1
|
Wang L, Graziano B, Encalada N, Fernandez-Abascal J, Kaplan DH, Bianchi L. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis elegans. iScience 2022; 25:105684. [PMID: 36567707 PMCID: PMC9772852 DOI: 10.1016/j.isci.2022.105684] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/11/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Bianca Graziano
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Nicole Encalada
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Jesus Fernandez-Abascal
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Daryn H. Kaplan
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| | - Laura Bianchi
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Rm 5133 Rosenstiel Building, 1600 NW 10 Avenue, Miami, FL33136, USA
| |
Collapse
|
2
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Velasco-Estevez M, Gadalla KKE, Liñan-Barba N, Cobb S, Dev KK, Sheridan GK. Inhibition of Piezo1 attenuates demyelination in the central nervous system. Glia 2019; 68:356-375. [PMID: 31596529 DOI: 10.1002/glia.23722] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/15/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022]
Abstract
Piezo1 is a mechanosensitive ion channel that facilitates the translation of extracellular mechanical cues to intracellular molecular signaling cascades through a process termed, mechanotransduction. In the central nervous system (CNS), mechanically gated ion channels are important regulators of neurodevelopmental processes such as axon guidance, neural stem cell differentiation, and myelination of axons by oligodendrocytes. Here, we present evidence that pharmacologically mediated overactivation of Piezo1 channels negatively regulates CNS myelination. Moreover, we found that the peptide GsMTx4, an antagonist of mechanosensitive cation channels such as Piezo1, is neuroprotective and prevents chemically induced demyelination. In contrast, the positive modulator of Piezo1 channel opening, Yoda-1, induces demyelination and neuronal damage. Using an ex vivo murine-derived organotypic cerebellar slice culture model, we demonstrate that GsMTx4 attenuates demyelination induced by the cytotoxic lipid, psychosine. Importantly, we confirmed the potential therapeutic effects of GsMTx4 peptide in vivo by co-administering it with lysophosphatidylcholine (LPC), via stereotactic injection, into the cerebral cortex of adult mice. GsMTx4 prevented both demyelination and neuronal damage usually caused by the intracortical injection of LPC in vivo; a well-characterized model of focal demyelination. GsMTx4 also attenuated both LPC-induced astrocyte toxicity and microglial reactivity within the lesion core. Overall, our data suggest that pharmacological activation of Piezo1 channels induces demyelination and that inhibition of mechanosensitive channels, using GsMTx4, may alleviate the secondary progressive neurodegeneration often present in the latter stages of demyelinating diseases.
Collapse
Affiliation(s)
- María Velasco-Estevez
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Kamal K E Gadalla
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Núria Liñan-Barba
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Stuart Cobb
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Graham K Sheridan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK.,School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Electrical resonance with voltage-gated ion channels: perspectives from biophysical mechanisms and neural electrophysiology. Acta Pharmacol Sin 2016; 37:67-74. [PMID: 26725736 DOI: 10.1038/aps.2015.140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022] Open
Abstract
Electrical resonance, providing selective signal amplification at preferred frequencies, is a unique phenomenon of excitable membranes, which has been observed in the nervous system at the cellular, circuit and system levels. The mechanisms underlying electrical resonance have not been fully elucidated. Prevailing hypotheses attribute the resonance to voltage-gated ion channels on the membrane of single neurons. In this review, we follow this line of thinking to summarize and analyze the biophysical/molecular mechanisms, and also the physiological relevance of channel-mediated electrical resonance.
Collapse
|
5
|
Larson VA, Zhang Y, Bergles DE. Electrophysiological properties of NG2(+) cells: Matching physiological studies with gene expression profiles. Brain Res 2015; 1638:138-160. [PMID: 26385417 DOI: 10.1016/j.brainres.2015.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/11/2023]
Abstract
NG2(+) glial cells are a dynamic population of non-neuronal cells that give rise to myelinating oligodendrocytes in the central nervous system. These cells express numerous ion channels and neurotransmitter receptors, which endow them with a complex electrophysiological profile that is unique among glial cells. Despite extensive analysis of the electrophysiological properties of these cells, relatively little was known about the molecular identity of the channels and receptors that they express. The generation of new RNA-Seq datasets for NG2(+) cells has provided the means to explore how distinct genes contribute to the physiological properties of these progenitors. In this review, we systematically compare the results obtained through RNA-Seq transcriptional analysis of purified NG2(+) cells to previous physiological and molecular studies of these cells to define the complement of ion channels and neurotransmitter receptors expressed by NG2(+) cells in the mammalian brain and discuss the potential significance of the unique physiological properties of these cells. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Valerie A Larson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Rela L, Piantanida AP, Bordey A, Greer CA. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells. Glia 2015; 63:1646-59. [PMID: 25856239 DOI: 10.1002/glia.22834] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/24/2015] [Indexed: 02/03/2023]
Abstract
The olfactory nerve is permissive for axon growth throughout life. This has been attributed in part to the olfactory ensheathing glial cells that encompass the olfactory sensory neuron fascicles. Olfactory ensheathing cells (OECs) also promote axon growth in vitro and when transplanted in vivo to sites of injury. The mechanisms involved remain largely unidentified owing in part to the limited knowledge of the physiological properties of ensheathing cells. Glial cells rely for many functions on the properties of the potassium channels expressed; however, those expressed in ensheathing cells are unknown. Here we show that OECs express voltage-dependent potassium currents compatible with inward rectifier (Kir ) and delayed rectifier (KDR ) channels. Together with gap junction coupling, these contribute to the heterogeneity of membrane properties observed in OECs. The relevance of K(+) currents expressed by ensheathing cells is discussed in relation to plasticity of the olfactory nerve.
