Indexed: 07/01/2023]
Abstract
AIMS To measure brain activity in patients with bruxism and temporomandibular disorder (TMD)-related pain in comparison to controls using functional magnetic resonance imaging (fMRI) and to investigate whether modulations in jaw clenching led to different pain reports and/or changes in neural activity in motor and pain processing areas within and between both groups. METHODS A total of 40 participants (21 patients with bruxism and TMD-related pain and 19 healthy controls) performed a tooth-clenching task while lying inside a 3T MRI scanner. Participants were instructed to mildly or strongly clench their teeth for brief periods of 12 seconds and to subsequently rate their clenching intensity and pain experience after each clenching period. RESULTS Patients reported significantly more pain during strong clenching compared to mild clenching. Further results showed significant differences between patients and controls in activity in areas of brain networks commonly associated with pain processing, which were also correlated with reported pain intensity. There was no evidence for differences in activity in motor-related areas between groups, which contrasts with findings of previous research. CONCLUSIONS Brain activity in patients with bruxism and TMD-related pain is correlated more with pain processing than with motoric differences.
Collapse
|
4
|
Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity. Commun Biol 2021; 4:1055. [PMID: 34556793 PMCID: PMC8460739 DOI: 10.1038/s42003-021-02578-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
Speech neuroprosthetics aim to provide a natural communication channel to individuals who are unable to speak due to physical or neurological impairments. Real-time synthesis of acoustic speech directly from measured neural activity could enable natural conversations and notably improve quality of life, particularly for individuals who have severely limited means of communication. Recent advances in decoding approaches have led to high quality reconstructions of acoustic speech from invasively measured neural activity. However, most prior research utilizes data collected during open-loop experiments of articulated speech, which might not directly translate to imagined speech processes. Here, we present an approach that synthesizes audible speech in real-time for both imagined and whispered speech conditions. Using a participant implanted with stereotactic depth electrodes, we were able to reliably generate audible speech in real-time. The decoding models rely predominately on frontal activity suggesting that speech processes have similar representations when vocalized, whispered, or imagined. While reconstructed audio is not yet intelligible, our real-time synthesis approach represents an essential step towards investigating how patients will learn to operate a closed-loop speech neuroprosthesis based on imagined speech. Miguel Angrick et al. develop an intracranial EEG-based method to decode imagined speech from a human patient and translate it into audible speech in real-time. This report presents an important proof of concept that acoustic output can be reconstructed on the basis of neural signals, and serves as a valuable step in the development of neuroprostheses to help nonverbal patients interact with their environment.
Collapse
|
5
|
Boos M, Lücke J, Rieger JW. Generalizable dimensions of human cortical auditory processing of speech in natural soundscapes: A data-driven ultra high field fMRI approach. Neuroimage 2021; 237:118106. [PMID: 33991696 DOI: 10.1016/j.neuroimage.2021.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/25/2021] [Indexed: 11/27/2022] Open
Abstract
Speech comprehension in natural soundscapes rests on the ability of the auditory system to extract speech information from a complex acoustic signal with overlapping contributions from many sound sources. Here we reveal the canonical processing of speech in natural soundscapes on multiple scales by using data-driven modeling approaches to characterize sounds to analyze ultra high field fMRI recorded while participants listened to the audio soundtrack of a movie. We show that at the functional level the neuronal processing of speech in natural soundscapes can be surprisingly low dimensional in the human cortex, highlighting the functional efficiency of the auditory system for a seemingly complex task. Particularly, we find that a model comprising three functional dimensions of auditory processing in the temporal lobes is shared across participants' fMRI activity. We further demonstrate that the three functional dimensions are implemented in anatomically overlapping networks that process different aspects of speech in natural soundscapes. One is most sensitive to complex auditory features present in speech, another to complex auditory features and fast temporal modulations, that are not specific to speech, and one codes mainly sound level. These results were derived with few a-priori assumptions and provide a detailed and computationally reproducible account of the cortical activity in the temporal lobe elicited by the processing of speech in natural soundscapes.
Collapse
Affiliation(s)
- Moritz Boos
- Applied Neurocognitive Psychology Lab, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany.
| | - Jörg Lücke
- Machine Learning Division, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| | - Jochem W Rieger
- Applied Neurocognitive Psychology Lab, University of Oldenburg, Oldenburg, Germany; Cluster of Excellence "Hearing4all", University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Johnson JF, Belyk M, Schwartze M, Pinheiro AP, Kotz SA. Expectancy changes the self-monitoring of voice identity. Eur J Neurosci 2021; 53:2681-2695. [PMID: 33638190 PMCID: PMC8252045 DOI: 10.1111/ejn.15162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/18/2021] [Accepted: 02/20/2021] [Indexed: 12/02/2022]
Abstract
Self‐voice attribution can become difficult when voice characteristics are ambiguous, but functional magnetic resonance imaging (fMRI) investigations of such ambiguity are sparse. We utilized voice‐morphing (self‐other) to manipulate (un‐)certainty in self‐voice attribution in a button‐press paradigm. This allowed investigating how levels of self‐voice certainty alter brain activation in brain regions monitoring voice identity and unexpected changes in voice playback quality. FMRI results confirmed a self‐voice suppression effect in the right anterior superior temporal gyrus (aSTG) when self‐voice attribution was unambiguous. Although the right inferior frontal gyrus (IFG) was more active during a self‐generated compared to a passively heard voice, the putative role of this region in detecting unexpected self‐voice changes during the action was demonstrated only when hearing the voice of another speaker and not when attribution was uncertain. Further research on the link between right aSTG and IFG is required and may establish a threshold monitoring voice identity in action. The current results have implications for a better understanding of the altered experience of self‐voice feedback in auditory verbal hallucinations.
Collapse
Affiliation(s)
- Joseph F Johnson
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Michel Belyk
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Ana P Pinheiro
- Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands.,Department of Neuropsychology, Max Planck Institute for Human and Cognitive Sciences, Leipzig, Germany
| |
Collapse
|
7
|
Hosaka T, Kimura M, Yotsumoto Y. Neural representations of own-voice in the human auditory cortex. Sci Rep 2021; 11:591. [PMID: 33436798 PMCID: PMC7804419 DOI: 10.1038/s41598-020-80095-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
We have a keen sensitivity when it comes to the perception of our own voices. We can detect not only the differences between ourselves and others, but also slight modifications of our own voices. Here, we examined the neural correlates underlying such sensitive perception of one's own voice. In the experiments, we modified the subjects' own voices by using five types of filters. The subjects rated the similarity of the presented voices to their own. We compared BOLD (Blood Oxygen Level Dependent) signals between the voices that subjects rated as least similar to their own voice and those they rated as most similar. The contrast revealed that the bilateral superior temporal gyrus exhibited greater activities while listening to the voice least similar to their own voice and lesser activation while listening to the voice most similar to their own. Our results suggest that the superior temporal gyrus is involved in neural sharpening for the own-voice. The lesser degree of activations observed by the voices that were similar to the own-voice indicates that these areas not only respond to the differences between self and others, but also respond to the finer details of own-voices.
