1
|
Nué-Martinez JJ, Maturana M, Lagartera L, Rodríguez-Gutiérrez JA, Boer R, Campos JL, Saperas N, Dardonville C. Crystal structure of the HMGA AT-hook 1 domain bound to the minor groove of AT-rich DNA and inhibition by antikinetoplastid drugs. Sci Rep 2024; 14:26173. [PMID: 39478017 PMCID: PMC11526092 DOI: 10.1038/s41598-024-77522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
High mobility group (HMG) proteins are intrinsically disordered nuclear non-histone chromosomal proteins that play an essential role in many biological processes by regulating the expression of numerous genes in eukaryote cells. HMGA proteins contain three DNA binding motifs, the "AT-hooks", that bind preferentially to AT-rich sequences in the minor groove of B-form DNA. Understanding the interactions of AT-hook domains with DNA is very relevant from a medical point of view because HMGA proteins are involved in different conditions including cancer and parasitic diseases. We present here the first crystal structure (1.40 Å resolution) of the HMGA AT-hook 1 domain, bound to the minor groove of AT-rich DNA. In contrast to AT-hook 3 which bends DNA and shows a larger minor groove widening, AT-hook 1 binds neighbouring DNA molecules and displays moderate widening of DNA upon binding. The binding affinity and thermodynamics of binding were studied in solution with surface plasmon resonance (SPR)-biosensor and isothermal titration calorimetry (ITC) experiments. AT-hook 1 forms an entropy-driven 2:1 complex with (TTAA)2-containing DNA with relatively slow kinetics of association/dissociation. We show that N-phenylbenzamide-derived antikinetoplastid compounds (1-3) bind strongly and specifically to the minor groove of AT-DNA and compete with AT-hook 1 for binding. The central core of the molecule is the basis for the observed sequence selectivity of these compounds. These findings provide clues regarding a possible mode of action of DNA minor groove binding compounds that are relevant to major neglected tropical diseases such as leishmaniasis and trypanosomiasis.
Collapse
Affiliation(s)
| | - Marta Maturana
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | | | | | - Roeland Boer
- ALBA Synchrotron Light Source, Experiments división, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - J Lourdes Campos
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, 08019, Spain
| | - Núria Saperas
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, 08019, Spain.
| | | |
Collapse
|
2
|
Kurt F. An Insight into Oligopeptide Transporter 3 (OPT3) Family Proteins. Protein Pept Lett 2021; 28:43-54. [PMID: 32586240 DOI: 10.2174/0929866527666200625202028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND OPT3s are involved in the transport of Fe from xylem to phloem, in loading Fe into phloem, and in the transmission of shoot-to-root iron signaling. Yet, apart from Arabidopsis, little is known about these transporters'functions in other plant species. OBJECTIVE OPT3 proteins of several plant species were characterized using bioinformatical tools. Also, a probable Fe chelating protein, GSH, was used in docking analyses to shed light on the interactions of ligand binding sites of OPT3s. METHODS The multiple sequence alignment (MSA) analysis, protein secondary and tertiary structure analyses, molecular phylogeny analysis, transcription factor binding site analyses, co-expression and docking analyses were performed using up-to-date bioinformatical tools. RESULTS All OPT3s in this study appear to be transmembrane proteins. They appear to have broad roles and substrate specificities in different metabolic processes. OPT3 gene structures were highly conserved. Promoter analysis showed that bZIP, WRKY, Dof and AT-Hook Transcription factors (TFs) may regulate the expression of OPT3 genes. Consequently, they seemed to be taking part in both biotic and abiotic stress responses as well as growth and developmental processes. CONCLUSION The results showed that OPT3 proteins are involved in ROS regulation, plant stress responses, and basal pathogen resistance. They have species-specific roles in biological processes. Lastly, the transport of iron through OPT3s may occur with GSH according to the binding affinity results of the docking analyses.
