1
|
Pouyabahar D, Chung SW, Pezzutti OI, Perciani CT, Wang X, Ma XZ, Jiang C, Camat D, Chung T, Sekhon M, Manuel J, Chen XC, McGilvray ID, MacParland SA, Bader GD. A rat liver cell atlas reveals intrahepatic myeloid heterogeneity. iScience 2023; 26:108213. [PMID: 38026201 PMCID: PMC10651689 DOI: 10.1016/j.isci.2023.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/20/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.
Collapse
Affiliation(s)
- Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sai W. Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Olivia I. Pezzutti
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Catia T. Perciani
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xinle Wang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xue-Zhong Ma
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Chao Jiang
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Damra Camat
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Trevor Chung
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Manmeet Sekhon
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Justin Manuel
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Xu-Chun Chen
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Ian D. McGilvray
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Sonya A. MacParland
- Ajmera Transplant Centre, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D. Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Princess Margaret Research Institute, University Health Network, Toronto, ON, Canada
- The Multiscale Human Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
2
|
Sun RX, Chong LC, Simmons TT, Houlahan KE, Prokopec SD, Watson JD, Moffat ID, Lensu S, Lindén J, P'ng C, Okey AB, Pohjanvirta R, Boutros PC. Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity. BMC Genomics 2014; 15:1053. [PMID: 25467400 PMCID: PMC4301818 DOI: 10.1186/1471-2164-15-1053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/19/2014] [Indexed: 12/04/2022] Open
Abstract
Background Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating pathways critical for development, and after decades of research the mechanisms underlying physiological regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to xenobiotic AHR ligands across a broad range of species and tissues. However, only limited inferences have been made regarding its role in regulating constitutive gene activity, i.e. in the absence of exogenous ligands. To address this, we profiled transcriptomic variations between AHR-active and AHR-less-active animals in the absence of an exogenous agonist across five tissues, three of which came from rats (hypothalamus, white adipose and liver) and two of which came from mice (kidney and liver). Because AHR status alone has been shown sufficient to alter transcriptomic responses, we reason that by contrasting profiles amongst AHR-variant animals, we may elucidate effects of the AHR on constitutive mRNA abundances. Results We found significantly more overlap in constitutive mRNA abundances amongst tissues within the same species than from tissues between species and identified 13 genes (Agt, Car3, Creg1, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1, Pdk1, Slc35a3, and Sqrdl) that are affected by AHR-status in four of five tissues. One gene, Creg1, was significantly up-regulated in all AHR-less-active animals. We also find greater overlap between tissues at the pathway level than at the gene level, suggesting coherency to the AHR signalling response within these processes. Analysis of regulatory motifs suggests that the AHR mostly mediates transcriptional regulation via direct binding to response elements. Conclusions These findings, though preliminary, present a platform for further evaluating the role of the AHR in regulation of constitutive mRNA levels and physiologic function. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1053) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Paul C Boutros
- Informatics and Bio-computing Program, Ontario Institute for Cancer Research, Toronto, Canada.
| |
Collapse
|
3
|
Watson JD, Prokopec SD, Smith AB, Okey AB, Pohjanvirta R, Boutros PC. TCDD dysregulation of 13 AHR-target genes in rat liver. Toxicol Appl Pharmacol 2014; 274:445-54. [DOI: 10.1016/j.taap.2013.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022]
|
4
|
Aarnio V, Heikkinen L, Peltonen J, Goldsteins G, Lakso M, Wong G. Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:40-8. [PMID: 24463456 DOI: 10.1016/j.cbd.2013.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 12/11/2022]
Abstract
The aryl hydrocarbon receptor (AHR) functions in higher organisms in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and a F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5' flanking regions of some but not all of the gcy, nlp-20, and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes.
Collapse
Affiliation(s)
- Vuokko Aarnio
- Laboratory of Functional Genomics and Bioinformatics, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| | - Liisa Heikkinen
- Laboratory of Functional Genomics and Bioinformatics, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| | - Juhani Peltonen
- Laboratory of Functional Genomics and Bioinformatics, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| | - Gundars Goldsteins
- Laboratory of Molecular Brain Research, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| | - Merja Lakso
- Laboratory of Functional Genomics and Bioinformatics, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| | - Garry Wong
- Laboratory of Functional Genomics and Bioinformatics, A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Yliopistonranta 1, 70211 Kuopio, Finland.