Collapse
Affiliation(s)
- Taishi Hosaka
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marino Kimura
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Yotsumoto
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Dietziker J, Staib M, Frühholz S. Neural competition between concurrent speech production and other speech perception. Neuroimage 2020; 228:117710. [PMID: 33385557 DOI: 10.1016/j.neuroimage.2020.117710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022] Open
Abstract
Understanding others' speech while individuals simultaneously produce speech utterances implies neural competition and requires specific mechanisms for a neural resolution given that previous studies proposed opposing signal dynamics for both processes in the auditory cortex (AC). We here used neuroimaging in humans to investigate this neural competition by lateralized stimulations with other speech samples and ipsilateral or contralateral lateralized feedback of actively produced self speech utterances in the form of various speech vowels. In experiment 1, we show, first, that others' speech classifications during active self speech lead to activity in the planum temporale (PTe) when both self and other speech samples were presented together to only the left or right ear. The contralateral PTe also seemed to indifferently respond to single self and other speech samples. Second, specific activity in the left anterior superior temporal cortex (STC) was found during dichotic stimulations (i.e. self and other speech presented to separate ears). Unlike previous studies, this left anterior STC activity supported self speech rather than other speech processing. Furthermore, right mid and anterior STC was more involved in other speech processing. These results signify specific mechanisms for self and other speech processing in the left and right STC beyond a more general speech processing in PTe. Third, other speech recognition in the context of listening to recorded self speech in experiment 2 led to largely symmetric activity in STC and additionally in inferior frontal subregions. The latter was previously reported to be generally relevant for other speech perception and classification, but we found frontal activity only when other speech classification was challenged by recorded but not by active self speech samples. Altogether, unlike formerly established brain networks for uncompetitive other speech perception, active self speech during other speech perception seemingly leads to a neural reordering, functional reassignment, and unusual lateralization of AC and frontal brain activations.
Collapse
Affiliation(s)
- Joris Dietziker
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland.
| | - Matthias Staib
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sascha Frühholz
- Cognitive and Affective Neuroscience Unit, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Department of Psychology, University of Oslo, Norway.
| |
Collapse
|
9
|
Meekings S, Scott SK. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. J Cogn Neurosci 2020; 33:422-444. [PMID: 33326327 DOI: 10.1162/jocn_a_01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence for perceptual processing in models of speech production is often drawn from investigations in which the sound of a talker's voice is altered in real time to induce "errors." Methods of acoustic manipulation vary but are assumed to engage the same neural network and psychological processes. This paper aims to review fMRI and PET studies of altered auditory feedback and assess the strength of the evidence these studies provide for a speech error correction mechanism. Studies included were functional neuroimaging studies of speech production in neurotypical adult humans, using natural speech errors or one of three predefined speech manipulation techniques (frequency altered feedback, delayed auditory feedback, and masked auditory feedback). Seventeen studies met the inclusion criteria. In a systematic review, we evaluated whether each study (1) used an ecologically valid speech production task, (2) controlled for auditory activation caused by hearing the perturbation, (3) statistically controlled for multiple comparisons, and (4) measured behavioral compensation correlating with perturbation. None of the studies met all four criteria. We then conducted an activation likelihood estimation meta-analysis of brain coordinates from 16 studies that reported brain responses to manipulated over unmanipulated speech feedback, using the GingerALE toolbox. These foci clustered in bilateral superior temporal gyri, anterior to cortical fields typically linked to error correction. Within the limits of our analysis, we conclude that existing neuroimaging evidence is insufficient to determine whether error monitoring occurs in the posterior superior temporal gyrus regions proposed by models of speech production.
Collapse
|
10
|
van de Ven V, Waldorp L, Christoffels I. Hippocampus plays a role in speech feedback processing. Neuroimage 2020; 223:117319. [PMID: 32882376 DOI: 10.1016/j.neuroimage.2020.117319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/10/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022] Open
Abstract
There is increasing evidence that the hippocampus is involved in language production and verbal communication, although little is known about its possible role. According to one view, hippocampus contributes semantic memory to spoken language. Alternatively, hippocampus is involved in the processing the (mis)match between expected sensory consequences of speaking and the perceived speech feedback. In the current study, we re-analysed functional magnetic resonance (fMRI) data of two overt picture-naming studies to test whether hippocampus is involved in speech production and, if so, whether the results can distinguish between a "pure memory" versus a "prediction" account of hippocampal involvement. In both studies, participants overtly named pictures during scanning while hearing their own speech feedback unimpededly or impaired by a superimposed noise mask. Results showed decreased hippocampal activity when speech feedback was impaired, compared to when feedback was unimpeded. Further, we found increased functional coupling between auditory cortex and hippocampus during unimpeded speech feedback, compared to impaired feedback. Finally, we found significant functional coupling between a hippocampal/supplementary motor area (SMA) interaction term and auditory cortex, anterior cingulate cortex and cerebellum during overt picture naming, but not during listening to one's own pre-recorded voice. These findings indicate that hippocampus plays a role in speech production that is in accordance with a "prediction" view of hippocampal functioning.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | | | - Ingrid Christoffels
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
11
|
Abstract
As all human activities, verbal communication is fraught with errors. It is estimated that humans produce around 16,000 words per day, but the word that is selected for production is not always correct and neither is the articulation always flawless. However, to facilitate communication, it is important to limit the number of errors. This is accomplished via the verbal monitoring mechanism. A body of research over the last century has uncovered a number of properties of the mechanisms at work during verbal monitoring. Over a dozen routes for verbal monitoring have been postulated. However, to date a complete account of verbal monitoring does not exist. In the current paper we first outline the properties of verbal monitoring that have been empirically demonstrated. This is followed by a discussion of current verbal monitoring models: the perceptual loop theory, conflict monitoring, the hierarchical state feedback control model, and the forward model theory. Each of these models is evaluated given empirical findings and theoretical considerations. We then outline lacunae of current theories, which we address with a proposal for a new model of verbal monitoring for production and perception, based on conflict monitoring models. Additionally, this novel model suggests a mechanism of how a detected error leads to a correction. The error resolution mechanism proposed in our new model is then tested in a computational model. Finally, we outline the advances and predictions of the model.
Collapse
|
12
|
Nozari N. A Comprehension- or a Production-Based Monitor? Response to Roelofs (2020). J Cogn 2020; 3:19. [PMID: 32944682 PMCID: PMC7473204 DOI: 10.5334/joc.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
Roelofs (2020) has put forth a rebuttal of the criticisms raised against comprehension-based monitoring and has also raised a number of objections against production-based monitors. In this response, I clarify that the model defended by Roelofs is not a comprehension-based monitor, but belongs to a class of monitoring models which I refer to as production-perception models. I review comprehension-based and production-perception models, highlight the strength of each, and point out the differences between them. I then discuss the limitations of both for monitoring production at higher levels, which has been the motivation for production-based monitors. Next, I address the specific criticisms raised by Roelofs (2020) in light of the current evidence. I end by presenting several lines of arguments that preclude a single monitoring mechanism as meeting all the demands of monitoring in a task as complex as communication. A more fruitful avenue is perhaps to focus on what theories are compatible with the nature of representations at specific levels of the production system and with specific aims of monitoring in language production.
