1
|
Xu N, Fan L, Li L, Guo Y. Exploring the pathogenicity of Mycoplasma pneumoniae: Focus on community-acquired respiratory distress syndrome toxins. Microb Pathog 2024; 195:106865. [PMID: 39153578 DOI: 10.1016/j.micpath.2024.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX) is a unique exotoxin produced by Mycoplasma pneumoniae (MP) and has been confirmed to possess ADP-ribosyltransferase (ART) and vacuolating activities. CARDS TX binds to receptors on the surfaces of mammalian cells followed by entry into the cells through clathrin-mediated endocytosis, and exerts cytotoxic effects by undergoing retrograde transport and finally cleavage on endosomes and cellular organelles. In addition, CARDS TX can trigger severe inflammatory reactions resulting in airway dysfunction, producing allergic inflammation and asthma-like conditions. As a newly discovered virulence factor of MP, CARDS TX has been extensively studied in recent years. As resistance to macrolide drugs has increased significantly in recent years and there is no vaccine against MP, the development of a vaccine targeting CARDS TX is considered a potential preventive measure. This review focuses on recent studies and insights into this toxin, providing directions for a better understanding of MP pathogenesis and treatment. IMPORTANCE: A serious hazard to worldwide public health in recent years, Mycoplasma pneumoniae (MP) is a prominent bacterium that causes community-acquired pneumonia (CAP) in hospitalized children. Due to their high prevalence and fatality rates, MP infections often cause both respiratory illnesses and extensive extrapulmonary symptoms. It has recently been shown that MP produces a distinct exotoxin known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). Mycoplasma pneumoniae pneumonia (MPP)-like tissue injury is caused by this toxin because it has both ADP-ribosyltransferase and vacuolating properties. A better knowledge of MP etiology and therapy is provided by this review, which focuses on latest research and insights into this toxin.
Collapse
Affiliation(s)
- Nuo Xu
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China
| | - Lu Fan
- Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China
| | - Ling Li
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China; Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China.
| | - Yun Guo
- Department of Respiratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, 214000, China; Department of Respiratory Medicine & Clinical Allergy Center, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, 214000, China.
| |
Collapse
|
2
|
Wang L, Yi J, Yin XY, Hou JX, Chen J, Xie B, Chen G, Wang QF, Wang LN, Wang XY, Sun J, Huo LM, Che TJ, Wei HL. Vacuolating Cytotoxin A Triggers Mitophagy in Helicobacter pylori-Infected Human Gastric Epithelium Cells. Front Oncol 2022; 12:881829. [PMID: 35912184 PMCID: PMC9329568 DOI: 10.3389/fonc.2022.881829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori (H. pylori)-derived vacuolating cytotoxin A (VacA) causes damage to various organelles, including mitochondria, and induces autophagy and cell death. However, it is unknown whether VacA-induced mitochondrial damage can develop into mitophagy. In this study, we found that H. pylori, H. pylori culture filtrate (HPCF), and VacA could activate autophagy in a gastric epithelial cell line (GES-1). VacA-caused mitochondrial depolarization retards the import of PINK1 into the damaged mitochondria and evokes mitophagy. And, among mass spectrometry (LC-MS/MS) identified 25 mitochondrial proteins bound with VacA, Tom20, Tom40, and Tom70, TOM complexes responsible for PINK1 import, were further identified as having the ability to bind VacA in vitro using pull-down assay, co-immunoprecipitation, and protein–protein docking. Additionally, we found that the cell membrane protein STOM and the mitochondrial inner membrane protein PGAM5 also interacted with VacA. These findings suggest that VacA captured by STOM forms endosomes to enter cells and target mitochondria. Then, VacA is transported into the mitochondrial membrane space through the TOM complexes, and PGAM5 aids in inserting VacA into the inner mitochondrial membrane to destroy the membrane potential, which promotes PINK1 accumulation and Parkin recruitment to induce mitophagy. This study helps us understand VacA entering mitochondria to induce the mitophagy process.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yang Yin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xia Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qun-Feng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Na Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei-Ming Huo
- Neurosurgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tuan-Jie Che
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| | - Hu-Lai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| |
Collapse
|
3
|
Su X, You X, Luo H, Liang K, Chen L, Tian W, Ye Z, He J. Community-Acquired Respiratory Distress Syndrome Toxin: Unique Exotoxin for M. pneumoniae. Front Microbiol 2021; 12:766591. [PMID: 34867898 PMCID: PMC8640204 DOI: 10.3389/fmicb.2021.766591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae infection often causes respiratory diseases in humans, particularly in children and adults with atypical pneumonia and community-acquired pneumonia (CAP), and is often exacerbated by co-infection with other lung diseases, such as asthma, bronchitis, and chronic obstructive pulmonary disorder. Community-acquired respiratory distress syndrome toxin (CARDS TX) is the only exotoxin produced by M. pneumoniae and has been extensively studied for its ADP-ribosyltransferase (ADPRT) activity and cellular vacuolization properties. Additionally, CARDS TX induces inflammatory responses, resulting in cell swelling, nuclear lysis, mucus proliferation, and cell vacuolization. CARDS TX enters host cells by binding to the host receptor and is then reverse transported to the endoplasmic reticulum to exert its pathogenic effects. In this review, we focus on the structural characteristics, functional activity, distribution and receptors, mechanism of cell entry, and inflammatory response of CARDS TX was examined. Overall, the findings of this review provide a theoretical basis for further investigation of the mechanism of M. pneumoniae infection and the development of clinical diagnosis and vaccines.
