1
|
Kumar A, Sharma B. Cardioprotective Effect of Eugenol Against Cd-Induced Inflammation, Oxidative Stress, and Dyslipidemia in Male Rats: An In Vivo and Molecular Docking Study. Biol Trace Elem Res 2024:10.1007/s12011-024-04162-z. [PMID: 38592566 DOI: 10.1007/s12011-024-04162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Cadmium, a highly toxic heavy metal, can cause severe damage to several vital organs including the kidney, liver, and brain. Many of the natural compounds found in aromatic plants have beneficial pharmacological properties. Eugenol is one such compound reported to have anti-inflammatory and antioxidant properties. The aim of this study is to investigate whether eugenol, a natural compound found in aromatic plants known for its anti-inflammatory and antioxidant properties, can mitigate the detrimental effects of cadmium exposure on cardiac inflammation, oxidative stress, and dyslipidemia. Male albino rats were subjected to randomization into four groups, each comprising six animals, to investigate the potential of eugenol in mitigating cadmium-induced toxicity. All groups received oral gavage treatment for 21 days. Following the treatment regimen, cardiac tissue specimens were collected for analysis. The assessment of cardiac antioxidant status entailed the determination of enzymatic activities including catalase, SOD, GST, and GPx. Additionally, levels of lipid peroxidation, reduced glutathione, protein carbonyl oxidation, and thiol levels were quantified in the cardiac tissue samples. To evaluate cardiac damage, marker enzymes such as LDH and CK-MB were measured. Furthermore, the inflammatory response in the cardiac tissue induced by cadmium exposure was assessed through the quantification of NO, TNF-α, and IL-6 levels. Additionally, molecular docking and dynamics studies were conducted utilizing autodock and GLIDE methodologies. Cadmium administration markedly enhanced the activities of LDH and CK-MB, prominent cardiac markers. Furthermore, cadmium treatment also demonstrated a significant decrease in the reduced glutathione levels and antioxidant enzyme activities. Significant elevation of the inflammatory markers was also observed in the cadmium-treated group. Eugenol treatment effectively ameliorates cadmium-induced biochemical changes. This study underscores the potent anti-inflammatory and antioxidant attributes of eugenol. Co-administration of eugenol alongside cadmium exhibited remarkable protective efficacy against cadmium-induced cardio-toxicity. Eugenol demonstrated the capability to reinstate the cellular redox equilibrium of rats subjected to cadmium treatment to levels akin to those of the normal control group.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, India, 211002
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj, India, 211002.
| |
Collapse
|
2
|
Sharma AK, Finney L, Vogt S, Vatamaniuk OK, Kim S. Cadmium alters whole animal ionome and promotes the re-distribution of iron in intestinal cells of Caenorhabditis elegans. Front Physiol 2023; 14:1258540. [PMID: 37822680 PMCID: PMC10562743 DOI: 10.3389/fphys.2023.1258540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
The chronic exposure of humans to the toxic metal cadmium (Cd), either occupational or from food and air, causes various diseases, including neurodegenerative conditions, dysfunction of vital organs, and cancer. While the toxicology of Cd and its effect on the homeostasis of biologically relevant elements is increasingly recognized, the spatial distribution of Cd and other elements in Cd toxicity-caused diseases is still poorly understood. Here, we use Caenorhabditis elegans as a non-mammalian multicellular model system to determine the distribution of Cd at the tissue and cellular resolution and its effect on the internal levels and the distribution of biologically relevant elements. Using inductively coupled plasma-mass spectrophotometry (ICP-MS), we show that exposure of worms to Cd not only led to its internal accumulation but also significantly altered the C. elegans ionome. Specifically, Cd treatment was associated with increased levels of toxic elements such as arsenic (As) and rubidium (Rb) and a decreased accumulation of essential elements such as zinc (Zn), copper (Cu), manganese (Mn), calcium (Ca), cobalt (Co) and, depending on the Cd-concentration used in the assay, iron (Fe). We regarded these changes as an ionomic signature of Cd toxicity in C. elegans. We also show that supplementing nematode growth medium with Zn but not Cu, rescues Cd toxicity and that mutant worms lacking Zn transporters CDF-1 or SUR-7, or both are more sensitive to Cd toxicity. Finally, using synchrotron X-Ray fluorescence Microscopy (XRF), we showed that Cd significantly alters the spatial distribution of mineral elements. The effect of Cd on the distribution of Fe was particularly striking: while Fe was evenly distributed in intestinal cells of worms grown without Cd, in the presence of Cd, Fe, and Cd co-localized in punctum-like structures in the intestinal cells. Together, this study advances our understanding of the effect of Cd on the accumulation and distribution of biologically relevant elements. Considering that C. elegans possesses the principal tissues and cell types as humans, our data may have important implications for future therapeutic developments aiming to alleviate Cd-related pathologies in humans.