Collapse
Affiliation(s)
- Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, US
- Center for Neural Basis Cognition (CNBC), US
| |
Collapse
|
13
|
van de Ven V, Lee C, Lifanov J, Kochs S, Jansma H, De Weerd P. Hippocampal-striatal functional connectivity supports processing of temporal expectations from associative memory. Hippocampus 2020; 30:926-937. [PMID: 32275344 PMCID: PMC7496232 DOI: 10.1002/hipo.23205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022]
Abstract
The hippocampus and dorsal striatum are both associated with temporal processing, but they are thought to play distinct roles. The hippocampus has been reported to contribute to storing temporal structure of events in memory, whereas the striatum contributes to temporal motor preparation and reward anticipation. Here, we asked whether the striatum cooperates with the hippocampus in processing the temporal context of memorized visual associations. In our task, participants were trained to implicitly form temporal expectations for one of two possible time intervals associated to specific cue-target associations, and subsequently were scanned using ultra-high-field 7T functional magnetic resonance imaging. During scanning, learned temporal expectations could be violated when the pairs were presented at either the associated or not-associated time intervals. When temporal expectations were met during testing trials, activity in left and right hippocampal subfields and right putamen decreased, compared to when temporal expectations were not met. Further, psycho-physiological interactions showed that functional connectivity between left hippocampal subfields and caudate decreased when temporal expectations were not met. Our results indicate that the hippocampus and striatum cooperate to process implicit temporal expectation from mnemonic associations. Our findings provide further support for a hippocampal-striatal network in temporal associative processing.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Chanju Lee
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | | | - Sarah Kochs
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Henk Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
14
|
Li S, Zhu H, Tian X. Corollary Discharge Versus Efference Copy: Distinct Neural Signals in Speech Preparation Differentially Modulate Auditory Responses. Cereb Cortex 2020; 30:5806-5820. [PMID: 32542347 DOI: 10.1093/cercor/bhaa154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/14/2022] Open
Abstract
Actions influence sensory processing in a complex way to shape behavior. For example, during actions, a copy of motor signals-termed "corollary discharge" (CD) or "efference copy" (EC)-can be transmitted to sensory regions and modulate perception. However, the sole inhibitory function of the motor copies is challenged by mixed empirical observations as well as multifaceted computational demands for behaviors. We hypothesized that the content in the motor signals available at distinct stages of actions determined the nature of signals (CD vs. EC) and constrained their modulatory functions on perceptual processing. We tested this hypothesis using speech in which we could precisely control and quantify the course of action. In three electroencephalography (EEG) experiments using a novel delayed articulation paradigm, we found that preparation without linguistic contents suppressed auditory responses to all speech sounds, whereas preparing to speak a syllable selectively enhanced the auditory responses to the prepared syllable. A computational model demonstrated that a bifurcation of motor signals could be a potential algorithm and neural implementation to achieve the distinct functions in the motor-to-sensory transformation. These results suggest that distinct motor signals are generated in the motor-to-sensory transformation and integrated with sensory input to modulate perception.
Collapse
Affiliation(s)
- Siqi Li
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Hao Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| |
Collapse
|
15
|
Toyomura A, Miyashiro D, Kuriki S, Sowman PF. Speech-Induced Suppression for Delayed Auditory Feedback in Adults Who Do and Do Not Stutter. Front Hum Neurosci 2020; 14:150. [PMID: 32390816 PMCID: PMC7193705 DOI: 10.3389/fnhum.2020.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Speech-induced suppression is the normal, relative amplitude reduction of the auditory evoked potential for self-, compared to externally-generated, auditory stimulation. It remains controversial as to whether adults who stutter exhibit expected auditory modulation during speech; some studies have reported a significant difference between stuttering and fluent groups in speech-induced suppression during speech movement planning, while others have not. We compared auditory evoked potentials (N1 component) for auditory feedback arising from one’s own voice (Speaking condition) with passive listening to a recording of one’s own voice (Listening condition) in 24 normally-fluent speakers and 16 adults who stutter under various delayed auditory feedback (DAF) time conditions (100 ms, 200 ms, 500 ms, and 1,000 ms). We presented the participant’s own voice with a delay, immediately after presenting it without a delay. Our working hypothesis was that the shorter the delay time, the more likely the delayed sound is perceived as self-generated. Therefore, shorter delay time conditions are proposed to result in relatively enhanced suppression of the auditory system. Results showed that in fluent speakers, the shorter the delay time, the more the auditory evoked potential in the Speaking condition tended to be suppressed. In the Listening condition, there was a larger evoked potential with shorter delay times. As a result, speech-induced suppression was only significant at the short delay time conditions of 100 and 200 ms. Adults who stutter did not show the opposing changes in the Speaking and Listening conditions seen in the fluent group. Although the evoked potential in the Listening condition tended to decrease as the delay time increased, that in the Speaking condition did not show a distinct trend, and there was a significant suppression only at 200 ms delay. For the 200 ms delay condition, speakers with more severe stuttering showed significantly greater speech-induced suppression than those with less severe stuttering. This preliminary study suggests our methods for investigating evoked potentials by presenting own voice with a delay may provide a clue as to the nature of auditory modulation in stuttering.