Collapse
Affiliation(s)
- Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Keying Liang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Chen
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Ramasamy K, Balasubramanian S, Kirkpatrick A, Szabo D, Pandranki L, Baseman JB, Kannan TR. Mycoplasma pneumoniae CARDS toxin exploits host cell endosomal acidic pH and vacuolar ATPase proton pump to execute its biological activities. Sci Rep 2021; 11:11571. [PMID: 34078958 PMCID: PMC8172646 DOI: 10.1038/s41598-021-90948-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalized children in the United States. It is also responsible for a spectrum of other respiratory tract disorders and extrapulmonary manifestations in children and adults. The main virulence factor of M. pneumoniae is a 591 amino acid multifunctional protein called Community Acquired Respiratory Distress Syndrome (CARDS) toxin. The amino terminal region of CARDS toxin (N-CARDS) retains ADP-ribosylating activity and the carboxy region (C-CARDS) contains the receptor binding and vacuolating activities. After internalization, CARDS toxin is transported in a retrograde manner from endosome through the Golgi complex into the endoplasmic reticulum. However, the mechanisms and criteria by which internalized CARDS toxin is transported and activated to execute its cytotoxic effects remain unknown. In this study, we used full-length CARDS toxin and its mutant and truncated derivatives to analyze how pharmacological drugs that alter pH of intracellular vesicles and electrical potential across vesicular membranes affect translocation of CARDS toxin in mammalian cells. Our results indicate that an acidic environment is essential for CARDS toxin retrograde transport to endoplasmic reticulum. Moreover, retrograde transport facilitates toxin clipping and is required to induce vacuole formation. Additionally, toxin-mediated cell vacuolation is strictly dependent on the function of vacuolar type-ATPase.
Collapse
Affiliation(s)
- Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alejandra Kirkpatrick
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Daniel Szabo
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - T R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021; 12:788-817. [PMID: 33704021 PMCID: PMC7954426 DOI: 10.1080/21505594.2021.1889813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycoplasmas, the smallest bacteria lacking a cell wall, can cause various diseases in both humans and animals. Mycoplasmas harbor a variety of virulence factors that enable them to overcome numerous barriers of entry into the host; using accessory proteins, mycoplasma adhesins can bind to the receptors or extracellular matrix of the host cell. Although the host immune system can eradicate the invading mycoplasma in most cases, a few sagacious mycoplasmas employ a series of invasion and immune escape strategies to ensure their continued survival within their hosts. For instance, capsular polysaccharides are crucial for anti-phagocytosis and immunomodulation. Invasive enzymes degrade reactive oxygen species, neutrophil extracellular traps, and immunoglobulins. Biofilm formation is important for establishing a persistent infection. During proliferation, successfully surviving mycoplasmas generate numerous metabolites, including hydrogen peroxide, ammonia and hydrogen sulfide; or secrete various exotoxins, such as community-acquired respiratory distress syndrome toxin, and hemolysins; and express various pathogenic enzymes, all of which have potent toxic effects on host cells. Furthermore, some inherent components of mycoplasmas, such as lipids, membrane lipoproteins, and even mycoplasma-generated superantigens, can exert a significant pathogenic impact on the host cells or the immune system. In this review, we describe the proposed virulence factors in the toolkit of notorious mycoplasmas to better understand the pathogenic features of these bacteria, along with their pathogenic mechanisms.
Collapse
Affiliation(s)
- Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Qin Lianmei
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - Zhu Cuiming
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, China
| |
Collapse
|
6
|
Tremblay O, Thow Z, Merrill AR. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Toxins (Basel) 2020; 12:E792. [PMID: 33322547 PMCID: PMC7764402 DOI: 10.3390/toxins12120792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mono-ADP-ribosyltransferase (mART) toxins are secreted by several pathogenic bacteria that disrupt vital host cell processes in deadly diseases like cholera and whooping cough. In the last two decades, the discovery of mART toxins has helped uncover the mechanisms of disease employed by pathogens impacting agriculture, aquaculture, and human health. Due to the current abundance of mARTs in bacterial genomes, and an unprecedented availability of genomic sequence data, mART toxins are amenable to discovery using an in silico strategy involving a series of sequence pattern filters and structural predictions. In this work, a bioinformatics approach was used to discover six bacterial mART sequences, one of which was a functional mART toxin encoded by the plant pathogen, Erwinia amylovora, called Vorin. Using a yeast growth-deficiency assay, we show that wild-type Vorin inhibited yeast cell growth, while catalytic variants reversed the growth-defective phenotype. Quantitative mass spectrometry analysis revealed that Vorin may cause eukaryotic host cell death by suppressing the initiation of autophagic processes. The genomic neighbourhood of Vorin indicated that it is a Type-VI-secreted effector, and co-expression experiments showed that Vorin is neutralized by binding of a cognate immunity protein, VorinI. We demonstrate that Vorin may also act as an antibacterial effector, since bacterial expression of Vorin was not achieved in the absence of VorinI. Vorin is the newest member of the mART family; further characterization of the Vorin/VorinI complex may help refine inhibitor design for mART toxins from other deadly pathogens.
Collapse
Affiliation(s)
| | | | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (O.T.); (Z.T.)
| |
Collapse
|
7
|
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an Immunoglobulin Binding Protein (IbpM) From Mycoplasma pneumoniae. Front Microbiol 2020; 11:685. [PMID: 32373096 PMCID: PMC7176901 DOI: 10.3389/fmicb.2020.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Bacteria evolved many ways to invade, colonize and survive in the host tissue. Such complex infection strategies of other bacteria are not present in the cell-wall less Mycoplasmas. Due to their strongly reduced genomes, these bacteria have only a minimal metabolism. Mycoplasma pneumoniae is a pathogenic bacterium using its virulence repertoire very efficiently, infecting the human lung. M. pneumoniae can cause a variety of conditions including fever, inflammation, atypical pneumoniae, and even death. Due to its strongly reduced metabolism, M. pneumoniae is dependent on nutrients from the host and aims to persist as long as possible, resulting in chronic diseases. Mycoplasmas evolved strategies to subvert the host immune system which involve proteins fending off immunoglobulins (Igs). In this study, we investigated the role of MPN400 as the putative factor responsible for Ig-binding and host immune evasion. MPN400 is a cell-surface localized protein which binds strongly to human IgG, IgA, and IgM. We therefore named the protein MPN400 immunoglobulin binding protein of Mycoplasma (IbpM). A strain devoid of IbpM is slightly compromised in cytotoxicity. Taken together, our study indicates that M. pneumoniae uses a refined mechanism for immune evasion.
