1
|
Thomas M, Mackes N, Preuss-Dodhy A, Wieland T, Bundschus M. Assessing Privacy Vulnerabilities in Genetic Data Sets: Scoping Review. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2024; 5:e54332. [PMID: 38935957 PMCID: PMC11165293 DOI: 10.2196/54332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Genetic data are widely considered inherently identifiable. However, genetic data sets come in many shapes and sizes, and the feasibility of privacy attacks depends on their specific content. Assessing the reidentification risk of genetic data is complex, yet there is a lack of guidelines or recommendations that support data processors in performing such an evaluation. OBJECTIVE This study aims to gain a comprehensive understanding of the privacy vulnerabilities of genetic data and create a summary that can guide data processors in assessing the privacy risk of genetic data sets. METHODS We conducted a 2-step search, in which we first identified 21 reviews published between 2017 and 2023 on the topic of genomic privacy and then analyzed all references cited in the reviews (n=1645) to identify 42 unique original research studies that demonstrate a privacy attack on genetic data. We then evaluated the type and components of genetic data exploited for these attacks as well as the effort and resources needed for their implementation and their probability of success. RESULTS From our literature review, we derived 9 nonmutually exclusive features of genetic data that are both inherent to any genetic data set and informative about privacy risk: biological modality, experimental assay, data format or level of processing, germline versus somatic variation content, content of single nucleotide polymorphisms, short tandem repeats, aggregated sample measures, structural variants, and rare single nucleotide variants. CONCLUSIONS On the basis of our literature review, the evaluation of these 9 features covers the great majority of privacy-critical aspects of genetic data and thus provides a foundation and guidance for assessing genetic data risk.
Collapse
|
2
|
Antinucci M, Comas D, Calafell F. Population history modulates the fitness effects of Copy Number Variation in the Roma. Hum Genet 2023; 142:1327-1343. [PMID: 37311904 PMCID: PMC10449987 DOI: 10.1007/s00439-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
We provide the first whole genome Copy Number Variant (CNV) study addressing Roma, along with reference populations from South Asia, the Middle East and Europe. Using CNV calling software for short-read sequence data, we identified 3171 deletions and 489 duplications. Taking into account the known population history of the Roma, as inferred from whole genome nucleotide variation, we could discern how this history has shaped CNV variation. As expected, patterns of deletion variation, but not duplication, in the Roma followed those obtained from single nucleotide polymorphisms (SNPs). Reduced effective population size resulting in slightly relaxed natural selection may explain our observation of an increase in intronic (but not exonic) deletions within Loss of Function (LoF)-intolerant genes. Over-representation analysis for LoF-intolerant gene sets hosting intronic deletions highlights a substantial accumulation of shared biological processes in Roma, intriguingly related to signaling, nervous system and development features, which may be related to the known profile of private disease in the population. Finally, we show the link between deletions and known trait-related SNPs reported in the genome-wide association study (GWAS) catalog, which exhibited even frequency distributions among the studied populations. This suggests that, in general human populations, the strong association between deletions and SNPs associated to biomedical conditions and traits could be widespread across continental populations, reflecting a common background of potentially disease/trait-related CNVs.
Collapse
Affiliation(s)
- Marco Antinucci
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Comas
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Calafell
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
3
|
Kołomański M, Szyda J, Frąszczak M, Mielczarek M. DNA sequence features underlying large-scale duplications and deletions in human. J Appl Genet 2022; 63:527-533. [PMID: 35590085 PMCID: PMC9365719 DOI: 10.1007/s13353-022-00704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022]
Abstract
Copy number variants (CNVs) may cover up to 12% of the whole genome and have substantial impact on phenotypes. We used 5867 duplications and 33,181 deletions available from the 1000 Genomes Project to characterise genomic regions vulnerable to CNV formation and to identify sequence features characteristic for those regions. The GC content for deletions was lower and for duplications was higher than for randomly selected regions. In regions flanking deletions and downstream of duplications, content was higher than in the random sequences, but upstream of duplication content was lower. In duplications and downstream of deletion regions, the percentage of low-complexity sequences was not different from the randomised data. In deletions and upstream of CNVs, it was higher, while for downstream of duplications, it was lower as compared to random sequences. The majority of CNVs intersected with genic regions — mainly with introns. GC content may be associated with CNV formation and CNVs, especially duplications are initiated in low-complexity regions. Moreover, CNVs located or overlapped with introns indicate their role in shaping intron variability. Genic CNV regions were enriched in many essential biological processes such as cell adhesion, synaptic transmission, transport, cytoskeleton organization, immune response and metabolic mechanisms, which indicates that these large-scaled variants play important biological roles.