Collapse
Affiliation(s)
- Akira Toyomura
- Graduate School of Health Sciences, Gunma University, Maebashi, Japan
| | - Daiki Miyashiro
- Faculty of Medicine, School of Health Sciences, Gunma University, Maebashi, Japan.,Gunma University Hospital, Maebashi, Japan
| | - Shinya Kuriki
- Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan
| | - Paul F Sowman
- Department of Cognitive Science, Macquarie University, Sydney, NSW, Australia.,Perception and Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
16
|
Daliri A, Heller Murray ES, Blood AJ, Burns J, Noordzij JP, Nieto-Castanon A, Tourville JA, Guenther FH. Auditory Feedback Control Mechanisms Do Not Contribute to Cortical Hyperactivity Within the Voice Production Network in Adductor Spasmodic Dysphonia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:421-432. [PMID: 32091959 PMCID: PMC7210444 DOI: 10.1044/2019_jslhr-19-00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Purpose Adductor spasmodic dysphonia (ADSD), the most common form of spasmodic dysphonia, is a debilitating voice disorder characterized by hyperactivity and muscle spasms in the vocal folds during speech. Prior neuroimaging studies have noted excessive brain activity during speech in participants with ADSD compared to controls. Speech involves an auditory feedback control mechanism that generates motor commands aimed at eliminating disparities between desired and actual auditory signals. Thus, excessive neural activity in ADSD during speech may reflect, at least in part, increased engagement of the auditory feedback control mechanism as it attempts to correct vocal production errors detected through audition. Method To test this possibility, functional magnetic resonance imaging was used to identify differences between participants with ADSD (n = 12) and age-matched controls (n = 12) in (a) brain activity when producing speech under different auditory feedback conditions and (b) resting-state functional connectivity within the cortical network responsible for vocalization. Results As seen in prior studies, the ADSD group had significantly higher activity than the control group during speech with normal auditory feedback (compared to a silent baseline task) in three left-hemisphere cortical regions: ventral Rolandic (sensorimotor) cortex, anterior planum temporale, and posterior superior temporal gyrus/planum temporale. Importantly, this same pattern of hyperactivity was also found when auditory feedback control of speech was eliminated through masking noise. Furthermore, the ADSD group had significantly higher resting-state functional connectivity between sensorimotor and auditory cortical regions within the left hemisphere as well as between the left and right hemispheres. Conclusions Together, our results indicate that hyperactivation in the cortical speech network of individuals with ADSD does not result from hyperactive auditory feedback control mechanisms and rather is likely related to impairments in somatosensory feedback control and/or feedforward control mechanisms.
Collapse
Affiliation(s)
- Ayoub Daliri
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
- College of Health Solutions, Arizona State University, Tempe
| | | | - Anne J. Blood
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - James Burns
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston
| | - J. Pieter Noordzij
- Otolaryngology, Head & Neck Surgery, Boston University School of Medicine, MA
| | | | - Jason A. Tourville
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
| | - Frank H. Guenther
- Department of Speech, Language, & Hearing Sciences, Boston University, MA
| |
Collapse
|
17
|
Knolle F, Schwartze M, Schröger E, Kotz SA. Auditory Predictions and Prediction Errors in Response to Self-Initiated Vowels. Front Neurosci 2019; 13:1146. [PMID: 31708737 PMCID: PMC6823252 DOI: 10.3389/fnins.2019.01146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
It has been suggested that speech production is accomplished by an internal forward model, reducing processing activity directed to self-produced speech in the auditory cortex. The current study uses an established N1-suppression paradigm comparing self- and externally initiated natural speech sounds to answer two questions: (1) Are forward predictions generated to process complex speech sounds, such as vowels, initiated via a button press? (2) Are prediction errors regarding self-initiated deviant vowels reflected in the corresponding ERP components? Results confirm an N1-suppression in response to self-initiated speech sounds. Furthermore, our results suggest that predictions leading to the N1-suppression effect are specific, as self-initiated deviant vowels do not elicit an N1-suppression effect. Rather, self-initiated deviant vowels elicit an enhanced N2b and P3a compared to externally generated deviants, externally generated standard, or self-initiated standards, again confirming prediction specificity. Results show that prediction errors are salient in self-initiated auditory speech sounds, which may lead to more efficient error correction in speech production.
Collapse
Affiliation(s)
- Franziska Knolle
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.,Department of Neuroradiology, Technical University of Munich, Munich, Germany
| | - Michael Schwartze
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands
| | - Erich Schröger
- Institute of Psychology, Leipzig University, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, Netherlands.,Department of Neuropsychology, Max Planck Institute of Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
18
|
Yamamoto AK, Parker Jones O, Hope TMH, Prejawa S, Oberhuber M, Ludersdorfer P, Yousry TA, Green DW, Price CJ. A special role for the right posterior superior temporal sulcus during speech production. Neuroimage 2019; 203:116184. [PMID: 31520744 PMCID: PMC6876272 DOI: 10.1016/j.neuroimage.2019.116184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022] Open
Abstract
This fMRI study of 24 healthy human participants investigated whether any part of the auditory cortex was more responsive to self-generated speech sounds compared to hearing another person speak. The results demonstrate a double dissociation in two different parts of the auditory cortex. In the right posterior superior temporal sulcus (RpSTS), activation was higher during speech production than listening to auditory stimuli, whereas in bilateral superior temporal gyri (STG), activation was higher for listening to auditory stimuli than during speech production. In the second part of the study, we investigated the function of the identified regions, by examining how activation changed across a range of listening and speech production tasks that systematically varied the demands on acoustic, semantic, phonological and orthographic processing. In RpSTS, activation during auditory conditions was higher in the absence of semantic cues, plausibly indicating increased attention to the spectral-temporal features of auditory inputs. In addition, RpSTS responded in the absence of any auditory inputs when participants were making one-back matching decisions on visually presented pseudowords. After analysing the influence of visual, phonological, semantic and orthographic processing, we propose that RpSTS (i) contributes to short term memory of speech sounds as well as (ii) spectral-temporal processing of auditory input and (iii) may play a role in integrating auditory expectations with auditory input. In contrast, activation in bilateral STG was sensitive to acoustic input and did not respond in the absence of auditory input. The special role of RpSTS during speech production therefore merits further investigation if we are to fully understand the neural mechanisms supporting speech production during speech acquisition, adult life, hearing loss and after brain injury.
In right auditory cortex, a region is more sensitive to own than another’s speech. This region (RpSTS) responds to phonological input in the absence of auditory input. RpSTS may match auditory feedback with internal representations of speech sounds.
Collapse
Affiliation(s)
- Adam Kenji Yamamoto
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | - Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; FMRIB Centre and Wolfson College, University of Oxford, Oxford, United Kingdom.
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Collaborative Research Centre 1052 "Obesity Mechanisms", Faculty of Medicine, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Philipp Ludersdorfer
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Tarek A Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | - David W Green
- Experimental Psychology, University College London, London, United Kingdom.
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
19
|
Anders R, Llorens A, Dubarry AS, Trébuchon A, Liégeois-Chauvel C, Alario FX. Cortical Dynamics of Semantic Priming and Interference during Word Production: An Intracerebral Study. J Cogn Neurosci 2019; 31:978-1001. [DOI: 10.1162/jocn_a_01406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Language production requires that semantic representations are mapped to lexical representations on the basis of the ongoing context to select the appropriate words. This mapping is thought to generate two opposing phenomena, “semantic priming,” where multiple word candidates are activated, and “interference,” where these word activities are differentiated to make a goal-relevant selection. In previous neuroimaging and neurophysiological research, priming and interference have been associated to activity in regions of a left frontotemporal network. Most of such studies relied on recordings that either have high temporal or high spatial resolution, but not both. Here, we employed intracerebral EEG techniques to explore with both high resolutions, the neural activity associated with these phenomena. The data came from nine epileptic patients who were stereotactically implanted for presurgical diagnostics. They performed a cyclic picture-naming task contrasting semantically homogeneous and heterogeneous contexts. Of the 84 brain regions sampled, 39 showed task-evoked activity that was significant and consistent across two patients or more. In nine of these regions, activity was significantly modulated by the semantic manipulation. It was reduced for semantically homogeneous contexts (i.e., priming) in eight of these regions, located in the temporal ventral pathway as well as frontal areas. Conversely, it was increased only in the pre-SMA, notably at an early poststimulus temporal window (200–300 msec) and a preresponse temporal window (700–800 msec). These temporal effects respectively suggest the pre-SMA's role in initial conflict detection (e.g., increased response caution) and in preresponse control. Such roles of the pre-SMA are traditional from a history of neural evidence in simple perceptual tasks, yet are also consistent with recent cognitive lexicosemantic theories that highlight top–down processes in language production. Finally, although no significant semantic modulation was found in the ACC, future intracerebral EEG work should continue to inspect ACC with the pre-SMA.