Collapse
Affiliation(s)
- Cedric Blötz
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Neil Singh
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Roger Dumke
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Jörg Stülke
- Department of General Microbiology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Dong D, Huang X, Li L, Mao H, Mo Y, Zhang G, Zhang Z, Shen J, Liu W, Wu Z, Liu G, Liu Y, Yang H, Gong Q, Shi K, Chen L. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. LIGHT, SCIENCE & APPLICATIONS 2020; 9:11. [PMID: 32025294 PMCID: PMC6987131 DOI: 10.1038/s41377-020-0249-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 05/10/2023]
Abstract
The emergence of super-resolution (SR) fluorescence microscopy has rejuvenated the search for new cellular sub-structures. However, SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment. Thus, we developed SR fluorescence-assisted diffraction computational tomography (SR-FACT), which combines label-free three-dimensional optical diffraction tomography (ODT) with two-dimensional fluorescence Hessian structured illumination microscopy. The ODT module is capable of resolving the mitochondria, lipid droplets, the nuclear membrane, chromosomes, the tubular endoplasmic reticulum, and lysosomes. Using dual-mode correlated live-cell imaging for a prolonged period of time, we observed novel subcellular structures named dark-vacuole bodies, the majority of which originate from densely populated perinuclear regions, and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane. This work demonstrates the unique capabilities of SR-FACT, which suggests its wide applicability in cell biology in general.
Collapse
Affiliation(s)
- Dashan Dong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
| | - Xiaoshuai Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Heng Mao
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Yanquan Mo
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
| | - Guangyi Zhang
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Zhe Zhang
- School of Mathematical Sciences, Peking University, Beijing, 100871 China
| | - Jiayu Shen
- School of Software and Microelectronics, Peking University, Beijing, 100871 China
| | - Wei Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guanghui Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing, 100101 China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Kebin Shi
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871 China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871 China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871 China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871 China
| |
Collapse
|
9
|
Balasubramanian S, Pandranki L, Maupin S, Ramasamy K, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities. Cell Microbiol 2019; 21:e13032. [PMID: 30977272 DOI: 10.1111/cmi.13032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023]
Abstract
Mycoplasma pneumoniae is the leading cause of bacterial community-acquired pneumonia among hospitalised children in United States and worldwide. Community-acquired respiratory distress syndrome (CARDS) toxin is a key virulence determinant of M. pneumoniae. The N-terminus of CARDS toxin exhibits ADP-ribosyltransferase (ADPRT) activity, and the C-terminus possesses binding and vacuolating activities. Thiol-trapping experiments of wild-type (WT) and cysteine-to-serine-mutated CARDS toxins with alkylating agents identified disulfide bond formation at the amino terminal cysteine residues C230 and C247. Compared with WT and other mutant toxins, C247S was unstable and unusable for comparative studies. Although there were no significant variations in binding, entry, and retrograde trafficking patterns of WT and mutated toxins, C230S did not elicit vacuole formation in intoxicated cells. In addition, the ADPRT domain of C230S was more sensitive to all tested proteases when compared with WT toxin. Despite its in vitro ADPRT activity, the reduction of C230S CARDS toxin-mediated ADPRT activity-associated IL-1β production in U937 cells and the recovery of vacuolating activity in the protease-released carboxy region of C230S indicated that the disulfide bond was essential not only to maintain the conformational stability of CARDS toxin but also to properly execute its cytopathic effects.
Collapse
Affiliation(s)
- Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Suzanna Maupin
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peter John Hart
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX.,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Thirumalai R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
10
|
Emerging Antibiotic Resistance in Mycoplasma Microorganisms, Designing Effective and Novel Drugs / Therapeutic Targets: Current Knowledge and Futuristic Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Zhang C, Zhang A, Hou W, Li T, Wang K, Zhang Q, de la Fuente JM, Jin W, Cui D. Mimicking Pathogenic Invasion with the Complexes of Au 22(SG) 18-Engineered Assemblies and Folic Acid. ACS NANO 2018; 12:4408-4418. [PMID: 29723464 DOI: 10.1021/acsnano.8b00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological systems provide the richest spectrum of sophisticated design for materials engineering. We herein provide a paradigm of Au22(SG)18-engineered (SG, glutathione thiolate) and hydrogen bonds engaged assemblies for mimicking capsid protein self-assembly. The water-evaporation-induced self-assembly method allows discrete ultrasmall gold nanoclusters (GNCs) to be self-assembled into super-GNCs assemblies (SGNCs) ranging from nano-, meso- to microscale in water-dimethyl sulfoxide binary solvents in a template-free manner. After removing free and hydration layer water molecules, the formation of SGNCs is engaged by the collective cohesion of hydrogen bonds between glutathione ligands of gradually approaching GNCs. Then, a series of tightly orchestrated cellular events induced by the complexes of Au22(SG)18-engineered assemblies and folic acid are demonstrated to mimic the invasion of eukaryotic cells by pathogens. First, the activation of macropinocytosis mimics the macropinocytic entry used by the pathogens to invade host cells. Then the cytoplasmic vacuolization is a mimicry of vacuolating effects induced by the oligomeric vacuolating toxins secreted by some bacteria. Lastly, the escaping from macropinosomes into cytosol is in a vacuolating toxin's strategy. The findings demonstrate the capabilities of artificial pathogens to emulate the structures and functions of natural pathogens.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Wenxiu Hou
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Tianliang Li
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Instituto de Ciencia de Materiales de Aragón (ICMA-CSIC) , Universidad de Zaragoza & CIBER-BBN , 50009 Zaragoza , Spain
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- National Center for Translational Medicine, Collaborative Innovational Center for System Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
12
|
Amode R, Ingen-Housz-Oro S, Ortonne N, Bounfour T, Pereyre S, Schlemmer F, Bequignon E, Royer G, Wolkenstein P, Chosidow O. Clinical and histologic features of Mycoplasma pneumoniae-related erythema multiforme: A single-center series of 33 cases compared with 100 cases induced by other causes. J Am Acad Dermatol 2018; 79:110-117. [PMID: 29559400 DOI: 10.1016/j.jaad.2018.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycoplasma pneumoniae infection has been documented in erythema multiforme (EM) and Stevens-Johnson syndrome-toxic epidermal necrosis (SJS-TEN). Clinical aspects of M pneumoniae-related EM have been poorly described in the literature. OBJECTIVE To highlight differences between M pneumoniae EM and non-M pneumoniae EM. METHODS This single-center, retrospective cohort study included all patients admitted to our dermatology department for EM during 2000-2015. We compared epidemiologic, clinical, and histologic data and follow-up for M pneumoniae EM and non-M pneumoniae EM cases. RESULTS Thirty-three patients with M pneumoniae EM were compared with 100 patients with non-M pneumoniae EM. Disease onset in winter was more frequent with M pneumoniae EM (P = .003). Acrally distributed lesions (32% vs 88%, P < .0001) and typical targets (45% vs 74%, P = .01) were less common in M pneumoniae EM than non-M pneumoniae EM. Multiple (≥2) mucousal membrane involvement was more frequent in M pneumoniae EM than non-M pneumoniae EM (97% vs 60%; P < .0001), as were mucosal and respiratory tract sequelae (P < .05). The mean hospital stay was longer with M pneumoniae EM patients: 9.5 days versus 5.1 days (P = .0002). A TEN-like pattern was observed in all 14 (100%) M pneumoniae EM skin biopsies versus 10 of 27 (48%) non-M pneumoniae EM biopsies (P < .001). LIMITATIONS The retrospective design. CONCLUSION M pneumoniae EM has a distinctive presentation compared with non-M pneumoniae EM, with more diffuse and atypical targets, more mucositis and respiratory tract sequelae. Histologic data show a TEN-like pattern in all M pneumoniae EM skin samples.