Collapse
Affiliation(s)
- Fırat Kurt
- Department of Plant Production and Technologies, Faculty of Applied Sciences, Mus Alparslan University, Mus, Turkey
| |
Collapse
|
3
|
Efficacy of netropsin dihydrochloride against the viability, cytopathogenicity and hemolytic activity of Trichomonas vaginalis clinical isolates. J Infect Chemother 2019; 25:955-964. [PMID: 31189504 DOI: 10.1016/j.jiac.2019.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 11/22/2022]
Abstract
Trichomonas vaginalis (T. vaginalis) is a common sexually transmitted infection, affecting the urogenital tract. Trichomoniasis is customarily treated with metronidazole (MTZ). MTZ is known to cause undesirable side effects and there is several reports on MTZ resistant T. vaginalis. Thus, the present study aimed to in-vitro evaluate the activity of DNA minor groove binder drug ''Netropsin dihydrochloride'' against metronidazole-sensitive T. vaginalis isolates (G and U isolates) and resistant T. vaginalis isolate (ATCC50138) (R isolate). Netropsin was tested at concentrations ranging from 3.5 to 200 μg/ml. It showed effectiveness against all isolates with MLC of 12.5 μg/ml for G and U isolates and of 25 μg/ml for R isolate. Cytotoxicity assay of isolates exposed to the respective MLC of netropsin for 42 h showed a highly significant reduction in the death percentage of MCDK cell line as compared to the effect elicited by drug free controls. The hemolytic activity was evaluated by hemolytic assay and by monitoring the interaction of T. vaginalis isolates with human erythrocytes by inverted microscopy and scanning electron microscopy. The hemolytic assay showed (0%) hemolysis of RBCs incubated with T. vaginalis isolates treated with the corresponding MLC of netropsin for 24 h. Scanning electron microscopy revealed cytoskeletal deformities of netropsin treated isolates. Taken together, these observations suggest that netropsin is a promising therapy for T. vaginalis infection affecting its viability, virulence, cytopathogenic and hemolytic activity with a mechanism of action that might overcome T. vaginalis resistance to metronidazole.
Collapse
|
5
|
Uzcanga G, Lara E, Gutiérrez F, Beaty D, Beske T, Teran R, Navarro JC, Pasero P, Benítez W, Poveda A. Nuclear DNA replication and repair in parasites of the genus Leishmania: Exploiting differences to develop innovative therapeutic approaches. Crit Rev Microbiol 2016; 43:156-177. [PMID: 27960617 DOI: 10.1080/1040841x.2016.1188758] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a common tropical disease that affects mainly poor people in underdeveloped and developing countries. This largely neglected infection is caused by Leishmania spp, a parasite from the Trypanosomatidae family. This parasitic disease has different clinical manifestations, ranging from localized cutaneous to more harmful visceral forms. The main limitations of the current treatments are their high cost, toxicity, lack of specificity, and long duration. Efforts to improve treatments are necessary to deal with this infectious disease. Many approved drugs to combat diseases as diverse as cancer, bacterial, or viral infections take advantage of specific features of the causing agent or of the disease. Recent evidence indicates that the specific characteristics of the Trypanosomatidae replication and repair machineries could be used as possible targets for the development of new treatments. Here, we review in detail the molecular mechanisms of DNA replication and repair regulation in trypanosomatids of the genus Leishmania and the drugs that could be useful against this disease.
Collapse
Affiliation(s)
- Graciela Uzcanga
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,b Programa Prometeo , SENESCYT, Whymper E7-37 y Alpallana, Quito , Ecuador.,c Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador.,d Fundación Instituto de Estudios Avanzados-IDEA , Caracas , Venezuela
| | - Eliana Lara
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Fernanda Gutiérrez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Doyle Beaty
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Timo Beske
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Rommy Teran
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Juan-Carlos Navarro
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador.,f Universidad Central de Venezuela, Instituto de Zoología y Ecología Tropical , Caracas , Venezuela.,g Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK, Calle Alberto Einstein sn y 5ta transversal , Quito , Ecuador
| | - Philippe Pasero
- e Institute of Human Genetics , CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer , Montpellier cedex 5 , France
| | - Washington Benítez
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| | - Ana Poveda
- a Centro Internacional de Zoonosis, Facultad de Ciencias Químicas, Facultad de Medicina Veterinaria , Universidad Central del Ecuador , Quito , Ecuador
| |
Collapse
|