Collapse
Affiliation(s)
- Royce Anders
- Aix-Marseille University, CNRS, LPC, Marseille, France
| | - Anaïs Llorens
- Aix-Marseille University, CNRS, LPC, Marseille, France
- Oslo University Hospital-Rikshospitalet
| | - Anne-Sophie Dubarry
- Aix-Marseille University, CNRS, LPC, Marseille, France
- Aix-Marseille University, CNRS, LPL, Aix-en-Provence, France
| | - Agnès Trébuchon
- Aix-Marseille University, CNRS, LPC, Marseille, France
- AP-HM, Neurophysiologie Clinique, Marseille, France
- Aix-Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille University, CNRS, LPC, Marseille, France
- Aix-Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
- Cleveland Clinic Foundation
| | | |
Collapse
|
20
|
Whitford TJ. Speaking-Induced Suppression of the Auditory Cortex in Humans and Its Relevance to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:791-804. [PMID: 31399393 DOI: 10.1016/j.bpsc.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Speaking-induced suppression (SIS) is the phenomenon that the sounds one generates by overt speech elicit a smaller neurophysiological response in the auditory cortex than comparable sounds that are externally generated. SIS is a specific example of the more general phenomenon of self-suppression. SIS has been well established in nonhuman animals and is believed to involve the action of corollary discharges. This review summarizes, first, the evidence for SIS in heathy human participants, where it has been most commonly assessed with electroencephalography and/or magnetoencephalography using an experimental paradigm known as "Talk-Listen"; and second, the growing number of Talk-Listen studies that have reported subnormal levels of SIS in patients with schizophrenia. This result is theoretically significant, as it provides a plausible explanation for some of the most distinctive and characteristic symptoms of schizophrenia, namely the first-rank symptoms. In particular, while the failure to suppress the neural consequences of self-generated movements (such as those associated with overt speech) provides a prima facie explanation for delusions of control, the failure to suppress the neural consequences of self-generated inner speech provides a plausible explanation for certain classes of auditory-verbal hallucinations, such as audible thoughts. While the empirical evidence for a relationship between SIS and the first-rank symptoms is currently limited, I predict that future studies with more sensitive experimental designs will confirm its existence. Establishing the existence of a causal, mechanistic relationship would represent a major step forward in our understanding of schizophrenia, which is a necessary precursor to the development of novel treatments.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
21
|
Mathias B, Gehring WJ, Palmer C. Electrical Brain Responses Reveal Sequential Constraints on Planning during Music Performance. Brain Sci 2019; 9:E25. [PMID: 30696038 PMCID: PMC6406892 DOI: 10.3390/brainsci9020025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/20/2022] Open
Abstract
Elements in speech and music unfold sequentially over time. To produce sentences and melodies quickly and accurately, individuals must plan upcoming sequence events, as well as monitor outcomes via auditory feedback. We investigated the neural correlates of sequential planning and monitoring processes by manipulating auditory feedback during music performance. Pianists performed isochronous melodies from memory at an initially cued rate while their electroencephalogram was recorded. Pitch feedback was occasionally altered to match either an immediately upcoming Near-Future pitch (next sequence event) or a more distant Far-Future pitch (two events ahead of the current event). Near-Future, but not Far-Future altered feedback perturbed the timing of pianists' performances, suggesting greater interference of Near-Future sequential events with current planning processes. Near-Future feedback triggered a greater reduction in auditory sensory suppression (enhanced response) than Far-Future feedback, reflected in the P2 component elicited by the pitch event following the unexpected pitch change. Greater timing perturbations were associated with enhanced cortical sensory processing of the pitch event following the Near-Future altered feedback. Both types of feedback alterations elicited feedback-related negativity (FRN) and P3a potentials and amplified spectral power in the theta frequency range. These findings suggest similar constraints on producers' sequential planning to those reported in speech production.
Collapse
Affiliation(s)
- Brian Mathias
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
- Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
| | - William J Gehring
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Caroline Palmer
- Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
22
|
Venezia JH, Thurman SM, Richards VM, Hickok G. Hierarchy of speech-driven spectrotemporal receptive fields in human auditory cortex. Neuroimage 2018; 186:647-666. [PMID: 30500424 DOI: 10.1016/j.neuroimage.2018.11.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Existing data indicate that cortical speech processing is hierarchically organized. Numerous studies have shown that early auditory areas encode fine acoustic details while later areas encode abstracted speech patterns. However, it remains unclear precisely what speech information is encoded across these hierarchical levels. Estimation of speech-driven spectrotemporal receptive fields (STRFs) provides a means to explore cortical speech processing in terms of acoustic or linguistic information associated with characteristic spectrotemporal patterns. Here, we estimate STRFs from cortical responses to continuous speech in fMRI. Using a novel approach based on filtering randomly-selected spectrotemporal modulations (STMs) from aurally-presented sentences, STRFs were estimated for a group of listeners and categorized using a data-driven clustering algorithm. 'Behavioral STRFs' highlighting STMs crucial for speech recognition were derived from intelligibility judgments. Clustering revealed that STRFs in the supratemporal plane represented a broad range of STMs, while STRFs in the lateral temporal lobe represented circumscribed STM patterns important to intelligibility. Detailed analysis recovered a bilateral organization with posterior-lateral regions preferentially processing STMs associated with phonological information and anterior-lateral regions preferentially processing STMs associated with word- and phrase-level information. Regions in lateral Heschl's gyrus preferentially processed STMs associated with vocalic information (pitch).
