1
|
Chambon M, Koenig A. NK Cells: Not Just Followers But Also Initiators of Chronic Vascular Rejection. Transpl Int 2024; 37:13318. [PMID: 39479216 PMCID: PMC11521863 DOI: 10.3389/ti.2024.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024]
Abstract
Chronic graft rejection represents a significant threat to long-term graft survival. Early diagnosis, understanding of the immunological mechanisms and appropriate therapeutic management are essential to improve graft survival and quality of life for transplant patients. Knowing which immune cells are responsible for chronic vascular rejection would allow us to provide effective and appropriate treatment for these patients. It is now widely accepted that natural killer (NK) cells play an important role in chronic vascular rejection. They can either initiate chronic vascular rejection by recognizing missing self on the graft or be recruited by donor-specific antibodies to destroy the graft during antibody-mediated rejection. Whatever the mechanisms of activation of NK cells, they need to be primed to become fully activated and damaging to the graft. A better understanding of the signaling pathways involved in NK cell priming and activation would pave the way for the development of new therapeutic strategies to cure chronic vascular rejection. This review examines the critical role of NK cells in the complex context of chronic vascular rejection.
Collapse
Affiliation(s)
- Mathilde Chambon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, Lyon, France
- Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
2
|
Loga LII, Suharoschi R, Elec FI, Chiorean AD, Elec AD, Muntean AM, Suciu MD, Antal O, Toth AT, Lucaciu RL, Hangan AC, Drugan T, Matei HV, Dican L. Orchestrating the Impact of KIR/HLA Interactions on Kidney Transplant. Int J Mol Sci 2024; 25:8228. [PMID: 39125798 PMCID: PMC11311415 DOI: 10.3390/ijms25158228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This study examines the interplay between human leukocyte antigen (HLA) compatibility and killer-cell immunoglobulin-like receptor (KIR) genotypes in influencing kidney transplantation outcomes. Understanding these interactions is crucial for improving graft survival and minimizing rejection risks. We evaluated 84 kidney transplant recipients, dividing them into two groups based on post-transplant outcomes: there were 68 with stable graft function (SGF) and 16 who experienced chronic rejection (CR). Patients were selected based on specific inclusion criteria. HLA mismatches (Class I: HLA-A, -B; Class II: HLA-DR) and KIR genotypes were determined using standard genotyping techniques. Statistical analyses, including logistic regression, were performed to correlate these factors with transplant outcomes. Significant age differences were observed, with younger patients more likely to experience graft rejection, while no significant gender-based differences were noted. A significant correlation was found between Class II mismatches and increased rejection rates, highlighting the importance of HLA-DR compatibility. Further analysis revealed that certain inhibitory KIRs, such as KIR3DL1, were associated with favorable outcomes, suggesting a protective role against graft rejection. These findings were corroborated by evaluating serum creatinine levels over multiple years, serving as a biomarker for renal function post transplant. This study underscores the critical need for meticulous HLA matching and the consideration of KIR genotypes in pre-transplant evaluations to enhance graft survival and minimize rejection risks. Integrating these genetic factors into routine clinical assessments could significantly improve personalized transplant medicine strategies, ultimately enhancing patient outcomes. Further research is needed to explore the underlying mechanisms and validate these findings in larger, diverse populations.
Collapse
Affiliation(s)
- Luminița-Ioana Iancu Loga
- Department of Cellular and Molecular Biology, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.-I.I.L.); (A.D.C.); (H.V.M.)
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
| | - Ramona Suharoschi
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Florin Ioan Elec
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
- Department of Urology, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alin Dan Chiorean
- Department of Cellular and Molecular Biology, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.-I.I.L.); (A.D.C.); (H.V.M.)
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
| | - Alina Daciana Elec
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
| | - Adriana Milena Muntean
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
| | - Mihai Domnuțiu Suciu
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
- Department of Urology, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Oana Antal
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
- Department of Anesthesiology, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Teodora Toth
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, Faculty of Medicine,“Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.-I.I.L.); (A.D.C.); (H.V.M.)
| | - Lucia Dican
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (A.D.E.); (A.M.M.); (M.D.S.); (O.A.); (A.T.T.); (L.D.)