Collapse
Affiliation(s)
- Mateusz Kołomański
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
4
|
Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, Mägi R, Porcu E, Reymond A, Kutalik Z. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet 2022; 109:647-668. [PMID: 35240056 PMCID: PMC9069145 DOI: 10.1016/j.ajhg.2022.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Maarja Lepamets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland.
| |
Collapse
|
5
|
Romdhane L, Mezzi N, Dallali H, Messaoud O, Shan J, Fakhro KA, Kefi R, Chouchane L, Abdelhak S. A map of copy number variations in the Tunisian population: a valuable tool for medical genomics in North Africa. NPJ Genom Med 2021; 6:3. [PMID: 33420067 PMCID: PMC7794582 DOI: 10.1038/s41525-020-00166-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/18/2020] [Indexed: 11/24/2022] Open
Abstract
Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations. In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares, PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.
Collapse
Affiliation(s)
- Lilia Romdhane
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia.
- Department of Biology, Faculty of Science of Bizerte, Jarzouna, Tunisia.
| | - Nessrine Mezzi
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hamza Dallali
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Olfa Messaoud
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Jingxuan Shan
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Khalid A Fakhro
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Rym Kefi
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Genetic Intelligence Laboratory, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory (LR16IPT05), Institut Pasteur de Tunis, Tunis, Tunisia
| |
Collapse
|
6
|
Khan M, Fadaie Z, Cornelis SS, Cremers FPM, Roosing S. Identification and Analysis of Genes Associated with Inherited Retinal Diseases. Methods Mol Biol 2019; 1834:3-27. [PMID: 30324433 DOI: 10.1007/978-1-4939-8669-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inherited retinal diseases (IRDs) display a very high degree of clinical and genetic heterogeneity, which poses challenges in finding the underlying defects in known IRD-associated genes and in identifying novel IRD-associated genes. Knowledge on the molecular and clinical aspects of IRDs has increased tremendously in the last decade. Here, we outline the state-of-the-art techniques to find the causative genetic variants, with special attention for next-generation sequencing which can combine molecular diagnostics and retinal disease gene identification. An important aspect is the functional assessment of rare variants with RNA and protein effects which can only be predicted in silico. We therefore describe the in vitro assessment of putative splice defects in human embryonic kidney cells. In addition, we outline the use of stem cell technology to generate photoreceptor precursor cells from patients' somatic cells which can subsequently be used for RNA and protein studies. Finally, we outline the in silico methods to interpret the causality of variants associated with inherited retinal disease and the registry of these variants.
