1
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
2
|
Camaya I, Donnelly S, O'Brien B. Targeting the PI3K/Akt signaling pathway in pancreatic β-cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. J Diabetes 2022; 14:247-260. [PMID: 35191175 PMCID: PMC9060113 DOI: 10.1111/1753-0407.13252] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of the insulin-producing β-cells within the pancreas. Islet transplantation represents one cure; however, during islet preparation and post transplantation significant amounts of β-cell death occur. Therefore, prevention and cure of T1D is dependent upon the preservation of β-cell function and the prevention of β-cell death. Phosphoinositide 3-kinase (PI3K)/Akt signaling represents a promising therapeutic target for T1D due to its pronounced effects on cellular survival, proliferation, and metabolism. A growing amount of evidence indicates that PI3K/Akt signaling is a critical determinant of β-cell mass and function. Modulation of the PI3K/Akt pathway, directly (via the use of highly specific protein and peptide-based biologics, excretory/secretory products of parasitic worms, and complex constituents of plant extracts) or indirectly (through microRNA interactions) can regulate the β-cell processes to ultimately determine the fate of β-cell mass. An important consideration is the identification of the specific PI3K/Akt pathway modulators that enhance β-cell function and prevent β-cell death without inducing excessive β-cell proliferation, which may carry carcinogenic side effects. Among potential PI3K/Akt pathway agonists, we have identified a novel parasite-derived protein, termed FhHDM-1 (Fasciola hepatica helminth defense molecule 1), which efficiently stimulates the PI3K/Akt pathway in β-cells to enhance function and prevent death without concomitantly inducing proliferation unlike several other identified stimulators of PI3K/Akt signaling . As such, FhHDM-1 will inform the design of biologics aimed at targeting the PI3K/Akt pathway to prevent/ameliorate not only T1D but also T2D, which is now widely recognized as an inflammatory disease characterized by β-cell dysfunction and death. This review will explore the modulation of the PI3K/Akt signaling pathway as a novel strategy to enhance β-cell function and survival.
Collapse
Affiliation(s)
- Inah Camaya
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| | - Bronwyn O'Brien
- School of Life Sciences, Faculty of ScienceThe University of Technology SydneyUltimoNew South WalesAustralia
| |
Collapse
|
3
|
Yan J, Xie Y, Si J, Gan L, Li H, Sun C, Di C, Zhang J, Huang G, Zhang X, Zhang H. Crosstalk of the Caspase Family and Mammalian Target of Rapamycin Signaling. Int J Mol Sci 2021; 22:E817. [PMID: 33467535 PMCID: PMC7830632 DOI: 10.3390/ijms22020817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.
Collapse
Affiliation(s)
- Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hongyan Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuetian Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
4
|
Zheng A, Dubuis G, Ferreira CSM, Pétremand J, Vanli G, Widmann C. The PI3K/Akt pathway is not a main driver in HDL-mediated cell protection. Cell Signal 2019; 62:109347. [PMID: 31229616 DOI: 10.1016/j.cellsig.2019.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022]
Abstract
High-density lipoproteins (HDLs) can protect cells against a variety of death-inducing stresses. This is often accompanied by activation of the anti-apoptotic Akt kinase but whether this activation mediates the protective functions of HDLs is still unclear. In this study, we evaluated the roles of PI3K/Akt signaling in endoplasmic reticulum (ER) stress- and starvation-induced cell death using pharmacological and genetic approaches to gain a better understanding of the relationship between Akt- and HDL-mediated protection. Three cell models were used for this purpose, a primary endothelial cell line, an insulinoma cell line and a colon adenocarcinoma cell line. Our results show that HDLs indeed elicited mild Akt activation in all the tested cellular models. PI3K is one of the main upstream proteins involved in Akt stimulation. In the three cellular models, LY294002, a PI3K inhibitor, only slightly blunted HDLs protection, indicating that HDLs induce PI3K-independent cell protection. Furthermore, genetic ablation or silencing of Akt did not abolish the protective effects of HDLs. This study demonstrates that the PI3K-Akt signaling pathway is not the main mediator of the cell protective functions of HDLs. Further investigation is therefore needed to identify the intrinsic mechanism of HDL-mediated cell protection.