Collapse
Affiliation(s)
- Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, USA; Dept. of Otolaryngology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | | | - Virginia M Richards
- Depts. of Cognitive Sciences and Language Science, University of California, Irvine, Irvine, CA, USA
| | - Gregory Hickok
- Depts. of Cognitive Sciences and Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
23
|
Franken MK, Acheson DJ, McQueen JM, Eisner F, Hagoort P. Individual variability as a window on production-perception interactions in speech motor control. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:2007. [PMID: 29092613 DOI: 10.1121/1.5006899] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An important part of understanding speech motor control consists of capturing the interaction between speech production and speech perception. This study tests a prediction of theoretical frameworks that have tried to account for these interactions: If speech production targets are specified in auditory terms, individuals with better auditory acuity should have more precise speech targets, evidenced by decreased within-phoneme variability and increased between-phoneme distance. A study was carried out consisting of perception and production tasks in counterbalanced order. Auditory acuity was assessed using an adaptive speech discrimination task, while production variability was determined using a pseudo-word reading task. Analyses of the production data were carried out to quantify average within-phoneme variability, as well as average between-phoneme contrasts. Results show that individuals not only vary in their production and perceptual abilities, but that better discriminators have more distinctive vowel production targets-that is, targets with less within-phoneme variability and greater between-phoneme distances-confirming the initial hypothesis. This association between speech production and perception did not depend on local phoneme density in vowel space. This study suggests that better auditory acuity leads to more precise speech production targets, which may be a consequence of auditory feedback affecting speech production over time.
Collapse
Affiliation(s)
- Matthias K Franken
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Daniel J Acheson
- Max Planck Institute for Psycholinguistics, P.O. Box 310, Nijmegen, 6500 AH, The Netherlands
| | - James M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, P.O. Box 9104, Nijmegen, 6500 HE, The Netherlands
| | - Frank Eisner
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognition, Radboud University, P.O. Box 9104, Nijmegen, 6500 HE, The Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
24
|
Mathias B, Gehring WJ, Palmer C. Auditory N1 reveals planning and monitoring processes during music performance. Psychophysiology 2016; 54:235-247. [PMID: 27801943 DOI: 10.1111/psyp.12781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/22/2016] [Indexed: 12/01/2022]
Abstract
The current study investigated the relationship between planning processes and feedback monitoring during music performance, a complex task in which performers prepare upcoming events while monitoring their sensory outcomes. Theories of action planning in auditory-motor production tasks propose that the planning of future events co-occurs with the perception of auditory feedback. This study investigated the neural correlates of planning and feedback monitoring by manipulating the contents of auditory feedback during music performance. Pianists memorized and performed melodies at a cued tempo in a synchronization-continuation task while the EEG was recorded. During performance, auditory feedback associated with single melody tones was occasionally substituted with tones corresponding to future (next), present (current), or past (previous) melody tones. Only future-oriented altered feedback disrupted behavior: Future-oriented feedback caused pianists to slow down on the subsequent tone more than past-oriented feedback, and amplitudes of the auditory N1 potential elicited by the tone immediately following the altered feedback were larger for future-oriented than for past-oriented or noncontextual (unrelated) altered feedback; larger N1 amplitudes were associated with greater slowing following altered feedback in the future condition only. Feedback-related negativities were elicited in all altered feedback conditions. In sum, behavioral and neural evidence suggests that future-oriented feedback disrupts performance more than past-oriented feedback, consistent with planning theories that posit similarity-based interference between feedback and planning contents. Neural sensory processing of auditory feedback, reflected in the N1 ERP, may serve as a marker for temporal disruption caused by altered auditory feedback in auditory-motor production tasks.
Collapse
Affiliation(s)
- Brian Mathias
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - William J Gehring
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Caroline Palmer
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Meekings S, Evans S, Lavan N, Boebinger D, Krieger-Redwood K, Cooke M, Scott SK. Distinct neural systems recruited when speech production is modulated by different masking sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:8. [PMID: 27475128 DOI: 10.1121/1.4948587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When talkers speak in masking sounds, their speech undergoes a variety of acoustic and phonetic changes. These changes are known collectively as the Lombard effect. Most behavioural research and neuroimaging research in this area has concentrated on the effect of energetic maskers such as white noise on Lombard speech. Previous fMRI studies have argued that neural responses to speaking in noise are driven by the quality of auditory feedback-that is, the audibility of the speaker's voice over the masker. However, we also frequently produce speech in the presence of informational maskers such as another talker. Here, speakers read sentences over a range of maskers varying in their informational and energetic content: speech, rotated speech, speech modulated noise, and white noise. Subjects also spoke in quiet and listened to the maskers without speaking. When subjects spoke in masking sounds, their vocal intensity increased in line with the energetic content of the masker. However, the opposite pattern was found neurally. In the superior temporal gyrus, activation was most strongly associated with increases in informational, rather than energetic, masking. This suggests that the neural activations associated with speaking in noise are more complex than a simple feedback response.
Collapse
Affiliation(s)
- Sophie Meekings
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Samuel Evans
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Nadine Lavan
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Dana Boebinger
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Katya Krieger-Redwood
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Martin Cooke
- University of the Basque Country, Facultad de Letras, Universidad del País Vasco/EHU, Paseo de la Universidad 5, Vitoria, Alava 01006, Spain
| | - Sophie K Scott
- Psychology and Language Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
26
|
Gauvin HS, De Baene W, Brass M, Hartsuiker RJ. Conflict monitoring in speech processing: An fMRI study of error detection in speech production and perception. Neuroimage 2015; 126:96-105. [PMID: 26608243 DOI: 10.1016/j.neuroimage.2015.11.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 11/16/2022] Open
Abstract
To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC).
Collapse
Affiliation(s)
- Hanna S Gauvin
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium.
| | - Wouter De Baene
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium; Department of Cognitive Neuropsychology, Tilburg University, 5000 LE Tilburg, The Netherlands
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| | - Robert J Hartsuiker
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Lafleur A, Boucher VJ. The ecology of self-monitoring effects on memory of verbal productions: Does speaking to someone make a difference? Conscious Cogn 2015; 36:139-46. [DOI: 10.1016/j.concog.2015.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 06/19/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022]
|
28
|
Jenson D, Harkrider AW, Thornton D, Bowers AL, Saltuklaroglu T. Auditory cortical deactivation during speech production and following speech perception: an EEG investigation of the temporal dynamics of the auditory alpha rhythm. Front Hum Neurosci 2015; 9:534. [PMID: 26500519 PMCID: PMC4597480 DOI: 10.3389/fnhum.2015.00534] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.g., premotor cortex, PMC) activity during speech perception and production. The purpose of the current study was to identify and temporally map neural activity from posterior (i.e., auditory) regions of the dorsal stream in the same tasks. Perception tasks required "active" discrimination of syllable pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required overt production of syllable pairs and nouns. ICA performed on concatenated raw 68 channel EEG data from all tasks identified bilateral "auditory" alpha (α) components in 15 of 29 participants localized to pSTG (left) and pMTG (right). ERSP analyses were performed to reveal fluctuations in the spectral power of the α rhythm clusters across time. Production conditions were characterized by significant α event related synchronization (ERS; pFDR < 0.05) concurrent with EMG activity from speech production, consistent with speech-induced auditory inhibition. Discrimination conditions were also characterized by α ERS following stimulus offset. Auditory α ERS in all conditions temporally aligned with PMC activity reported in Jenson et al. (2014). These findings are indicative of speech-induced suppression of auditory regions, possibly via efference copy. The presence of the same pattern following stimulus offset in discrimination conditions suggests that sensorimotor contributions following speech perception reflect covert replay, and that covert replay provides one source of the motor activity previously observed in some speech perception tasks. To our knowledge, this is the first time that inhibition of auditory regions by speech has been observed in real-time with the ICA/ERSP technique.