Collapse
Affiliation(s)
- Mubeen Khan
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zeinab Fadaie
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stéphanie S Cornelis
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Suresh RV, Lingaiah K, Veerappa AM, Ramachandra NB. Identifying the risk of producing aneuploids using meiotic recombination genes as biomarkers: A copy number variation approach. Indian J Med Res 2017; 145:39-50. [PMID: 28574013 PMCID: PMC5460571 DOI: 10.4103/ijmr.ijmr_965_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background & objectives: Aneuploids are the most common chromosomal abnormality in liveborns and are usually the result of non-disjunction (NDJ) in meiosis. Copy number variations (CNVs) are large structural variations affecting the human genome. CNVs influence critical genes involved in causing NDJ by altering their copy number which affects the clinical outcome. In this study influence of CNVs on critical meiotic recombination was examined using new computational technologies to assess their role in causing aneuploidy. Methods: This investigation was based on the analysis of 12 random normal populations consisting of 1714 individuals for aneuploid causing genes under CNV effect. To examine the effect of CNVs on genes causing aneuploidy, meiotic recombination genes were analyzed using EnrichR, WebGestalt and Ingenuity Pathway Analysis (IPA). Results: Forty three NDJ genes were found under CNV burden; IPA (Ingenuity Pathway Analysis) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis of CNV in meiotic recombination genes revealed a significant role of breast cancer gene 1, amyloid protein precursor, mitogen-activated protein kinase and nerve growth factor as key molecular players involved in causing aneuploidy. Interaction between these genes with other CNV-overlapping genes involved in cell cycle, recombination and meiosis might lead to increased incidences of aneuploidy. Interpretation & conclusions: The findings of this study implied that the effect of CNVs on normal genome contributed in amplifying the occurrences of chromosomal aneuploidies. The normal individuals consisting of variations in the susceptible genes causing aneuploids in the population remain undetected until the disorder genes express in the succeeding generations.
Collapse
Affiliation(s)
- Raviraj V Suresh
- Department of Studies in Genetics & Genomics, University of Mysore, Mysuru, India
| | - Kusuma Lingaiah
- Department of Studies in Genetics & Genomics, University of Mysore, Mysuru, India
| | - Avinash M Veerappa
- Department of Studies in Genetics & Genomics, University of Mysore, Mysuru, India
| | - Nallur B Ramachandra
- Department of Studies in Genetics & Genomics, University of Mysore, Mysuru, India
| |
Collapse
|
8
|
Urnikyte A, Domarkiene I, Stoma S, Ambrozaityte L, Uktveryte I, Meskiene R, Kasiulevičius V, Burokiene N, Kučinskas V. CNV analysis in the Lithuanian population. BMC Genet 2016; 17:64. [PMID: 27142071 PMCID: PMC4855864 DOI: 10.1186/s12863-016-0373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Background Although copy number variation (CNV) has received much attention, knowledge about the characteristics of CNVs such as occurrence rate and distribution in the genome between populations and within the same population is still insufficient. In this study, Illumina 770 K HumanOmniExpress-12 v1.0 (and v1.1) arrays were used to examine the diversity and distribution of CNVs in 286 unrelated individuals from the two main ethnolinguistic groups of the Lithuanian population (Aukštaičiai and Žemaičiai) (see Additional file 3). For primary data analysis, the Illumina GenomeStudio™ Genotyping Module v1.9 and two algorithms, cnvPartition 3.2.0 and QuantiSNP 2.0, were used to identify high-confidence CNVs. Results A total of 478 autosomal CNVs were detected by both algorithms, and those were clustered in 87 copy number variation regions (CNVRs), spanning ~12.5 Mb of the genome (see Table 1). At least 8.6 % of the CNVRs were unique and had not been reported in the Database of Genomic Variants. Most CNVRs (57.5 %) were rare, with a frequency of <1 %, whereas common CNVRs with at least 5 % frequency made up only 1.1 % of all CNVRs identified. About 49 % of non-singleton CNVRs were shared between Aukštaičiai and Žemaičiai, and the remaining CNVRs were specific to each group. Many of the CNVs detected (66 %) overlapped with known UCSC gene regions. Conclusions The ethnolinguistic groups of the Lithuanian population could not be differentiated based on CNV profiles, which may reflect their geographical proximity and suggest the homogeneity of the Lithuanian population. In addition, putative novel CNVs unique to the Lithuanian population were identified. The results of our study enhance the CNV map of the Lithuanian population. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0373-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Urnikyte
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania.