Collapse
Affiliation(s)
- Adi Zheng
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Jannick Pétremand
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Güliz Vanli
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
5
|
Mellado-Gil JM, Jiménez-Moreno CM, Martin-Montalvo A, Alvarez-Mercado AI, Fuente-Martin E, Cobo-Vuilleumier N, Lorenzo PI, Bru-Tari E, Herrera-Gómez IDG, López-Noriega L, Pérez-Florido J, Santoyo-López J, Spyrantis A, Meda P, Boehm BO, Quesada I, Gauthier BR. PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus. Diabetologia 2016; 59:755-65. [PMID: 26813254 PMCID: PMC4779135 DOI: 10.1007/s00125-016-3864-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.
Collapse
Affiliation(s)
- José Manuel Mellado-Gil
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Carmen María Jiménez-Moreno
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Alejandro Martin-Montalvo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Ana Isabel Alvarez-Mercado
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Esther Fuente-Martin
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Petra Isabel Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Eva Bru-Tari
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Irene de Gracia Herrera-Gómez
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Livia López-Noriega
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain
| | - Javier Pérez-Florido
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
| | - Javier Santoyo-López
- Medical Genome Project, Genomics & Bioinformatics Platform of Andalusia, Seville, Spain
- Edinburgh Genomics, University of Edinburgh, Edinburgh, UK
| | - Andreas Spyrantis
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Bernhard O Boehm
- Department of Internal Medicine, Ulm University Medical Centre, Ulm, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Imperial College, London, UK
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Instituto de Bioingeniería, Universidad Miguel Hernandez, Elche, Spain
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda Américo Vespucio, Parque Científico y Tecnológico Cartuja 93, 41092, Seville, Spain.
| |
Collapse
|
6
|
Cailliau K, Lescuyer A, Burnol AF, Cuesta-Marbán Á, Widmann C, Browaeys-Poly E. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3. J Biol Chem 2015; 290:19653-65. [PMID: 26109071 DOI: 10.1074/jbc.m115.644633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling.
Collapse
Affiliation(s)
- Katia Cailliau
- From the Université de Lille 1, Sciences et Technologies, Team Signal Division Regulation, CNRS UMR 8576, SN3, 59655 Villeneuve d'Ascq Cedex, France,
| | - Arlette Lescuyer
- From the Université de Lille 1, Sciences et Technologies, Team Signal Division Regulation, CNRS UMR 8576, SN3, 59655 Villeneuve d'Ascq Cedex, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, Paris, France, CNRS UMR8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France, the Université Paris Descartes, Sorbonne Paris Cité, 24 Rue du Faubourg Saint Jacques, 75014 Paris, France, and
| | - Álvaro Cuesta-Marbán
- the Department of Physiology, Université de Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Christian Widmann
- the Department of Physiology, Université de Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland
| | - Edith Browaeys-Poly
- From the Université de Lille 1, Sciences et Technologies, Team Signal Division Regulation, CNRS UMR 8576, SN3, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
7
|
Khalil H, Loukili N, Regamey A, Cuesta-Marban A, Santori E, Huber M, Widmann C. The caspase-3/p120 RasGAP module generates a NF-κB repressor in response to cellular stress. J Cell Sci 2015. [DOI: 10.1242/jcs.174409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The NF-κB transcription factor is a master regulator of inflammation. Short-term NF-κB activation is generally beneficial. However, sustained NF-κB may be detrimental, directly causing apoptosis of cells or leading to a persistent damaging inflammatory response. NF-κB activity in stressed cells needs therefore to be controlled for homeostasis maintenance. Here we show that fragment N that is produced by the caspase-3/p120 RasGAP sensor in mildly stressed cells is a potent NF-κB inhibitor. Fragment N decreases the transcriptional activity of NF-κB by promoting its export from the nucleus. Cells unable to generate fragment N displayed increased NF-κB activation upon stress. Knock-in mice expressing the uncleavable RasGAP mutant showed exaggerated NF-κB activation when their epidermis was treated with anthralin, a drug used for the treatment of psoriasis. Our study provides biochemical and genetic evidence of the importance of the caspase-3/p120 RasGAP stress-sensing module in the control of stress-induced NF-κB activation.