Collapse
Affiliation(s)
- Anuj Kumar Sharma
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Lydia Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, United States
| | - Olena K. Vatamaniuk
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Sungjin Kim
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Department of Microbiology & Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Wright GM, Black JC. Genomic Redistribution of Metal-Response Transcription Factor-1 (MTF-1) in Cadmium Resistant Cells. Cells 2023; 12:cells12060953. [PMID: 36980293 PMCID: PMC10047149 DOI: 10.3390/cells12060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Metal homeostasis is an important part of cellular programs and is disrupted when cells are exposed to carcinogenic heavy metals. Metal response is mediated by the metal response element transcription factor MTF-1. However, where MTF-1 binds and how that binding changes in response to heavy metals, such as cadmium, remains unknown. (2) Methods: To investigate the effects of prolonged cadmium exposure on the genomic distribution of MTF-1, we performed MTF-1 CUT&RUN, RNA-seq and ATAC-seq on control and cadmium-resistant cells. (3) Results: Changes in MTF-1 binding primarily occur distal to the transcription start sight. Newly occupied MTF-1 sites are enriched for FOS/JUN DNA binding motifs, while regions that lose MTF-1 binding in cadmium are enriched for the FOX transcription factor family member DNA binding sites. (4) Conclusions: Relocalization of MTF-1 to new genomic loci does not alter the accessibility of these locations. Our results support a model whereby MTF-1 is relocalized to accessible FOS/JUN-bound genomic locations in response to cadmium.
Collapse
Affiliation(s)
- Gregory M Wright
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C Black
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Wong WPS, Wang JC, Schipma MJ, Zhang X, Edwards JR, El Muayed M. Cadmium-mediated pancreatic islet transcriptome changes in mice and cultured mouse islets. Toxicol Appl Pharmacol 2021; 433:115756. [PMID: 34666113 PMCID: PMC9873403 DOI: 10.1016/j.taap.2021.115756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 01/26/2023]
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease process that is characterized by insulin resistance and impairment of insulin-producing pancreatic islets. There is evidence that environmental exposure to cadmium contributes to the development of T2DM. The presence of cadmium in human islets from the general population and the uptake of cadmium in β-cells have been reported. To identify cadmium-mediated changes in gene expression and molecular regulatory networks in pancreatic islets, we performed next-generation RNA-Sequencing (RNA-Seq) in islets following either in vivo (1 mM CdCl2 in drinking water) or ex-vivo (0.5 μM CdCl2) exposure. Both exposure regiments resulted in islet cadmium concentrations that are comparable to those found in human islets from the general population. 6-week in vivo cadmium exposure upregulates the expression of five genes: Synj2, Gjb1, Rbpjl, Try5 and 5430419D17Rik. Rbpjl is a known regulator of ctrb, a gene associated with diabetes susceptibility. With 18-week in vivo cadmium exposure, we found more comprehensive changes in gene expression profile. Pathway enrichment analysis showed that these secondary changes were clustered to molecular mechanisms related to intracellular protein trafficking to the plasma membrane. In islet culture, cadmium ex vivo significantly induces the expression of Mt1, Sphk1, Nrcam, L3mbtl2, Rnf216 and Itpr1. Mt1 and Itpr1 are known to be involved in glucose homeostasis. Collectively, findings reported here revealed a complex cadmium-mediated effect on pancreatic islet gene expression at environmentally relevant cadmium exposure conditions, providing the basis for further studies into the pathophysiological processes arising from cadmium accumulation in pancreatic islets.
Collapse
Affiliation(s)
- Winifred P S Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J Schipma
- NU Seq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Zhang
- Division of Transplant Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua R Edwards
- College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Fan J, Li BR, Zhang Q, Zhao XH, Wang L. Pretreatment of IEC-6 cells with quercetin and myricetin resists the indomethacin-induced barrier dysfunction via attenuating the calcium-mediated JNK/Src activation. Food Chem Toxicol 2021; 147:111896. [PMID: 33276066 DOI: 10.1016/j.fct.2020.111896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
This study investigated the protective effect of two flavonols quercetin and myricetin on barrier function of rat intestinal epithelial (IEC-6) cells with indomethacin injury. When the cells were pretreated with the heated or unheated flavonols of 2.5-10 μmol/L for 24-48 h and then injured by 300 μmol/L indomethacin for 24 h, they showed reduced lactate dehydrogenase release (LDH) but increased cell viability; however, the flavonols of 20 μmol/L exerted a little effect to increase cell viability or decrease LDH release. Cell pretreatment with 5 μmol/L flavonols also resisted cell barrier dysfunction by increasing transepithelial resistance, reducing paracellular permeability, and promoting mRNA and protein expression of three tight junction proteins zonula occluden-1, occludin, and claudin-1. Although indomethacin injury increased intracellular Ca2+ concentration ([Ca2+]i) and consequently caused JNK/Src activation, the flavonols could decrease [Ca2+]i and attenuate the calcium-mediated JNK/Src activation. Quercetin with less hydroxyl groups was more efficient than myricetin to resist barrier dysfunction, while the unheated flavonols were more active than the heated counterparts to perform this effect. It is thus proposed that quercetin and myricetin could resist barrier dysfunction of the intestine once injured by indomethacin, but heat treatment of flavonols had a negative impact on barrier-protective function of flavonols.