| | - I Domarkiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - S Stoma
- Master of Science (MSc), Bioinformatics student, VU University Amsterdam, Amsterdam, Netherlands
| | - L Ambrozaityte
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - I Uktveryte
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - R Meskiene
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - V Kasiulevičius
- Clinics of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - N Burokiene
- Clinics of Internal Diseases, Family Medicine and Oncology, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| | - V Kučinskas
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, Santariskiu St. 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
9
|
Plengvidhya N, Chanprasert K, Tangjittipokin W, Thongnoppakhun W, Yenchitsomanus PT. Detection of CAPN10 copy number variation in Thai patients with type 2 diabetes by denaturing high performance liquid chromatography and real-time quantitative polymerase chain reaction. J Diabetes Investig 2015; 6:632-9. [PMID: 26543536 PMCID: PMC4627539 DOI: 10.1111/jdi.12341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
Aims/Introduction A combination of multiple genetic and environmental factors contribute to the pathogenesis of type 2 diabetes. Copy number variations (CNVs) are associated with complex human diseases. However, CNVs can cause genotype deviation from the Hardy–Weinberg equilibrium (HWE). A genetic case–control association study in 216 Thai diabetic patients and 192 non-diabetic controls found that, after excluding genotyping errors, genotype distribution of calpain 10 (CAPN10) SNP44 (rs2975760) deviated from HWE. Here, we aimed to detect CNV within the CAPN10 SNP44 region. Materials and Methods CNV within the CAPN10 SNP44 region was detected using denaturing high-performance liquid chromatography, and the results confirmed by real-time quantitative polymerase chain reaction with SYBR Green I. Results Both methods successfully identified CNV in the CAPN10 SNP44 region, obtaining concordant results. Correction of genotype calling based on the status of identified CNVs showed that the CAPN10 SNP44 genotype is in good agreement with HWE (P > 0.05). However, no association between CNV genotypes and risk of type 2 diabetes was observed. Conclusions Identified CNVs for CAPN10 SNP44 genotypes lead to deviation from HWE. Furthermore, both denaturing high-performance liquid chromatography and real-time quantitative polymerase chain reaction are useful for detecting CNVs.
Collapse
Affiliation(s)
- Nattachet Plengvidhya
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, Thailand
| | - Kanjana Chanprasert
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, Thailand
| | - Watip Tangjittipokin
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, Thailand
| | - Wanna Thongnoppakhun
- Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Departments of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University Bangkok, Thailand
| |
Collapse
|
10
|
Global patterns of large copy number variations in the human genome reveal complexity in chromosome organization. Genet Res (Camb) 2015; 97:e18. [PMID: 26390810 DOI: 10.1017/s0016672315000191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Global patterns of copy number variations (CNVs) in chromosomes are required to understand the dynamics of genome organization and complexity. For this study, analysis was performed using the Affymetrix Genome-Wide Human SNP Array 6.0 chip and CytoScan High-Density arrays. We identified a total of 44 109 CNVs from 1715 genomes with a mean of 25 CNVs in an individual, which established the first drafts of population-specific CNV maps providing a rationale for prioritizing chromosomal regions. About 19 905 ancient CNVs were identified across all chromosomes and populations at varying frequencies. CNV count, and sometimes CNV size, contributed to the bulk CNV size of the chromosome. Population specific lengthening and shortening of chromosomal length was observed. Sex bias for CNV presence was largely dependent on ethnicity. Lower CNV inheritance rate was observed for India, compared to YRI and CEU. A total of 33 candidate CNV hotspots from 5382 copy number (CN) variable region (CNVR) clusters were identified. Population specific CNV distribution patterns in p and q arms disturbed the assumption that CNV counts in the p arm are less common compared to long arms, and the CNV occurrence and distribution in chromosomes is length independent. This study unraveled the force of independent evolutionary dynamics on genome organization and complexity across chromosomes and populations.
Collapse
|
11
|
Nutsua ME, Fischer A, Nebel A, Hofmann S, Schreiber S, Krawczak M, Nothnagel M. Family-Based Benchmarking of Copy Number Variation Detection Software. PLoS One 2015. [PMID: 26197066 PMCID: PMC4510559 DOI: 10.1371/journal.pone.0133465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.