Collapse
Affiliation(s)
- Hadi Khalil
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Noureddine Loukili
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Alexandre Regamey
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alvaro Cuesta-Marban
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Elettra Santori
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| | - Marcel Huber
- Department of Dermatology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, Switzerland
| |
Collapse
|
8
|
|
9
|
Puyal J, Pétremand J, Dubuis G, Rummel C, Widmann C. HDLs protect the MIN6 insulinoma cell line against tunicamycin-induced apoptosis without inhibiting ER stress and without restoring ER functionality. Mol Cell Endocrinol 2013; 381:291-301. [PMID: 23994023 DOI: 10.1016/j.mce.2013.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
HDLs protect pancreatic beta cells against apoptosis induced by several endoplasmic reticulum (ER) stressors, including thapsigargin, cyclopiazonic acid, palmitate and insulin over-expression. This protection is mediated by the capacity of HDLs to maintain proper ER morphology and ER functions such as protein folding and trafficking. Here, we identified a distinct mode of protection exerted by HDLs in beta cells challenged with tunicamycin (TM), a protein glycosylation inhibitor inducing ER stress. HDLs were found to inhibit apoptosis induced by TM in the MIN6 insulinoma cell line and this correlated with the maintenance of a normal ER morphology. Surprisingly however, this protective response was neither associated with a significant ER stress reduction, nor with restoration of protein folding and trafficking in the ER. These data indicate that HDLs can use at least two mechanisms to protect beta cells against ER stressors. One that relies on the maintenance of ER function and one that operates independently of ER function modulation. The capacity of HDLs to activate several anti-apoptotic pathways in beta cells may explain their ability to efficiently protect these cells against a variety of insults.
Collapse
Affiliation(s)
- Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends Cell Biol 2013; 24:83-9. [PMID: 24007977 DOI: 10.1016/j.tcb.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Collapse
|
11
|
Peltzer N, Vanli G, Yang JY, Widmann C. Role of mTOR, Bad, and Survivin in RasGAP Fragment N-Mediated Cell Protection. PLoS One 2013; 8:e68123. [PMID: 23826368 PMCID: PMC3694949 DOI: 10.1371/journal.pone.0068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 05/30/2013] [Indexed: 01/04/2023] Open
Abstract
Partial cleavage of p120 RasGAP by caspase-3 in stressed cells generates an N-terminal fragment, called fragment N, which activates an anti-apoptotic Akt-dependent survival response. Akt regulates several effectors but which of these mediate fragment N-dependent cell protection has not been defined yet. Here we have investigated the role of mTORC1, Bad, and survivin in the capacity of fragment N to protect cells from apoptosis. Neither rapamycin, an inhibitor of mTORC1, nor silencing of raptor, a subunit of the mTORC1 complex, altered the ability of fragment N from inhibiting cisplatin- and Fas ligand-induced death. Cells lacking Bad, despite displaying a stronger resistance to apoptosis, were still protected by fragment N against cisplatin-induced death. Fragment N was also able to protect cells from Fas ligand-induced death in conditions where Bad plays no role in apoptosis regulation. Fragment N expression in cells did neither modulate survivin mRNA nor its protein expression. Moreover, the expression of cytoplasmic survivin, known to exert anti-apoptotic actions in cells, still occurred in UV-B-irradiated epidermis of mouse expressing a caspase-3-resistant RasGAP mutant that cannot produce fragment N. Additionally, survivin function in cell cycle progression was not affected by fragment N. These results indicate that, taken individually, mTOR, Bad, or Survivin are not required for fragment N to protect cells from cell death. We conclude that downstream targets of Akt other than mTORC1, Bad, or survivin mediate fragment N-induced protection or that several Akt effectors can compensate for each other to induce the pro-survival fragment N-dependent response.