Collapse
Affiliation(s)
- David Jenson
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Ashley W. Harkrider
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - David Thornton
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Andrew L. Bowers
- Department of Communication Disorders, University of ArkansasFayetteville, AR, USA
| | - Tim Saltuklaroglu
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| |
Collapse
|
29
|
Sato M, Vilain C, Lamalle L, Grabski K. Adaptive coding of orofacial and speech actions in motor and somatosensory spaces with and without overt motor behavior. J Cogn Neurosci 2015; 27:334-51. [PMID: 25203272 DOI: 10.1162/jocn_a_00711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Studies of speech motor control suggest that articulatory and phonemic goals are defined in multidimensional motor, somatosensory, and auditory spaces. To test whether motor simulation might rely on sensory-motor coding common with those for motor execution, we used a repetition suppression (RS) paradigm while measuring neural activity with sparse sampling fMRI during repeated overt and covert orofacial and speech actions. RS refers to the phenomenon that repeated stimuli or motor acts lead to decreased activity in specific neural populations and are associated with enhanced adaptive learning related to the repeated stimulus attributes. Common suppressed neural responses were observed in motor and posterior parietal regions in the achievement of both repeated overt and covert orofacial and speech actions, including the left premotor cortex and inferior frontal gyrus, the superior parietal cortex and adjacent intraprietal sulcus, and the left IC and the SMA. Interestingly, reduced activity of the auditory cortex was observed during overt but not covert speech production, a finding likely reflecting a motor rather an auditory imagery strategy by the participants. By providing evidence for adaptive changes in premotor and associative somatosensory brain areas, the observed RS suggests online state coding of both orofacial and speech actions in somatosensory and motor spaces with and without motor behavior and sensory feedback.
Collapse
|
30
|
Tian X, Poeppel D. Dynamics of self-monitoring and error detection in speech production: evidence from mental imagery and MEG. J Cogn Neurosci 2015; 27:352-64. [PMID: 25061925 DOI: 10.1162/jocn_a_00692] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A critical subroutine of self-monitoring during speech production is to detect any deviance between expected and actual auditory feedback. Here we investigated the associated neural dynamics using MEG recording in mental-imagery-of-speech paradigms. Participants covertly articulated the vowel /a/; their own (individually recorded) speech was played back, with parametric manipulation using four levels of pitch shift, crossed with four levels of onset delay. A nonmonotonic function was observed in early auditory responses when the onset delay was shorter than 100 msec: Suppression was observed for normal playback, but enhancement for pitch-shifted playback; however, the magnitude of enhancement decreased at the largest level of pitch shift that was out of pitch range for normal conversion, as suggested in two behavioral experiments. No difference was observed among different types of playback when the onset delay was longer than 100 msec. These results suggest that the prediction suppresses the response to normal feedback, which mediates source monitoring. When auditory feedback does not match the prediction, an "error term" is generated, which underlies deviance detection. We argue that, based on the observed nonmonotonic function, a frequency window (addressing spectral difference) and a time window (constraining temporal difference) jointly regulate the comparison between prediction and feedback in speech.
Collapse
|
31
|
Timmers I, van den Hurk J, Hofman PA, Zimmermann LJ, Uludağ K, Jansma BM, Rubio-Gozalbo ME. Affected functional networks associated with sentence production in classic galactosemia. Brain Res 2015; 1616:166-76. [PMID: 25979518 DOI: 10.1016/j.brainres.2015.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/07/2015] [Accepted: 05/05/2015] [Indexed: 01/13/2023]
Abstract
Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients.
Collapse
Affiliation(s)
- Inge Timmers
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Job van den Hurk
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands; Laboratory of Biological Psychology, University of Leuven, Leuven, Belgium
| | - Paul Am Hofman
- Department of Radiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Luc Ji Zimmermann
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands
| | - Bernadette M Jansma
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, The Netherlands; Laboratory of Genetic Metabolic Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
32
|
Skipper JI. Echoes of the spoken past: how auditory cortex hears context during speech perception. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130297. [PMID: 25092665 PMCID: PMC4123676 DOI: 10.1098/rstb.2013.0297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds.
Collapse
Affiliation(s)
- Jeremy I Skipper
- Department of Cognitive, Perceptual and Brain Sciences, Institute for Multimodal Communication, University College London, London, WC1H 0AP, UK
| |
Collapse
|
33
|
Suppression of the N1 auditory evoked potential for sounds generated by the upper and lower limbs. Biol Psychol 2014; 102:108-17. [DOI: 10.1016/j.biopsycho.2014.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022]
|
34
|
Saupe K, Widmann A, Trujillo-Barreto NJ, Schröger E. Sensorial suppression of self-generated sounds and its dependence on attention. Int J Psychophysiol 2013; 90:300-10. [DOI: 10.1016/j.ijpsycho.2013.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
|
35
|
Dewey JA, Carr TH. Predictable and self-initiated visual motion is judged to be slower than computer generated motion. Conscious Cogn 2013; 22:987-95. [DOI: 10.1016/j.concog.2013.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
|
36
|
Quaedflieg CWEM, Meyer T, Smeets T. The imaging Maastricht Acute Stress Test (iMAST): A neuroimaging compatible psychophysiological stressor. Psychophysiology 2013; 50:758-66. [DOI: 10.1111/psyp.12058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - T. Meyer
- Faculty of Psychology and Neuroscience; Maastricht University; Maastricht; The Netherlands
| | - T. Smeets
- Faculty of Psychology and Neuroscience; Maastricht University; Maastricht; The Netherlands
| |
Collapse
|
37
|
Multivoxel patterns reveal functionally differentiated networks underlying auditory feedback processing of speech. J Neurosci 2013; 33:4339-48. [PMID: 23467350 DOI: 10.1523/jneurosci.6319-11.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection, and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multivoxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was used to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared with during passive listening. One network of regions appears to encode an "error signal" regardless of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a frontotemporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems.
Collapse
|
38
|
Silent articulation modulates auditory and audiovisual speech perception. Exp Brain Res 2013; 227:275-88. [DOI: 10.1007/s00221-013-3510-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/03/2013] [Indexed: 10/26/2022]
|
39
|
Abstract
During speech production, auditory processing of self-generated speech is used to adjust subsequent articulations. The current study investigated how the proposed auditory-motor interactions are manifest at the neural level in native and non-native speakers of English who were overtly naming pictures of objects and reading their written names. Data were acquired with functional magnetic resonance imaging and analyzed with dynamic causal modeling. We found that (1) higher activity in articulatory regions caused activity in auditory regions to decrease (i.e., auditory suppression), and (2) higher activity in auditory regions caused activity in articulatory regions to increase (i.e., auditory feedback). In addition, we were able to demonstrate that (3) speaking in a non-native language involves more auditory feedback and less auditory suppression than speaking in a native language. The difference between native and non-native speakers was further supported by finding that, within non-native speakers, there was less auditory feedback for those with better verbal fluency. Consequently, the networks of more fluent non-native speakers looked more like those of native speakers. Together, these findings provide a foundation on which to explore auditory-motor interactions during speech production in other human populations, particularly those with speech difficulties.