Collapse
Affiliation(s)
- Reyhan Amode
- Dermatology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France
| | - Saskia Ingen-Housz-Oro
- Dermatology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France; Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Université Paris-Est Créteil (UPEC) Val de Marne, Créteil, France; Referral Center for Toxic Bullous Diseases, AP-HP, Henri Mondor Hospital, Créteil, France.
| | - Nicolas Ortonne
- Pathology Department, AP-HP, Henri Mondor Hospital, Créteil, France; UPEC, Créteil, France
| | - Touda Bounfour
- Dermatology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France
| | - Sabine Pereyre
- Université Bordeaux, National Institute for Agricultural Research, Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France; Bacteriology Department, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Frédéric Schlemmer
- Pneumology Department, AP-HP, Henri Mondor Hospital, Créteil and Département Hospitalo-Universitaire A-TVB (Ageing-Thorax-Vessel-Blood), UPEC, Créteil, France
| | - Emilie Bequignon
- Ear-Nose-Throat - Head and Neck Surgery Department, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Gérard Royer
- Ophthalmology Department, AP-HP, Henri Mondor Hospital, Créteil, France
| | - Pierre Wolkenstein
- Dermatology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France; Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Université Paris-Est Créteil (UPEC) Val de Marne, Créteil, France; Referral Center for Toxic Bullous Diseases, AP-HP, Henri Mondor Hospital, Créteil, France; UPEC, Créteil, France
| | - Olivier Chosidow
- Dermatology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Créteil, France; Epidémiologie en Dermatologie et Evaluation des Thérapeutiques, Université Paris-Est Créteil (UPEC) Val de Marne, Créteil, France; Referral Center for Toxic Bullous Diseases, AP-HP, Henri Mondor Hospital, Créteil, France; UPEC, Créteil, France
| |
Collapse
|
13
|
Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget 2018; 7:55863-55889. [PMID: 27331412 PMCID: PMC5342458 DOI: 10.18632/oncotarget.10150] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia.,Laboratory of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia.,Laboratory of Biologically Active Nanostructures, N.F. Gamaleya Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Lola M Rafieva
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Moscow, Russia
| |
Collapse
|
14
|
Ramasamy K, Balasubramanian S, Manickam K, Pandranki L, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Uses a Novel KELED Sequence for Retrograde Transport and Subsequent Cytotoxicity. mBio 2018; 9:e01663-17. [PMID: 29362229 PMCID: PMC5784248 DOI: 10.1128/mbio.01663-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae is an atypical bacterium that causes respiratory illnesses in humans, including pharyngitis, tracheobronchitis, and community-acquired pneumonia (CAP). It has also been directly linked to reactive airway disease, asthma, and extrapulmonary pathologies. During its colonization, M. pneumoniae expresses a unique ADP-ribosylating and vacuolating cytotoxin designated community-acquired respiratory distress syndrome (CARDS) toxin. CARDS toxin persists and localizes in the airway in CAP patients, asthmatics, and trauma patients with ventilator-associated pneumonia. Although CARDS toxin binds to specific cellular receptors, is internalized, and induces hyperinflammation, histopathology, mucus hyperplasia, and other airway injury, the intracellular trafficking of CARDS toxin remains unclear. Here, we show that CARDS toxin translocates through early and late endosomes and the Golgi complex and concentrates at the perinuclear region to reach the endoplasmic reticulum (ER). Using ER-targeted SNAP-tag, we confirmed the association of CARDS toxin with the ER and determined that CARDS toxin follows the retrograde pathway. In addition, we identified a novel CARDS toxin amino acid fingerprint, KELED, that is required for toxin transport to the ER and subsequent toxin-mediated cytotoxicity.IMPORTANCEMycoplasma pneumoniae, a leading cause of bacterial community-acquired pneumonia (CAP) among children and adults in the United States, synthesizes a 591-amino-acid ADP-ribosylating and vacuolating protein, designated community-acquired respiratory distress syndrome (CARDS) toxin. CARDS toxin alone is sufficient to induce and mimic major inflammatory and histopathological phenotypes associated with M. pneumoniae infection in rodents and primates. In order to elicit its ADP-ribosylating and vacuolating activities, CARDS toxin must bind to host cell receptors, be internalized via clathrin-mediated pathways, and subsequently be transported to specific intracellular organelles. Here, we demonstrate how CARDS toxin utilizes its unique KELED sequence to exploit the retrograde pathway machinery to reach the endoplasmic reticulum (ER) and fulfill its cytopathic potential. The knowledge generated from these studies may provide important clues to understand the mode of action of CARDS toxin and develop interventions that reduce or eliminate M. pneumoniae-associated airway and extrapulmonary pathologies.