Collapse
Affiliation(s)
- Marcel Elie Nutsua
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Annegret Fischer
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Sylvia Hofmann
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Michael Nothnagel
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany; Cologne Center for Genomics, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Veerappa AM, Vishweswaraiah S, Lingaiah K, Murthy M, Suresh RV, Manjegowda DS, Ramachandra NB. Global spectrum of copy number variations reveals genome organizational plasticity and proposes new migration routes. PLoS One 2015; 10:e0121846. [PMID: 25909454 PMCID: PMC4409114 DOI: 10.1371/journal.pone.0121846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/16/2015] [Indexed: 11/19/2022] Open
Abstract
Global spectrum of CNVs is required to catalog variations to provide a high-resolution on the dynamics of genome-organization and human migration. In this study, we performed genome-wide genotyping using high-resolution arrays and identified 44,109 CNVs from 1,715 genomes across 12 populations. The study unraveled the force of independent evolutionary dynamics on genome-organizational plasticity across populations. We demonstrated the use of CNV tool to study human migration and identified a second major settlement establishing new migration routes in addition to existing ones.
Collapse
Affiliation(s)
- Avinash M. Veerappa
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Sangeetha Vishweswaraiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Kusuma Lingaiah
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Megha Murthy
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Raviraj V. Suresh
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
| | - Dinesh S. Manjegowda
- NUCSER, KS Hegde Medical Academy, Nitte University, Mangalore-18, Karnataka, India
| | - Nallur B. Ramachandra
- Genetics and Genomics Lab, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore-06, Karnataka, India
- * E-mail:
| |
Collapse
|
13
|
Impact of copy number variations burden on coding genome in humans using integrated high resolution arrays. Genet Res (Camb) 2014; 96:e17. [PMID: 25578402 DOI: 10.1017/s0016672314000202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Copy number variations (CNVs) alter the transcriptional and translational levels of genes by disrupting the coding structure and this burden of CNVs seems to be a significant contributor to phenotypic variations. Therefore it was necessary to assess the complexities of CNV burden on the coding genome. A total of 1715 individuals from 12 populations were used for CNV analysis in the present investigation. Analysis was performed using Affymetrix Genome-Wide Human SNP Array 6·0 chip and CytoScan High-Density arrays. CNVs were more frequently observed in the coding region than in the non-coding region. CNVs were observed vastly more frequently in the coding region than the non-coding region. CNVs were found to be enriched in the regions containing functional genes (83-96%) compared with the regions containing pseudogenes (4-17%). CNVs across the genome of an individual showed multiple hits across many genes, whose proteins interact physically and function under the same pathway. We identified varying numbers of proteins and degrees of interactions within protein complexes of single individual genomes. This study represents the first draft of a population-specific CNV genes map as well as a cross-populational map. The complex relationship of CNVs on genes and their physically interacting partners unravels many complexities involved in phenotype expression. This study identifies four mechanisms contributing to the complexities caused by the presence of multiple CNVs across many genes in the coding part of the genome.
Collapse
|
14
|
Analysis of genome-wide copy number variations in Chinese indigenous and western pig breeds by 60 K SNP genotyping arrays. PLoS One 2014; 9:e106780. [PMID: 25198154 PMCID: PMC4157799 DOI: 10.1371/journal.pone.0106780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022] Open
Abstract
Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
Collapse
|
15
|
Sidonets IV, Meshkov AN. GENETICS FOR DIAGNOSTICS IN PREVENTIVE MEDICINE. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2014. [DOI: 10.15829/1728-8800-2014-4-75-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The sequencing of first human genome followed by rapid development of technologies, that led to significant lowering of costs for genetic analyze and its fast performing, made possible a broad invention of genetic diagnostics methods into clinical practice. Contemporary methods of molecular genetics make possible to research on inherited factors on chromosome level with molecular cytogenetics methods, and on the level of local mutations with the use or polymeraze chain reaction, microchips and sequencing. Temps of the next generation sequencing methods provide the opportunity to predict soon inclusion in practice of the personalized medical analysis of large genetic data massive, that can be used for the disease outcome prediction, estimation of its course, and for the prescription and correction of pharmacotherapy. In this review, different (including novel) approaches to genetic diagnostics are explored for the rare as common diseases, their benefits and restrictions.