Collapse
|
40
|
Chen Z, Jones JA, Liu P, Li W, Huang D, Liu H. Dynamics of vocalization-induced modulation of auditory cortical activity at mid-utterance. PLoS One 2013; 8:e60039. [PMID: 23555876 PMCID: PMC3610706 DOI: 10.1371/journal.pone.0060039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 02/20/2013] [Indexed: 11/19/2022] Open
Abstract
Background Recent research has addressed the suppression of cortical sensory responses to altered auditory feedback that occurs at utterance onset regarding speech. However, there is reason to assume that the mechanisms underlying sensorimotor processing at mid-utterance are different than those involved in sensorimotor control at utterance onset. The present study attempted to examine the dynamics of event-related potentials (ERPs) to different acoustic versions of auditory feedback at mid-utterance. Methodology/Principal findings Subjects produced a vowel sound while hearing their pitch-shifted voice (100 cents), a sum of their vocalization and pure tones, or a sum of their vocalization and white noise at mid-utterance via headphones. Subjects also passively listened to playback of what they heard during active vocalization. Cortical ERPs were recorded in response to different acoustic versions of feedback changes during both active vocalization and passive listening. The results showed that, relative to passive listening, active vocalization yielded enhanced P2 responses to the 100 cents pitch shifts, whereas suppression effects of P2 responses were observed when voice auditory feedback was distorted by pure tones or white noise. Conclusion/Significance The present findings, for the first time, demonstrate a dynamic modulation of cortical activity as a function of the quality of acoustic feedback at mid-utterance, suggesting that auditory cortical responses can be enhanced or suppressed to distinguish self-produced speech from externally-produced sounds.
Collapse
Affiliation(s)
- Zhaocong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jeffery A. Jones
- Department of Psychology and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weifeng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Dongfeng Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
41
|
Price CJ. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 2012; 62:816-47. [PMID: 22584224 PMCID: PMC3398395 DOI: 10.1016/j.neuroimage.2012.04.062] [Citation(s) in RCA: 1342] [Impact Index Per Article: 103.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 01/17/2023] Open
Abstract
The anatomy of language has been investigated with PET or fMRI for more than 20 years. Here I attempt to provide an overview of the brain areas associated with heard speech, speech production and reading. The conclusions of many hundreds of studies were considered, grouped according to the type of processing, and reported in the order that they were published. Many findings have been replicated time and time again leading to some consistent and undisputable conclusions. These are summarised in an anatomical model that indicates the location of the language areas and the most consistent functions that have been assigned to them. The implications for cognitive models of language processing are also considered. In particular, a distinction can be made between processes that are localized to specific structures (e.g. sensory and motor processing) and processes where specialisation arises in the distributed pattern of activation over many different areas that each participate in multiple functions. For example, phonological processing of heard speech is supported by the functional integration of auditory processing and articulation; and orthographic processing is supported by the functional integration of visual processing, articulation and semantics. Future studies will undoubtedly be able to improve the spatial precision with which functional regions can be dissociated but the greatest challenge will be to understand how different brain regions interact with one another in their attempts to comprehend and produce language.
Collapse
Affiliation(s)
- Cathy J Price
- Wellcome Trust Centre for Neuroimaging, UCL, London WC1N 3BG, UK.
| |
Collapse
|
42
|
Parkinson AL, Flagmeier SG, Manes JL, Larson CR, Rogers B, Robin DA. Understanding the neural mechanisms involved in sensory control of voice production. Neuroimage 2012; 61:314-22. [PMID: 22406500 DOI: 10.1016/j.neuroimage.2012.02.068] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022] Open
Abstract
Auditory feedback is important for the control of voice fundamental frequency (F0). In the present study we used neuroimaging to identify regions of the brain responsible for sensory control of the voice. We used a pitch-shift paradigm where subjects respond to an alteration, or shift, of voice pitch auditory feedback with a reflexive change in F0. To determine the neural substrates involved in these audio-vocal responses, subjects underwent fMRI scanning while vocalizing with or without pitch-shifted feedback. The comparison of shifted and unshifted vocalization revealed activation bilaterally in the superior temporal gyrus (STG) in response to the pitch shifted feedback. We hypothesize that the STG activity is related to error detection by auditory error cells located in the superior temporal cortex and efference copy mechanisms whereby this region is responsible for the coding of a mismatch between actual and predicted voice F0.
Collapse
Affiliation(s)
- Amy L Parkinson
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Speech production has been studied predominantly from within two traditions, psycholinguistics and motor control. These traditions have rarely interacted, and the resulting chasm between these approaches seems to reflect a level of analysis difference: whereas motor control is concerned with lower-level articulatory control, psycholinguistics focuses on higher-level linguistic processing. However, closer examination of both approaches reveals a substantial convergence of ideas. The goal of this article is to integrate psycholinguistic and motor control approaches to speech production. The result of this synthesis is a neuroanatomically grounded, hierarchical state feedback control model of speech production.
Collapse
|
44
|
Ganushchak LY, Christoffels IK, Schiller NO. The use of electroencephalography in language production research: a review. Front Psychol 2011; 2:208. [PMID: 21909333 PMCID: PMC3164111 DOI: 10.3389/fpsyg.2011.00208] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 08/13/2011] [Indexed: 12/01/2022] Open
Abstract
Speech production long avoided electrophysiological experiments due to the suspicion that potential artifacts caused by muscle activity of overt speech may lead to a bad signal-to-noise ratio in the measurements. Therefore, researchers have sought to assess speech production by using indirect speech production tasks, such as tacit or implicit naming, delayed naming, or meta-linguistic tasks, such as phoneme-monitoring. Covert speech may, however, involve different processes than overt speech production. Recently, overt speech has been investigated using electroencephalography (EEG). As the number of papers published is rising steadily, this clearly indicates the increasing interest and demand for overt speech research within the field of cognitive neuroscience of language. Our main goal here is to review all currently available results of overt speech production involving EEG measurements, such as picture naming, Stroop naming, and reading aloud. We conclude that overt speech production can be successfully studied using electrophysiological measures, for instance, event-related brain potentials (ERPs). We will discuss possible relevant components in the ERP waveform of speech production and aim to address the issue of how to interpret the results of ERP research using overt speech, and whether the ERP components in language production are comparable to results from other fields.
Collapse
Affiliation(s)
- Lesya Y Ganushchak
- Psychology, Leiden Institute for Brain and Cognition Leiden, Netherlands
| | | | | |
Collapse
|