Collapse
Affiliation(s)
- Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Krishnan Manickam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander B Taylor
- X-Ray Crystallography Core Laboratory, Institutional Research Cores and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - P John Hart
- X-Ray Crystallography Core Laboratory, Institutional Research Cores and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - T R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
15
|
Vacuolation Activity and Intracellular Trafficking of ArtB, the Binding Subunit of an AB5 Toxin Produced by Salmonella enterica Serovar Typhi. Infect Immun 2017; 85:IAI.00214-17. [PMID: 28533468 DOI: 10.1128/iai.00214-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Various Salmonella enterica serovars, including S. enterica serovar Typhi, encode an AB5 toxin (ArtAB), the A subunit of which is an ADP-ribosyltransferase related to the S1 subunit of pertussis toxin. However, although the A subunit is able to catalyze ADP-ribosylation of host G proteins, a cytotoxic phenotype has yet to be identified for the holotoxin. Here we show that its B subunit pentamer (ArtB) binds to receptors on the surface of Vero (African green monkey kidney) cell, CHO (Chinese hamster ovary) cell, U937 (human monocyte) cell, and HBMEC (human brain microvascular endothelial cell) lines. Moreover, ArtB induced marked vacuolation in all cell lines after 4 h of incubation. Further studies in Vero cells showed that vacuolation was inhibited by bafilomycin A1 and was dependent on the clathrin-mediated uptake of ArtB. Vacuolation was also inhibited by treatment of cells with neuraminidase, indicating that sialylated glycans are functional receptors for ArtB. Confocal colocalization studies indicated that after cell binding and internalization, ArtB undergoes retrograde transport via early endosomes, the trans-Golgi network, and the Golgi apparatus, reaching the endoplasmic reticulum (ER) after approximately 2 h. The onset of vacuolation also coincided with gross cytoskeletal reorganization. At later time points, ArtB colocalized with ER-Tracker Red in the vacuolar membrane, implying that vacuolation is a consequence of ER disorganization. Thus, the isolated B subunit of this cryptic AB5 toxin has significant effects on target cells with the potential to contribute directly to pathogenesis independently of the catalytic A subunit.
Collapse
|
16
|
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev 2017; 30:747-809. [PMID: 28539503 PMCID: PMC5475226 DOI: 10.1128/cmr.00114-16] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mycoplasma pneumoniae is an important cause of respiratory tract infections in children as well as adults that can range in severity from mild to life-threatening. Over the past several years there has been much new information published concerning infections caused by this organism. New molecular-based tests for M. pneumoniae detection are now commercially available in the United States, and advances in molecular typing systems have enhanced understanding of the epidemiology of infections. More strains have had their entire genome sequences published, providing additional insights into pathogenic mechanisms. Clinically significant acquired macrolide resistance has emerged worldwide and is now complicating treatment. In vitro susceptibility testing methods have been standardized, and several new drugs that may be effective against this organism are undergoing development. This review focuses on the many new developments that have occurred over the past several years that enhance our understanding of this microbe, which is among the smallest bacterial pathogens but one of great clinical importance.
Collapse
Affiliation(s)
- Ken B Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Xiao
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yang Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, and Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | | | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Medina JL, Brooks EG, Chaparro A, Dube PH. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice. PLoS One 2017; 12:e0172447. [PMID: 28199385 PMCID: PMC5310781 DOI: 10.1371/journal.pone.0172447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/04/2017] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma pneumoniae is strongly associated with new onset asthma and asthma exacerbations. Until recently, the molecular mechanisms utilized by M. pneumoniae to influence asthma symptoms were unknown. However, we recently reported that an ADP-ribosylating and vacuolating toxin called the Community Acquired Respiratory Distress Syndrome toxin, CARDS toxin, produced by M. pneumoniae was sufficient to promote allergic inflammation and asthma-like disease in mice. A mouse model of CARDS toxin exposure was used to evaluate total and CARDS-toxin specific serum IgE responses. Mast cell sensitization, challenge, and degranulation studies determined functionality of the CARDS toxin-specific IgE. In the current study, we report that a single mucosal exposure to CARDS toxin was sufficient to increase total serum IgE and CARDS toxin-specific IgE in mice. Mice given a second mucosal challenge of CARDS toxin responded with significant increases in total and CARDS toxin-specific IgE. CARDS toxin-specific IgE bound to an N-terminal peptide of CARDS toxin but not the C-terminal peptide. Likewise, full-length CARDS toxin and the N-terminal peptide induced mast cell degranulation. Altogether, these data demonstrate that exposure to CARDS toxin is sufficient to generate functional IgE in mice. M. pneumoniae and CARDS toxin are strongly associated with asthma exacerbations raising the possibility that the CARDS toxin-specific IgE-mast cell axis contributes to disease pathogenesis.
Collapse
Affiliation(s)
- Jorge L. Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Edward G. Brooks
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pediatrics, Division of Immunology and Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Adriana Chaparro
- Department of Pediatrics, Division of Immunology and Infectious Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Peter H. Dube
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
He J, Liu M, Ye Z, Tan T, Liu X, You X, Zeng Y, Wu Y. Insights into the pathogenesis of Mycoplasma pneumoniae (Review). Mol Med Rep 2016; 14:4030-4036. [PMID: 27667580 PMCID: PMC5101875 DOI: 10.3892/mmr.2016.5765] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Mycoplasma are the smallest prokaryotic microbes present in nature. These wall-less, malleable organisms can pass through cell filters, and grow and propagate under cell-free conditions in vitro. Of the pathogenic Mycoplasma Mycoplasma pneumoniae has been examined the most. In addition to primary atypical pneumonia and community-acquired pneumonia with predominantly respiratory symptoms, M. pneumoniae can also induce autoimmune hemolytic anemia and other diseases in the blood, cardiovascular system, gastrointestinal tract and skin, and can induce pericarditis, myocarditis, nephritis and meningitis. The pathogenesis of M. pneumoniae infection is complex and remains to be fully elucidated. The present review aimed to summarize several direct damage mechanisms, including adhesion damage, destruction of membrane fusion, nutrition depletion, invasive damage, toxic damage, inflammatory damage and immune damage. Further investigations are required for determining the detailed pathogenesis of M. pneumoniae.