Collapse
Affiliation(s)
- I. V. Sidonets
- FSBI State Scientific-Research Centre for Preventive Medicine of the Ministry of Health, Moscow
| | - A. N. Meshkov
- FSBI State Scientific-Research Centre for Preventive Medicine of the Ministry of Health, Moscow
| |
Collapse
|
16
|
Suktitipat B, Naktang C, Mhuantong W, Tularak T, Artiwet P, Pasomsap E, Jongjaroenprasert W, Fuchareon S, Mahasirimongkol S, Chantratita W, Yimwadsana B, Charoensawan V, Jinawath N. Copy number variation in Thai population. PLoS One 2014; 9:e104355. [PMID: 25118596 PMCID: PMC4131886 DOI: 10.1371/journal.pone.0104355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for the investigation of clinical significance of CNVs in Thais and related ethnicities.
Collapse
Affiliation(s)
- Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Integrative Computation BioScience Center (ICBS), Mahidol University, Nakhon Prathom, Thailand
| | - Chaiwat Naktang
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wuttichai Mhuantong
- Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, Thailand
| | - Thitima Tularak
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Prathom, Thailand
| | - Paramita Artiwet
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Prathom, Thailand
| | - Ekawat Pasomsap
- Division of Virology and Molecular microbiology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wallaya Jongjaroenprasert
- Endocrine and Metabolism Unit, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fuchareon
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Prathom, Thailand
| | - Surakameth Mahasirimongkol
- Medical Genetics Section, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Wasan Chantratita
- Division of Virology and Molecular microbiology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Boonsit Yimwadsana
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Prathom, Thailand
- Integrative Computation BioScience Center (ICBS), Mahidol University, Nakhon Prathom, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Integrative Computation BioScience Center (ICBS), Mahidol University, Nakhon Prathom, Thailand
| | - Natini Jinawath
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Integrative Computation BioScience Center (ICBS), Mahidol University, Nakhon Prathom, Thailand
- * E-mail:
| |
Collapse
|
17
|
Mokhtar SS, Marshall CR, Phipps ME, Thiruvahindrapuram B, Lionel AC, Scherer SW, Peng HB. Novel population specific autosomal copy number variation and its functional analysis amongst Negritos from Peninsular Malaysia. PLoS One 2014; 9:e100371. [PMID: 24956385 PMCID: PMC4067311 DOI: 10.1371/journal.pone.0100371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/23/2014] [Indexed: 01/21/2023] Open
Abstract
Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
Collapse
Affiliation(s)
- Siti Shuhada Mokhtar
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Christian R. Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Maude E. Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Selangor, Malaysia
| | | | - Anath C. Lionel
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W. Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Hoh Boon Peng
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
18
|
Fanale D, Iovanna JL, Calvo EL, Berthezene P, Belleau P, Dagorn JC, Bronte G, Cicero G, Bazan V, Rolfo C, Santini D, Russo A. Germline copy number variation in the YTHDC2 gene: does it have a role in finding a novel potential molecular target involved in pancreatic adenocarcinoma susceptibility? Expert Opin Ther Targets 2014; 18:841-50. [PMID: 24834797 DOI: 10.1517/14728222.2014.920324] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The vast majority of pancreatic cancers occurs sporadically. The discovery of frequent variations in germline gene copy number can significantly influence the expression levels of genes that predispose to pancreatic adenocarcinoma. We prospectively investigated whether patients with sporadic pancreatic adenocarcinoma share specific gene copy number variations (CNVs) in their germline DNA. PATIENTS AND METHODS DNA samples were analyzed from peripheral leukocytes from 72 patients with a diagnosis of sporadic pancreatic adenocarcinoma and from 60 controls using Affymetrix 500K array set. Multiplex ligation-dependent probe amplification (MLPA) assay was performed using a set of self-designed MLPA probes specific for seven target sequences. RESULTS We identified a CNV-containing DNA region associated with pancreatic cancer risk. This region shows a deletion of 1 allele in 36 of the 72 analyzed patients but in none of the controls. This region is of particular interest since it contains the YTHDC2 gene encoding for a putative DNA/RNA helicase, such protein being frequently involved in cancer susceptibility. Interestingly, 82.6% of Sicilian patients showed germline loss of one allele. CONCLUSIONS Our results suggest that the YTHDC2 gene could be a potential candidate for pancreatic cancer susceptibility and a useful marker for early detection as well as for the development of possible new therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Fanale
- University of Palermo, Department of Surgical, Oncological and Stomatological Sciences, Section of Medical Oncology , Via del Vespro 129, 90127 Palermo , Italy +39 091 6552500 ; +011 39 091 6554529 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fernández AI, Barragán C, Fernández A, Rodríguez MC, Villanueva B. Copy number variants in a highly inbred Iberian porcine strain. Anim Genet 2014; 45:357-66. [PMID: 24597621 DOI: 10.1111/age.12137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
Abstract
We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole-genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty-nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole-genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.