Collapse
Affiliation(s)
- Lorena Rela
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Systems Neuroscience Section, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Argentina.,Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay-CONICET), Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Systems Neuroscience Section, Department of Physiology and Biophysics, School of Medicine, University of Buenos Aires, Argentina.,Institute of Physiology and Biophysics Bernardo Houssay (IFIBIO Houssay-CONICET), Buenos Aires, Argentina
| | - Angelique Bordey
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Yale University School of Medicine, Departments of Cellular and Molecular Physiology, New Haven, Connecticut
| | - Charles A Greer
- Departments of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut.,Yale University School of Medicine, Departments of Neurobiology, New Haven, Connecticut
| |
Collapse
|
7
|
Caminos E, Vaquero CF, Martinez-Galan JR. Relationship between rat retinal degeneration and potassium channel KCNQ5 expression. Exp Eye Res 2014; 131:1-11. [PMID: 25499209 DOI: 10.1016/j.exer.2014.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022]
Abstract
KCNQ5/Kv7.5 is a low-threshold non-inactivating voltage-gated potassium channel preferentially targeted to excitatory endings in brain neurons. The M-type current is mediated by KCNQ5 channel subunits in monkey retinal pigment epithelium cells and in brain neurons. This study was undertaken to analyze KCNQ5 expression and the interaction signals of KCNQ5 with other proteins in normal rat retina and during photoreceptor degeneration. The KCNQ5 expression pattern was studied by immunocytochemistry and Western blot in normal rat retinas (Sprague-Dawley, SD) and P23H-1 rats as a retinitis pigmentosa model. The physical interactions of KCNQ5 with calmodulin (CaM), vesicular glutamate transporter 1 (VGluT1) and glial fibrillary acidic protein (GFAP) were analyzed by in situ proximity ligation assays and were supported by calcium recording. KCNQ5 expression was found in the plexiform layers, ganglion cell layer and basal membrane of the retinal pigment epithelium. The physical interactions among KCNQ5 and CaM, VGluT1 and GFAP changed with age and during retinal degeneration. The maximal level of KCNQ5/CaM interaction was found when photoreceptors had almost completely disappeared; the KCNQ5/VGluT1 interaction signal decreased and the KCNQ5/GFAP interaction increased in the inner retina, while degeneration progressed. The basal calcium levels in the astrocytes and neurons of P23H-1 were higher than in the control SD retinas. This study demonstrates that KCNQ5 is present in the rat retina where its activity may be moderated by CaM. Retinal degeneration progression in P23H-1 rats can be followed by an interaction between KCNQ5 with CaM in an in situ system. The relationship between KCNQ5 and VGluT1 or GFAP needs to be more cautiously interpreted.
Collapse
Affiliation(s)
- Elena Caminos
- School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.
| | - Cecilia F Vaquero
- School of Medicine and Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Juan R Martinez-Galan
- School of Medicine and Institute for Research in Neurological Disabilities (IDINE), University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
8
|
Li Y, Guan Q, Chen Y, Han H, Liu W, Nie Z. Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells. Neural Regen Res 2014; 8:6-12. [PMID: 25206366 PMCID: PMC4107500 DOI: 10.3969/j.issn.1673-5374.2013.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/17/2012] [Indexed: 12/11/2022] Open
Abstract
Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe3+ in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Qiang Guan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuhui Chen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hongjie Han
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wuchao Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhiyu Nie
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
9
|
Kegler K, Imbschweiler I, Ulrich R, Kovermann P, Fahlke C, Deschl U, Kalkuhl A, Baumgärnter W, Wewetzer K. CNS Schwann cells display oligodendrocyte precursor-like potassium channel activation and antigenic expression in vitro. J Neural Transm (Vienna) 2014; 121:569-81. [PMID: 24487976 DOI: 10.1007/s00702-014-1163-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/18/2014] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Collapse
Affiliation(s)
- Kristel Kegler
- Department of Pathology, University of Veterinary Medicine, Bünteweg 17, 30559, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dai X, Liu Y, Wang C, Luo Y, Li X, Shen Z. Effects of estrogen on neuronal KCNQ2/3 channels expressed in PC-12 cells. Biol Pharm Bull 2013; 36:1583-6. [PMID: 23856638 DOI: 10.1248/bpb.b13-00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that 17β-estradiol (E2) improves long term potentiation (LTP) in hippocampal neurons after global ischemia in rat. In the present study, we investigated if E2 can directly modulate the activity of neuronal KCNQ2/3 channels, the molecular entity of neuronal M-current in hippocampus, expressed in the PC-12 cells. We found that exogenous E2 inhibits the KCNQ2/3 channels in a dose-dependent fashion. The minimal inhibitory concentration of E2 is 10 µM. At testing membrane potential of +90 mV, the whole cell current density was reduced to 56.5, 49.3 and 31.9% of the control by 50, 20 and 10 µM of E2, respectively. The voltage-dependency of the KCNQ2/3 currents was also affected. E2 at 10, 20 and 50 µM shifted the half maximal activation voltage (V₁/₂) from 13.8 ± 2.3 mV (n=12) to 20.6 ± 1.9 mV (n=8, p<0.05), 26.0 ± 1.9 mV (n=8, p<0.001) and 27.6 ± 3.5 mV (n=8, p<0.001), respectively. Our data indicate that exogenous E2 can directly affect the activity of KCNQ2/3 channels at pharmacological levels via a non-genomic pathway.