Collapse
Affiliation(s)
- Jun He
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mihua Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhufeng Ye
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Tianping Tan
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xinghui Liu
- Department of Clinical Laboratory, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxing You
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhua Zeng
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yimou Wu
- Pathogenic Biology Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
19
|
Miyashita SI, Sagane Y, Suzuki T, Matsumoto T, Niwa K, Watanabe T. "Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity. Sci Rep 2016; 6:31043. [PMID: 27507612 PMCID: PMC4978960 DOI: 10.1038/srep31043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary “Non-Toxic” proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the “Non-Toxic” complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the “Non-Toxic” complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Yoshimasa Sagane
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Tomonori Suzuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | - Koichi Niwa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Toshihiro Watanabe
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| |
Collapse
|
20
|
Parrott GL, Kinjo T, Fujita J. A Compendium for Mycoplasma pneumoniae. Front Microbiol 2016; 7:513. [PMID: 27148202 PMCID: PMC4828434 DOI: 10.3389/fmicb.2016.00513] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/29/2016] [Indexed: 12/11/2022] Open
Abstract
Historically, atypical pneumonia was a term used to describe an unusual presentation of pneumonia. Currently, it is used to describe the multitude of symptoms juxtaposing the classic symptoms found in cases of pneumococcal pneumonia. Specifically, atypical pneumonia is a syndrome resulting from a relatively common group of pathogens including Chlamydophila sp., and Mycoplasma pneumoniae. The incidence of M. pneumoniae pneumonia in adults is less than the burden experienced by children. Transmission rates among families indicate children may act as a reservoir and maintain contagiousness over a long period of time ranging from months to years. In adults, M. pneumoniae typically produces a mild, “walking” pneumonia and is considered to be one of the causes of persistent cough in patients. M. pneumoniae has also been shown to trigger the exacerbation of other lung diseases. It has been repeatedly detected in patients with bronchitis, asthma, chronic obstructive pulmonary disorder, and cystic fibrosis. Recent advances in technology allow for the rapid diagnosis of M. pneumoniae through the use of polymerase chain reaction or rapid antigen tests. With this, more effort has been afforded to identify the causative etiologic agent in all cases of pneumonia. However, previous practices, including the overprescribing of macrolide treatment in China and Japan, have created increased incidence of macrolide-resistant M. pneumoniae. Reports from these countries indicate that >85% of M. pneumoniae pneumonia pediatric cases are macrolide-resistant. Despite its extensively studied past, the smallest bacterial species still inspires some of the largest questions. The developments in microbiology, diagnostic features and techniques, epidemiology, treatment and vaccines, and upper respiratory conditions associated with M. pneumoniae in adult populations are included within this review.
Collapse
Affiliation(s)
- Gretchen L Parrott
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Takeshi Kinjo
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| | - Jiro Fujita
- Department of Infectious Diseases, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus Nishihara, Japan
| |
Collapse
|
21
|
Balish MF, Distelhorst SL. Potential Molecular Targets for Narrow-Spectrum Agents to Combat Mycoplasma pneumoniae Infection and Disease. Front Microbiol 2016; 7:205. [PMID: 26941728 PMCID: PMC4766277 DOI: 10.3389/fmicb.2016.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
As Mycoplasma pneumoniae macrolide resistance grows and spreads worldwide, it is becoming more important to develop new drugs to prevent infection or limit disease. Because other mycoplasma species have acquired resistance to other classes of antibiotics, it is reasonable to presume that M. pneumoniae can do the same, so switching to commonly used antibiotics like fluoroquinolones will not result in forms of therapy with long-term utility. Moreover, broad-spectrum antibiotics can have serious consequences for the patient, as these drugs may have severe impacts on the natural microbiota of the individual, compromising the health of the patient either short-term or long-term. Therefore, developing narrow-spectrum antibiotics that effectively target only M. pneumoniae and no more than a small portion of the microbiota is likely to yield impactful, positive results that can be used perhaps indefinitely to combat M. pneumoniae. Development of these agents requires a deep understanding of the basic biology of M. pneumoniae, in many areas deeper than what is currently known. In this review, we discuss potential targets for new, narrow-spectrum agents and both the positive and negative aspects of selecting these targets, which include toxic molecules, metabolic pathways, and attachment and motility. By gathering this information together, we anticipate that it will be easier for researchers to evaluate topics of priority for study of M. pneumoniae.
Collapse
|
22
|
Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae. Proc Natl Acad Sci U S A 2015; 112:5165-70. [PMID: 25848012 DOI: 10.1073/pnas.1420308112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycoplasma pneumoniae (Mp) infections cause tracheobronchitis and "walking" pneumonia, and are linked to asthma and other reactive airway diseases. As part of the infectious process, the bacterium expresses a 591-aa virulence factor with both mono-ADP ribosyltransferase (mART) and vacuolating activities known as Community-Acquired Respiratory Distress Syndrome Toxin (CARDS TX). CARDS TX binds to human surfactant protein A and annexin A2 on airway epithelial cells and is internalized, leading to a range of pathogenetic events. Here we present the structure of CARDS TX, a triangular molecule in which N-terminal mART and C-terminal tandem β-trefoil domains associate to form an overall architecture distinct from other well-recognized ADP-ribosylating bacterial toxins. We demonstrate that CARDS TX binds phosphatidylcholine and sphingomyelin specifically over other membrane lipids, and that cell surface binding and internalization activities are housed within the C-terminal β-trefoil domain. The results enhance our understanding of Mp pathogenicity and suggest a novel avenue for the development of therapies to treat Mp-associated asthma and other acute and chronic airway diseases.
Collapse
|
23
|
Shubin AV, Demidyuk IV, Lunina NA, Komissarov AA, Roschina MP, Leonova OG, Kostrov SV. Protease 3C of hepatitis A virus induces vacuolization of lysosomal/endosomal organelles and caspase-independent cell death. BMC Cell Biol 2015; 16:4. [PMID: 25886889 PMCID: PMC4355371 DOI: 10.1186/s12860-015-0050-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND 3C proteases, the main proteases of picornaviruses, play the key role in viral life cycle by processing polyproteins. In addition, 3C proteases digest certain host cell proteins to suppress antiviral defense, transcription, and translation. The activity of 3C proteases per se induces host cell death, which makes them critical factors of viral cytotoxicity. To date, cytotoxic effects have been studied for several 3C proteases, all of which induce apoptosis. This study for the first time describes the cytotoxic effect of 3C protease of human hepatitis A virus (3Cpro), the only proteolytic enzyme of the virus. RESULTS Individual expression of 3Cpro induced catalytic activity-dependent cell death, which was not abrogated by the pan-caspase inhibitor (z-VAD-fmk) and was not accompanied by phosphatidylserine externalization in contrast to other picornaviral 3C proteases. The cell survival was also not affected by the inhibitors of cysteine proteases (z-FA-fmk) and RIP1 kinase (necrostatin-1), critical enzymes involved in non-apoptotic cell death. A substantial fraction of dying cells demonstrated numerous non-acidic cytoplasmic vacuoles with not previously described features and originating from several types of endosomal/lysosomal organelles. The lysosomal protein Lamp1 and GTPases Rab5, Rab7, Rab9, and Rab11 were associated with the vacuolar membranes. The vacuolization was completely blocked by the vacuolar ATPase inhibitor (bafilomycin A1) and did not depend on the activity of the principal factors of endosomal transport, GTPases Rab5 and Rab7, as well as on autophagy and macropinocytosis. CONCLUSIONS 3Cpro, apart from other picornaviral 3C proteases, induces caspase-independent cell death, accompanying by cytoplasmic vacuolization. 3Cpro-induced vacuoles have unique properties and are formed from several organelle types of the endosomal/lysosomal compartment. The data obtained demonstrate previously undocumented morphological characters of the 3Cpro-induced cell death, which can reflect unknown aspects of the human hepatitis A virus-host cell interaction.