Collapse
Affiliation(s)
- A I Fernández
- Departamento de Mejora Genética Animal, INIA, Ctra. De la Coruña km. 7.5, Madrid, 28040, Spain
| | | | | | | | | |
Collapse
|
20
|
Fanale D, Iovanna JL, Calvo EL, Berthezene P, Belleau P, Dagorn JC, Ancona C, Catania G, D'Alia P, Galvano A, Gulotta E, Lo Dico S, Passiglia F, Bronte G, Midiri M, Lo Re G, Cicero G, Bazan V, Russo A. Analysis of Germline Gene Copy Number Variants of Patients with Sporadic Pancreatic Adenocarcinoma Reveals Specific Variations. Oncology 2013; 85:306-11. [DOI: 10.1159/000354737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/27/2013] [Indexed: 12/15/2022]
|
21
|
Repnikova EA, Rosenfeld JA, Bailes A, Weber C, Erdman L, McKinney A, Ramsey S, Hashimoto S, Lamb Thrush D, Astbury C, Reshmi SC, Shaffer LG, Gastier-Foster JM, Pyatt RE. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization. Forensic Sci Int Genet 2013; 7:475-81. [PMID: 23948316 DOI: 10.1016/j.fsigen.2013.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 05/07/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.
Collapse
Affiliation(s)
- Elena A Repnikova
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics 2012; 13:733. [PMID: 23270433 PMCID: PMC3543711 DOI: 10.1186/1471-2164-13-733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/15/2012] [Indexed: 01/04/2023] Open
Abstract
Background Copy number variation (CNV) is a major source of structural variants and has been commonly identified in mammalian genome. It is associated with gene expression and may present a major genetic component of phenotypic diversity. Unlike many other mammalian genomes where CNVs have been well annotated, studies of porcine CNV in diverse breeds are still limited. Result Here we used Porcine SNP60 BeadChip and PennCNV algorithm to identify 1,315 putative CNVs belonging to 565 CNV regions (CNVRs) in 1,693 pigs from 18 diverse populations. Total 538 out of 683 CNVs identified in a White Duroc × Erhualian F2 population fit Mendelian transmission and 6 out of 7 randomly selected CNVRs were confirmed by quantitative real time PCR. CNVRs were non-randomly distributed in the pig genome. Several CNV hotspots were found on pig chromosomes 6, 11, 13, 14 and 17. CNV numbers differ greatly among different pig populations. The Duroc pigs were identified to have the most number of CNVs per individual. Among 1,765 transcripts located within the CNVRs, 634 genes have been reported to be copy number variable genes in the human genome. By integrating analysis of QTL mapping, CNVRs and the description of phenotypes in knockout mice, we identified 7 copy number variable genes as candidate genes for phenotypes related to carcass length, backfat thickness, abdominal fat weight, length of scapular, intermuscle fat content of logissimus muscle, body weight at 240 day, glycolytic potential of logissimus muscle, mean corpuscular hemoglobin, mean corpuscular volume and humerus diameter. Conclusion We revealed the distribution of the unprecedented number of 565 CNVRs in pig genome and investigated copy number variable genes as the possible candidate genes for phenotypic traits. These findings give novel insights into porcine CNVs and provide resources to facilitate the identification of trait-related CNVs.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | |
Collapse
|