Collapse
Affiliation(s)
- Jing Fan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China
| | - Bai-Ru Li
- School of Mechanical and Electrical Engineering Guangdong University of Petrochemical Technology, 525000, Maoming, PR China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, 150030, Harbin, PR China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China.
| | - Li Wang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, 525000, Maoming, PR China.
| |
Collapse
|
6
|
Medina MF, Taboada LN, González ME, Díaz MÁ, Gelatti FJ, Torres M, Romero CM. Cadmium-calcium interference in the Rhinella arenarum oviduct. Toxicol Mech Methods 2019; 29:693-701. [PMID: 31364914 DOI: 10.1080/15376516.2019.1650147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Given that the cadmium (Cd) toxicity could be due to its interference with the calcium (Ca) homeostasis, the aim of this work was to study the effect of Cd over the presence, distribution and volume density (Vv) of Ca and Ca-ATPase in the secretory cells of the pars preconvoluta (PPC) and the pars convoluta (pc) in Rhinella arenarum. The severe effect of the xenobiotic (CdCl2 2.5 mg/kg) in sexually matured females was evaluated. Co-localization, as well as a marked reduction of Ca and Ca-ATPase, was observed in treated animals, in the areas analyzed, compared to control. Low calcium deposits were found in the secreting granules (SG) of the epithelial (ESC) and glandular secretory cells (GSC), while an increase in their cytoplasm and intracellular space was observed. The Ca-ATPase in treated and control animals was detected at the SG and the plasmatic membrane of the ESC and GSC. In relation to the Vv estimates, a substantial reduction of Ca deposits and Ca-ATPase activity was observed in the treated group, with respect to the control. Both amounts of Vv of Ca and Ca-ATPase activity were higher in PPC than in pc, and, higher in ESC than in GSC. These results were associated with the Cd concentration in the oviductal PC, determining that it is a bioaccumulator organ. Thus, this work demonstrated that the Cd interacted with Ca-ATPase, leading to an increase of cytosolic Ca, which is responsible for the possible disruptions in cellular metabolism.
Collapse
Affiliation(s)
| | | | | | - Miguel Ángel Díaz
- Facultad de Ciencias de Exactas y Tecnología, Universidad Nacional de Tucumán , Tucumán , Argentina
| | | | - Mabel Torres
- Facultad Regional Tucumán, Universidad Tecnológica Nacional , Tucumán , Argentina
| | - Cintia Mariana Romero
- Facultad de Bioquímica, Universidad Nacional de Tucumán , Tucumán , Argentina.,Planta Piloto de Procesos Industriales y Microbiológicos, PROIMI-CONICET , Tucumán , Argentina
| |
Collapse
|
7
|
Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci 2017; 175:23-30. [DOI: 10.1016/j.lfs.2017.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 01/03/2023]
|
8
|
Verma N, Pink M, Petrat F, Rettenmeier AW, Schmitz-Spanke S. Proteomic Analysis of Human Bladder Epithelial Cells by 2D Blue Native SDS-PAGE Reveals TCDD-Induced Alterations of Calcium and Iron Homeostasis Possibly Mediated by Nitric Oxide. J Proteome Res 2014; 14:202-13. [DOI: 10.1021/pr501051f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nisha Verma
- Gene
Center, Ludwig-Maximilians-University, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Mario Pink
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| | | | | | - Simone Schmitz-Spanke
- Institute
and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Schillerstr. 25/29, 91054 Erlangen, Germany
| |
Collapse
|
9
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
10
|
Live-cell dynamic sensing of Cd(2+) with a FRET-based indicator. PLoS One 2013; 8:e65853. [PMID: 23776557 PMCID: PMC3679114 DOI: 10.1371/journal.pone.0065853] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
Cd2+ causes damages to several human tissues. Although the toxicological and carcinogenetic mechanisms of Cd2+ have been previously established, some basic questions on this toxicant remain unclear. In this study, we constructed Met-cad 1.57, a new fluorescent resonance energy transfer (FRET)-based Cd2+ indicator, which contains a portion of a Cd2+-binding protein (CadR) obtained from Pseudomonas putida as the Cd2+ sensing key. We produced a human embryonic kidney cell line HEK-MCD157 which stably expresses the Met-cad 1.57 for further investigations. Both fluorescence spectroscopy and FRET microscopic ratio imaging were used to monitor the Cd2+ concentration within the living HEK-MCD157 cells. The dissociation constant of Met-cad 1.57 was approximately 271 nM. The function of Ca2+ channels as a potential Cd2+ entry gateway was further confirmed in the HEK-MCD157 cells. The organelle-targeted property of the protein-based Cd2+ indicator directly reveals the nucleus accumulation phenomena. In summary, a human kidney cell line that stably expresses the FRET-based Cd2+ indicator Met-cad 1.57 was constructed for reliable and convenient investigations to determine the Cd2+ concentration within living cells, including the identification of the entry pathway of Cd2+ and sub-cellular sequestration.
Collapse
|
11
|
|
12
|
|