Collapse
Affiliation(s)
- Andrey V Shubin
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Nataliya A Lunina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Alexey A Komissarov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Marina P Roschina
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119992, Russia.
| | - Sergey V Kostrov
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Science, Moscow, 123182, Russia.
- National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
24
|
Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. mBio 2014; 5:mBio.01497-14. [PMID: 25139904 PMCID: PMC4147866 DOI: 10.1128/mbio.01497-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. Host cell susceptibility to bacterial toxins is usually determined by the presence and abundance of appropriate receptors, which provides a molecular basis for toxin target cell specificities. To perform its ADP-ribosylating and vacuolating activities, community-acquired respiratory distress syndrome (CARDS) toxin must bind to host cell surfaces via receptor-mediated events in order to be internalized and trafficked effectively. Earlier, we reported the binding of CARDS toxin to surfactant protein A (SP-A), and here we show how CARDS toxin uses an alternative receptor to execute its pathogenic properties. CARDS toxin binds selectively to annexin A2 (AnxA2), which exists both on the cell surface and intracellularly. Since AnxA2 regulates membrane dynamics at early stages of endocytosis and trafficking, it serves as a distinct receptor for CARDS toxin binding and internalization and enhances CARDS toxin-induced vacuolization in mammalian cells.
Collapse
|
25
|
Mycoplasma pneumoniae CARDS toxin exacerbates ovalbumin-induced asthma-like inflammation in BALB/c mice. PLoS One 2014; 9:e102613. [PMID: 25058417 PMCID: PMC4109942 DOI: 10.1371/journal.pone.0102613] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/20/2014] [Indexed: 01/21/2023] Open
Abstract
Mycoplasma pneumoniae causes a range of airway and extrapulmonary pathologies in humans. Clinically, M. pneumoniae is associated with acute exacerbations of human asthma and a worsening of experimentally induced asthma in mice. Recently, we demonstrated that Community Acquired Respiratory Distress Syndrome (CARDS) toxin, an ADP-ribosylating and vacuolating toxin synthesized by M. pneumoniae, is sufficient to induce an asthma-like disease in BALB/cJ mice. To test the potential of CARDS toxin to exacerbate preexisting asthma, we examined inflammatory responses to recombinant CARDS toxin in an ovalbumin (OVA) murine model of asthma. Differences in pulmonary inflammatory responses between treatment groups were analyzed by histology, cell differentials and changes in cytokine and chemokine concentrations. Additionally, assessments of airway hyperreactivity were evaluated through direct pulmonary function measurements. Analysis of histology revealed exaggerated cellular inflammation with a strong eosinophilic component in the CARDS toxin-treated group. Heightened T-helper type-2 inflammatory responses were evidenced by increased expression of IL-4, IL-13, CCL17 and CCL22 corresponding with increased airway hyperreactivity in the CARDS toxin-treated mice. These data demonstrate that CARDS toxin can be a causal factor in the worsening of experimental allergic asthma, highlighting the potential importance of CARDS toxin in the etiology and exacerbation of human asthma.
Collapse
|
26
|
Kannan TR, Krishnan M, Ramasamy K, Becker A, Pakhomova ON, Hart PJ, Baseman JB. Functional mapping of community-acquired respiratory distress syndrome (CARDS) toxin of Mycoplasma pneumoniae defines regions with ADP-ribosyltransferase, vacuolating and receptor-binding activities. Mol Microbiol 2014; 93:568-81. [PMID: 24948331 DOI: 10.1111/mmi.12680] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Abstract
Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591-amino-acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modelling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.
Collapse
Affiliation(s)
- Thirumalai R Kannan
- Department of Microbiology and Immunology/Center for Airway Inflammation Research, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. PLoS One 2014; 9:e87373. [PMID: 24466349 PMCID: PMC3900708 DOI: 10.1371/journal.pone.0087373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/24/2013] [Indexed: 01/27/2023] Open
Abstract
Vinculin, a 116-kDa membrane cytoskeletal protein, is an important molecule for cell adhesion; however, little is known about its other cellular functions. Here, we demonstrated that vinculin binds to Rab5 and is required for Staphylococcus aureus (S. aureus) uptake in cells. Viunculin directly bound to Rab5 and enhanced the activation of S. aureus uptake. Over-expression of active vinculin mutants enhanced S. aureus uptake, whereas over-expression of an inactive vinculin mutant decreased S. aureus uptake. Vinculin bound to Rab5 at the N-terminal region (1-258) of vinculin. Vinculin and Rab5 were involved in the S. aureus-induced phosphorylation of MAP kinases (p38, Erk, and JNK) and IL-6 expression. Finally, vinculin and Rab5 knockdown reduced infection of S. aureus, phosphorylation of MAPKs and IL-6 expression in murine lungs. Our results suggest that vinculin binds to Rab5 and that these two molecules cooperatively enhance bacterial infection and the inflammatory response.