Collapse
Affiliation(s)
- Nieves Peltzer
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Güliz Vanli
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Jiang-Yan Yang
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Abstract
The ability to generate appropriate defense responses is crucial for the survival of an organism exposed to pathogenesis-inducing insults. However, the mechanisms that allow tissues and organs to cope with such stresses are poorly understood. Here we show that caspase-3-knockout mice or caspase inhibitor-treated mice were defective in activating the antiapoptotic Akt kinase in response to various chemical and environmental stresses causing sunburns, cardiomyopathy, or colitis. Defective Akt activation in caspase-3-knockout mice was accompanied by increased cell death and impaired survival in some cases. Mice homozygous for a mutation in RasGAP that prevents its cleavage by caspase-3 exhibited a similar defect in Akt activation, leading to increased apoptosis in stressed organs, marked deterioration of their physiological functions, and stronger disease development. Our results provide evidence for the relevance of caspase-3 as a stress intensity sensor that controls cell fate by either initiating a RasGAP cleavage-dependent cell resistance program or a cell suicide response.
Collapse
|
13
|
Khalil H, Rosenblatt N, Liaudet L, Widmann C. The role of endogenous and exogenous RasGAP-derived fragment N in protecting cardiomyocytes from peroxynitrite-induced apoptosis. Free Radic Biol Med 2012; 53:926-35. [PMID: 22721922 DOI: 10.1016/j.freeradbiomed.2012.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 11/15/2022]
Abstract
Peroxynitrite (PN) is a potent nitrating and oxidizing agent generated during various pathological situations affecting the heart. The negative effects of PN result, at least in part, from its ability to activate caspases and apoptosis. RasGAP is a ubiquitously expressed protein that is cleaved sequentially by caspase-3. At low caspase-3 activity, RasGAP is cleaved into an N-terminal fragment, called fragment N, that protects cells by activating the Ras/PI3K/Akt pathway. At high caspase-3 activity, fragment N is further cleaved and this abrogates its capacity to stimulate the antiapoptotic Akt kinase. Fragment N formation is crucial for the survival of cells exposed to a variety of stresses. Here we investigate the pattern of RasGAP cleavage upon PN stimulation and the capacity of fragment N to protect cardiomyocytes. PN did not lead to sequential cleavage of RasGAP. Indeed, PN did not allow accumulation of fragment N because it induced its rapid cleavage into smaller fragments. No situations were found in cells treated with PN in which the presence of fragment N was associated with survival. However, expression of a caspase-resistant form of fragment N in cardiomyocytes protected them from PN-induced apoptosis. Our results indicate that the antiapoptotic pathway activated by fragment N is effective at inhibiting PN-induced apoptosis (as seen when cardiomyocytes express a capase-3-resistant form of fragment N) but because fragment N is too transiently generated in response to PN, no survival response is effectively produced. This may explain the marked deleterious consequences of PN generation in various organs, including the heart.
Collapse
Affiliation(s)
- Hadi Khalil
- Department of Physiology, Biology and Medicine Faculty, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
14
|
Pétremand J, Puyal J, Chatton JY, Duprez J, Allagnat F, Frias M, James RW, Waeber G, Jonas JC, Widmann C. HDLs protect pancreatic β-cells against ER stress by restoring protein folding and trafficking. Diabetes 2012; 61:1100-11. [PMID: 22399686 PMCID: PMC3331764 DOI: 10.2337/db11-1221] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated by these stimuli were inhibited by HDLs. Using a temperature-sensitive viral glycoprotein folding mutant, we show that HDLs correct impaired protein trafficking and folding induced by thapsigargin and palmitate. The ability of HDLs to protect β-cells against ER stress was inhibited by brefeldin A, an ER to Golgi trafficking blocker. These results indicate that HDLs restore ER homeostasis in response to ER stress, which is required for their ability to promote β-cell survival. This study identifies a cellular mechanism mediating the beneficial effect of HDLs on β-cells against ER stress-inducing factors.
Collapse
Affiliation(s)
- Jannick Pétremand
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | - Jessica Duprez
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Florent Allagnat
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Miguel Frias
- Lipoprotein Laboratory, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard W. James
- Lipoprotein Laboratory, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gérard Waeber
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium
| | - Christian Widmann
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
- Corresponding author: Christian Widmann,
| |
Collapse
|