Collapse
Affiliation(s)
- Xiaoniu Dai
- Department of Physiology, Medical School of Southeast University
| | | | | | | | | | | |
Collapse
|
11
|
Hosseinzadeh Z, Sopjani M, Pakladok T, Bhavsar SK, Lang F. Downregulation of KCNQ4 by Janus kinase 2. J Membr Biol 2013; 246:335-41. [PMID: 23543186 DOI: 10.1007/s00232-013-9537-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/16/2013] [Indexed: 12/19/2022]
Abstract
Janus kinase-2 (JAK2) participates in the signaling of several hormones, growth factors and cytokines. Further stimulators of JAK2 include osmotic cell shrinkage, and the kinase activates the cell volume regulatory Na(+)/H(+) exchanger. The kinase may thus participate in cell volume regulation. Cell shrinkage is known to inhibit K(+) channels. Volume-regulatory K(+) channels include the voltage-gated K(+) channel KCNQ4. The present study explored the effect of JAK2 on KCNQ4 channel activity. KCNQ4 was expressed in Xenopus oocytes with or without wild-type JAK2, constitutively active (V617F)JAK2 or inactive (K882E)JAK2; and cell membrane conductance was determined by dual-electrode voltage clamp. Expression of KCNQ4 was followed by the appearance of voltage-gated K(+) conductance. Coexpression of JAK2 or of (V617F)JAK2, but not of (K882E)JAK2, resulted in a significant decrease in conductance. Treatment of KCNQ4 and JAK2 coexpressing oocytes with the JAK2 inhibitor AG490 (40 μM) was followed by an increase in conductance. Treatment of KCNQ4 expressing oocytes with brefeldin A (5 μM) was followed by a decrease in conductance, which was similar in oocytes expressing KCNQ4 together with JAK2 as in oocytes expressing KCNQ4 alone. Thus, JAK2 apparently does not accelerate channel protein retrieval from the cell membrane. In conclusion, JAK2 downregulates KCNQ4 activity and thus counteracts K(+) exit, an effect which may contribute to cell volume regulation.
Collapse
|
12
|
Xiao L, Guo D, Hu C, Shen W, Shan L, Li C, Liu X, Yang W, Zhang W, He C. Diosgenin promotes oligodendrocyte progenitor cell differentiation through estrogen receptor-mediated ERK1/2 activation to accelerate remyelination. Glia 2012; 60:1037-52. [PMID: 22461009 DOI: 10.1002/glia.22333] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 01/12/2023]
Abstract
Differentiation of oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes is a prerequisite for remyelination after demyelination, and impairment of this process is suggested to be a major reason for remyelination failure. Diosgenin, a plant-derived steroid, has been implicated for therapeutic use in many diseases, but little is known about its effect on the central nervous system. In this study, using a purified rat OPC culture model, we show that diosgenin significantly and specifically promotes OPC differentiation without affecting the viability, proliferation, or migration of OPC. Interestingly, the effect of diosgenin can be blocked by estrogen receptor (ER) antagonist ICI 182780 but not by glucocorticoid and progesterone receptor antagonist RU38486, nor by mineralocorticoid receptor antagonist spirolactone. Moreover, it is revealed that both ER-alpha and ER-beta are expressed in OPC, and diosgenin can activate the extracellular signal-regulated kinase 1/2 (ERK1/2) in OPC via ER. The pro-differentiation effect of diosgenin can also be obstructed by the ERK inhibitor PD98059. Furthermore, in the cuprizone-induced demyelination model, it is demonstrated that diosgenin administration significantly accelerates/enhances remyelination as detected by Luxol fast blue stain, MBP immunohistochemistry and real time RT-PCR. Diosgenin also increases the number of mature oligodendrocytes in the corpus callosum while it does not affect the number of OPCs. Taking together, our results suggest that diosgenin promotes the differentiation of OPC into mature oligodendrocyte through an ER-mediated ERK1/2 activation pathway to accelerate remyelination, which implicates a novel therapeutic usage of this steroidal natural product in demyelinating diseases such as multiple sclerosis (MS).
Collapse
Affiliation(s)
- Lin Xiao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of Ministry of Education, Neuroscience Center of Changzheng Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|