Collapse
Affiliation(s)
- Makoto Hagiwara
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | - Shinsuke Sugiura
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Toshinori Komatsu
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiroyuki Tada
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Ryutaro Isoda
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naomi Tanigawa
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoshiko Kato
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Naoyuki Ishida
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kaoru Kobayashi
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Misako Nakashima
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail:
| |
Collapse
|
28
|
Hu X, Yu J, Zhou X, Li Z, Xia Y, Luo Z, Wu Y. Synergism between upregulation of Rab7 and inhibition of autophagic degradation caused by mycoplasma facilitates intracellular mycoplasma infection. Mol Med Rep 2014; 9:793-800. [PMID: 24452847 PMCID: PMC3926517 DOI: 10.3892/mmr.2014.1907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 01/10/2014] [Indexed: 12/22/2022] Open
Abstract
Following fusion of a mycoplasma with a host cell membrane, the inserted components of mycoplasma may then be transported through the endocytic pathway. However, the effects of mycoplasmas on the host cell endomembrane system are largely unknown. In this study, mycoplasma-induced changes in the dynamics of endocytic and autophagic systems were investigated. Endocytosis and autophagy are two major processes involved in the survival of intracellular prokaryotic pathogens. It was found that, immediately following infection, mycoplasmas induce endocytosis in the host cell; however, in the long term the mycoplasmas suppress turnover of the components of the endocytic pathway. Immunofluorescence microscopy revealed that Rab7 and LC3-II are recruited to the intracellular mycoplasma-containing compartments. Western blot analysis and quantitative reverse transcription-polymerase chain reaction (qPCR) showed that mycoplasmas increase expression of Rab7 by upregulating transcription, but increase levels of LC3-II and p62 by post-translational regulation. Furthermore, it was demonstrated that mycoplasma infection causes inhibition of autophagic degradation of LC3-II and p62. In addition, it was found that upregulation of Rab7 and inhibition of autophagic degradation synergistically contributes to intracellular mycoplasma accumulation. In conclusion, these findings suggest that mycoplasmas may manipulate host cell endosomal and autophagic systems in order to facilitate intracellular infection.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Jie Yu
- First People's Hospital of Jiujiang City, Jiujiang, Jiangxi 330300, P.R. China
| | - Xiang Zhou
- The Fifth Hospital of Huangshi City, Huangshi, Hubei 435004, P.R. China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yun Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhiyong Luo
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yaqun Wu
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
29
|
Krishnan M, Kannan TR, Baseman JB. Mycoplasma pneumoniae CARDS toxin is internalized via clathrin-mediated endocytosis. PLoS One 2013; 8:e62706. [PMID: 23667510 PMCID: PMC3647021 DOI: 10.1371/journal.pone.0062706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 03/28/2013] [Indexed: 01/27/2023] Open
Abstract
Bacterial toxins possess specific mechanisms of binding and uptake by mammalian cells. Mycoplasma pneumoniae CARDS (Community Acquired Respiratory Distress Syndrome) toxin is a 68 kDa protein, which demonstrates high binding affinity to human surfactant protein-A and exhibits specific biological activities including mono-ADP ribosylation and vacuolization. These properties lead to inflammatory processes in the airway and a range of cytopathologies including ciliostasis, loss of tissue integrity and injury, and cell death. However, the process by which CARDS toxin enters target cells is unknown. In this study, we show that CARDS toxin binds to mammalian cell surfaces and is internalized rapidly in a dose and time-dependent manner using a clathrin-mediated pathway, as indicated by inhibition of toxin internalization by monodansylcadaverine but not by methyl-β-cyclodextrin or filipin. Furthermore, the internalization of CARDS toxin was markedly inhibited in clathrin-depleted cells.
Collapse
Affiliation(s)
- Manickam Krishnan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - T. R. Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joel B. Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
30
|
Li L, Zhu DK, Zhou Y, Wang MS, Cheng AC, Jia RY, Chen S, Liu F, Yang QM, Chen XY. Adhesion and invasion to duck embryo fibroblast cells by Riemerella anatipestifer. Poult Sci 2013; 91:3202-8. [PMID: 23155031 DOI: 10.3382/ps.2012-02552] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we investigated adhesion and invasion of Riemerella anatipestifer (RA) to primary duck embryo fibroblast (DEF) cells. The ability of RA to adhere to, and more importantly, to invade DEF cells was demonstrated by using a gentamicin invasion assay and was confirmed by transmission electron microscopy (TEM). Adhesion of RA could be found by TEM after 1 h of inoculation. Both apoptosis and necrocytosis of DEF were indicated by TEM after 10 h of incubation, which suggested a complex mechanism of DEF cell death induced by RA. Our results showed that internalized RA had the ability to leave the DEF cells. Inhibition studies indicated that RA proteins play a role in adhesion. Moreover, invasion of RA to DEF cells was shown to require rearrangement of actin microfilaments and microtubular cytoskeletal elements. Because the adhesion and invasion ability of RA to DEF cells could be demonstrated in vitro, similar processes might occur in vivo, where DEF cells play a crucial role in the diffusion of RA in ducks.
Collapse
Affiliation(s)
- L Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan 611130, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, Principe MFR, Kannan TR, Baseman JB, Dube PH. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 2012; 46:815-22. [PMID: 22281984 DOI: 10.1165/rcmb.2011-0135oc] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae causes acute and chronic lung infections in humans, leading to a variety of pulmonary and extrapulmonary sequelae. Of the airway complications of M. pneumoniae infection, M. pneumoniae-associated exacerbation of asthma and pediatric wheezing are emerging as significant sources of human morbidity. However, M. pneumoniae products capable of promoting allergic inflammation are unknown. Recently, we reported that M. pneumoniae produces an ADP-ribosylating and vacuolating toxin termed the community-acquired respiratory distress syndrome (CARDS) toxin. Here we report that naive mice exposed to a single dose of recombinant CARDS (rCARDS) toxin respond with a robust inflammatory response consistent with allergic disease. rCARDS toxin induced 30-fold increased expression of the Th-2 cytokines IL-4 and IL-13 and 70- to 80-fold increased expression of the Th-2 chemokines CCL17 and CCL22, corresponding to a mixed cellular inflammatory response comprised of a robust eosinophilia, accumulation of T cells and B cells, and mucus metaplasia. The inflammatory responses correlate temporally with toxin-dependent increases in airway hyperreactivity characterized by increases in airway restriction and decreases in lung compliance. Furthermore, CARDS toxin-mediated changes in lung function and histopathology are dependent on CD4(+) T cells. Altogether, the data suggest that rCARDS toxin is capable of inducing allergic-type inflammation in naive animals and may represent a causal factor in M. pneumoniae-associated asthma.
Collapse
Affiliation(s)
- Jorge L Medina
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|