| |
Collapse
|
5
|
Prokopec SD, Buchner NB, Fox NS, Chong LC, Mak DY, Watson JD, Petronis A, Pohjanvirta R, Boutros PC. Validating reference genes within a mouse model system of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) toxicity. Chem Biol Interact 2013; 205:63-71. [DOI: 10.1016/j.cbi.2013.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/23/2013] [Accepted: 06/10/2013] [Indexed: 01/26/2023]
|
6
|
Lee C, Riddick DS. Aryl hydrocarbon receptor-dependence of dioxin's effects on constitutive mouse hepatic cytochromes P450 and growth hormone signaling components. Can J Physiol Pharmacol 2012; 90:1354-63. [PMID: 22978700 DOI: 10.1139/y2012-099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AHR) has physiological roles in the absence of exposure to exogenous ligands, and mediates adaptive and toxic responses to the environmental pollutant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD). A readily metabolized AHR agonist, 3-methylcholanthrene, disrupts the expression of mouse hepatic growth hormone (GH) signaling components and suppresses cytochrome P450 2D9 (Cyp2d9), a male-specific gene controlled by pulsatile GH via signal transducer and activator of transcription 5b (STAT5b). Using TCDD as an essentially nonmetabolized AHR agonist, and Ahr (-/-) mice as the preferred model to determine the AHR-dependence of biological responses, we now show that 2 mouse hepatic STAT5b target genes, Cyp2d9, and major urinary protein 2 (Mup2), are suppressed by TCDD in an AHR-dependent manner. TCDD also decreased hepatic mRNA levels for GH receptor, Janus kinase 2, and STAT5a/b with AHR-dependence. Without inducing selected hepatic inflammatory markers, TCDD caused AHR-dependent induction of Cyp1a1 and NADPH-cytochrome P450 oxidoreductase (Por) and suppression of Cyp3a11. In vehicle-treated mice, basal mRNA levels for CYP2D9, CYP3A11, POR, serum amyloid protein P, and MUP2 were influenced by Ahr genetic status. We conclude that AHR activation per se leads to dysregulation of hepatic GH signaling components and suppression of some, but not all, STAT5b target genes.
Collapse
Affiliation(s)
- Chunja Lee
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | |
Collapse
|
7
|
Tuomisto J, Tuomisto JT. Is the fear of dioxin cancer more harmful than dioxin? Toxicol Lett 2012; 210:338-44. [PMID: 22387160 DOI: 10.1016/j.toxlet.2012.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/08/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a proven animal carcinogen. Occupational cohorts with the highest exposures imply that there is a small risk of all cancers combined, but it is difficult to pinpoint the confounding effect of the main chemicals. Studies after major accidents do not unequivocally confirm this risk. The risks to populations at the current dioxin levels seem trivial if present at all. There is increasing evidence that the aryl hydrocarbon receptor (AhR), i.e. the so called "dioxin receptor", is a physiological transcription factor exerting important functions in the body. Consequently a certain level of AhR activation may be beneficial rather than harmful. This challenges the wisdom of excessive regulation of dioxin levels in certain foods and nutrients. This could pose indirect nutritional risks, in fact being more harmful than even the worst case predictions of the putative cancer risks attributable to dioxins.
Collapse
Affiliation(s)
- Jouko Tuomisto
- Department of Environmental Health, National Institute for Health and Welfare (THL), P.O. Box 95, FI-70701 Kuopio, Finland.
| | | |
Collapse
|
8
|
Boutros PC, Yao CQ, Watson JD, Wu AH, Moffat ID, Prokopec SD, Smith AB, Okey AB, Pohjanvirta R. Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity. Toxicol Appl Pharmacol 2011; 251:119-29. [PMID: 21215274 DOI: 10.1016/j.taap.2010.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 01/27/2023]
Abstract
The dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a wide range of toxic effects in rodent species, all of which are mediated by a ligand-dependent transcription-factor, the aryl hydrocarbon receptor (AHR). The Han/Wistar (Kuopio) (H/W) strain shows exceptional resistance to many TCDD-induced toxicities; the LD₅₀ of > 9600 μg/kg for H/W rats is higher than for any other wild-type mammal known. We previously showed that this resistance primarily results from H/W rats expressing a variant AHR isoform that has a substantial portion of the AHR transactivation domain deleted. Despite this large deletion, H/W rats are not entirely refractory to the effects of TCDD; the variant AHR in these animals remains fully competent to up-regulate well-known dioxin-inducible genes. TCDD-sensitive (Long-Evans, L-E) and resistant (H/W) rats were treated with either corn-oil (with or without feed-restriction) or 100 μg/kg TCDD for either four or ten days. Hepatic transcriptional profiling was done using microarrays, and was validated by RT-PCR analysis of 41 genes. A core set of genes was altered in both strains at all time points tested, including CYP1A1, CYP1A2, CYP1B1, Nqo1, Aldh3a1, Tiparp, Exoc3, and Inmt. Outside this core, the strains differed significantly in the breadth of response: three-fold more genes were altered in L-E than H/W rats. At ten days almost all expressed genes were dysregulated in L-E rats, likely reflecting emerging toxic responses. Far fewer genes were affected by feed-restriction, suggesting that only a minority of the TCDD-induced changes are secondary to the wasting syndrome.
Collapse
Affiliation(s)
- Paul C Boutros
- Informatics and Bio-computing Platform, Ontario Institute for Cancer Research, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|