1
|
Dittami SM, Corre E, Brillet-Guéguen L, Lipinska AP, Pontoizeau N, Aite M, Avia K, Caron C, Cho CH, Collén J, Cormier A, Delage L, Doubleau S, Frioux C, Gobet A, González-Navarrete I, Groisillier A, Hervé C, Jollivet D, KleinJan H, Leblanc C, Liu X, Marie D, Markov GV, Minoche AE, Monsoor M, Pericard P, Perrineau MM, Peters AF, Siegel A, Siméon A, Trottier C, Yoon HS, Himmelbauer H, Boyen C, Tonon T. The genome of Ectocarpus subulatus - A highly stress-tolerant brown alga. Mar Genomics 2020; 52:100740. [PMID: 31937506 DOI: 10.1016/j.margen.2020.100740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022]
Abstract
Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Loraine Brillet-Guéguen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Noé Pontoizeau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Meziane Aite
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Komlan Avia
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Université de Strasbourg, INRA, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Christophe Caron
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Sylvie Doubleau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Irene González-Navarrete
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Agnès Groisillier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Hetty KleinJan
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - André E Minoche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Misharl Monsoor
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Pericard
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Marie-Mathilde Perrineau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, United Kingdom
| | | | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Amandine Siméon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Camille Trottier
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France; Laboratory of Digital Sciences of Nantes (LS2N) - University of Nantes, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heinz Himmelbauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190 Vienna, Austria
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Murcha MW, Kmiec B, Kubiszewski-Jakubiak S, Teixeira PF, Glaser E, Whelan J. Protein import into plant mitochondria: signals, machinery, processing, and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6301-35. [PMID: 25324401 DOI: 10.1093/jxb/eru399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The majority of more than 1000 proteins present in mitochondria are imported from nuclear-encoded, cytosolically synthesized precursor proteins. This impressive feat of transport and sorting is achieved by the combined action of targeting signals on mitochondrial proteins and the mitochondrial protein import apparatus. The mitochondrial protein import apparatus is composed of a number of multi-subunit protein complexes that recognize, translocate, and assemble mitochondrial proteins into functional complexes. While the core subunits involved in mitochondrial protein import are well conserved across wide phylogenetic gaps, the accessory subunits of these complexes differ in identity and/or function when plants are compared with Saccharomyces cerevisiae (yeast), the model system for mitochondrial protein import. These differences include distinct protein import receptors in plants, different mechanistic operation of the intermembrane protein import system, the location and activity of peptidases, the function of inner-membrane translocases in linking the outer and inner membrane, and the association/regulation of mitochondrial protein import complexes with components of the respiratory chain. Additionally, plant mitochondria share proteins with plastids, i.e. dual-targeted proteins. Also, the developmental and cell-specific nature of mitochondrial biogenesis is an aspect not observed in single-celled systems that is readily apparent in studies in plants. This means that plants provide a valuable model system to study the various regulatory processes associated with protein import and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Beata Kmiec
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Pedro F Teixeira
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Arrhenius Laboratories for Natural Sciences, SE-10691 Stockholm, Sweden
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
6
|
Flinner N, Ellenrieder L, Stiller SB, Becker T, Schleiff E, Mirus O. Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3314-3325. [PMID: 24135058 DOI: 10.1016/j.bbamcr.2013.10.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial β-barrel proteins fulfill central functions in the outer membrane like metabolite exchange catalyzed by the voltage-dependent anion channel (VDAC) and protein biogenesis by the central components of the preprotein translocase of the outer membrane (Tom40) or of the sorting and assembly machinery (Sam50). The mitochondrial division and morphology protein Mdm10 is another essential outer membrane protein with proposed β-barrel fold, which has so far only been found in Fungi. Mdm10 is part of the endoplasmic reticulum mitochondria encounter structure (ERMES), which tethers the ER to mitochondria and associates with the SAM complex. In here, we provide evidence that Mdm10 phylogenetically belongs to the VDAC/Tom40 superfamily. Contrary to Tom40 and VDAC, Mdm10 exposes long loops towards both sides of the membrane. Analyses of single loop deletion mutants of Mdm10 in the yeast Saccharomyces cerevisiae reveal that the loops are dispensable for Mdm10 function. Sequences similar to fungal Mdm10 can be found in species from Excavates to Fungi, but neither in Metazoa nor in plants. Strikingly, the presence of Mdm10 coincides with the appearance of the other ERMES components. Mdm10's presence in both unikonts and bikonts indicates an introduction at an early time point in eukaryotic evolution.
Collapse
Affiliation(s)
- Nadine Flinner
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Lars Ellenrieder
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | - Sebastian B Stiller
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, D-79104 Freiburg, Germany
| | - Enrico Schleiff
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| | - Oliver Mirus
- JWGU Frankfurt am Main, Cluster of Excellence Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
7
|
Murcha MW, Wang Y, Narsai R, Whelan J. The plant mitochondrial protein import apparatus - the differences make it interesting. Biochim Biophys Acta Gen Subj 2013; 1840:1233-45. [PMID: 24080405 DOI: 10.1016/j.bbagen.2013.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mitochondria play essential roles in the life and death of almost all eukaryotic cells, ranging from single-celled to multi-cellular organisms that display tissue and developmental differentiation. As mitochondria only arose once in evolution, much can be learned from studying single celled model systems such as yeast and applying this knowledge to other organisms. However, two billion years of evolution have also resulted in substantial divergence in mitochondrial function between eukaryotic organisms. SCOPE OF REVIEW Here we review our current understanding of the mechanisms of mitochondrial protein import between plants and yeast (Saccharomyces cerevisiae) and identify a high level of conservation for the essential subunits of plant mitochondrial import apparatus. Furthermore, we investigate examples whereby divergence and acquisition of functions have arisen and highlight the emerging examples of interactions between the import apparatus and components of the respiratory chain. MAJOR CONCLUSIONS After more than three decades of research into the components and mechanisms of mitochondrial protein import of plants and yeast, the differences between these systems are examined. Specifically, expansions of the small gene families that encode the mitochondrial protein import apparatus in plants are detailed, and their essential role in seed viability is revealed. GENERAL SIGNIFICANCE These findings point to the essential role of the inner mitochondrial protein translocases in Arabidopsis, establishing their necessity for seed viability and the crucial role of mitochondrial biogenesis during germination. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Monika W Murcha
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Yan Wang
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; Computational Systems Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Bayliss Building M316, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia; Department of Botany, School of Life Science, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|