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Hiho SJ, Levvey BJ, Diviney MB, Brooks AG, Holdsworth R, Snell GI, Westall GP, Sullivan LC. HLA-C mismatching improves outcomes following lung transplantation. HLA 2024; 103:e15544. [PMID: 38924641 DOI: 10.1111/tan.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
HLA (HLA) are a major barrier to transplant success, as HLA-A and -B molecules are principal ligands for T-cells, and HLA-C for Killer cell Immunoglobulin-like Receptors (KIR), directing Natural Killer (NK) cell function. HLA-C molecules are designated "C1" or "C2" ligands based on residues 77 and 80, which determine the NK cell responses. Here, we investigated donor/recipient HLA-C mismatch associations with the development of chronic lung allograft dysfunction (CLAD) following lung transplantation (LTx). 310 LTx donor/recipient pairs were Next Generation Sequenced and assessed for C1 and C2 allotypes. PIRCHE scores were used to quantify HLA mismatching between donor/recipients at amino acid level and stratify recipients into low, moderate or highly mismatched groups (n = 103-104). Associations between C ligands and freedom from CLAD was assessed with Cox regression models and survival curves. C2/C2 recipients (n = 42) had less CLAD than those with C1/C1 (n = 138) or C1/C2 genotypes (n = 130) (p < 0.05). Incidence of CLAD was lower in C2/C2 recipients receiving a mismatched C1/C1 allograft (n = 14), compared to matched (n = 8) or heterozygous (n = 20) allografts. Furthermore, ~80% of these recipients (C2/C2 recipients receiving C1/C1 transplants) remained CLAD-free for 10 years post-LTx. Recipients with higher HLA-C mismatching had less CLAD (p < 0.05) an observation not explained by linkage disequilibrium with other HLA loci. Our data implicates a role for HLA-C in CLAD development. HLA-C mismatching was not detrimental to LTx outcome, but potentially beneficial, representing a paradigm shift in assessing donor/recipient matching. This may inform better selection of donor/recipient pairs and potentially more targeted approaches to treating CLAD.
Collapse
Affiliation(s)
- Steven J Hiho
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
- Australian Red Cross LifeBlood, Victorian Transplantation and Immunogenetics Service, Melbourne, Victoria, Australia
| | - Bronwyn J Levvey
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Mary B Diviney
- Australian Red Cross LifeBlood, Victorian Transplantation and Immunogenetics Service, Melbourne, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rhonda Holdsworth
- Australian Red Cross LifeBlood, Victorian Transplantation and Immunogenetics Service, Melbourne, Victoria, Australia
| | - Gregory I Snell
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Lucy C Sullivan
- Lung Transplant Service, Department of Respiratory Medicine, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Australian Red Cross LifeBlood, South Australian Transplantation and Immunogenetics Service, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Legaz I, Bolarín JM, Campillo JA, Moya-Quiles MR, Miras M, Muro M, Minguela A, Álvarez-López MR. Killer Cell Immunoglobulin-like Receptors (KIR) and Human Leucocyte Antigen C (HLA-C) Increase the Risk of Long-Term Chronic Liver Graft Rejection. Int J Mol Sci 2022; 23:ijms232012155. [PMID: 36293011 PMCID: PMC9603177 DOI: 10.3390/ijms232012155] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic liver rejection (CR) represents a complex clinical situation because many patients do not respond to increased immunosuppression. Killer cell immunoglobulin-like receptors/Class I Human Leukocyte Antigens (KIR/HLA-I) interactions allow for predicting Natural Killer (NK) cell alloreactivity and influence the acute rejection of liver allograft. However, its meaning in CR liver graft remains controversial. KIR and HLA genotypes were studied in 513 liver transplants using sequence-specific oligonucleotides (PCR-SSO) methods. KIRs, human leucocyte antigen C (HLA-C) genotypes, KIR gene mismatches, and the KIR/HLA-ligand were analyzed and compared in overall transplants with CR (n = 35) and no-chronic rejection (NCR = 478). Activating KIR (aKIR) genes in recipients (rKIR2DS2+ and rKIR2DS3+) increased CR compared with NCR groups (p = 0.013 and p = 0.038). The inhibitory KIR (iKIR) genes in recipients rKIR2DL2+ significantly increased the CR rate compared with their absence (9.1% vs. 3.7%, p = 0.020). KIR2DL3 significantly increases CR (13.1% vs. 5.2%; p = 0.008). There was no influence on NCR. CR was observed in HLA-I mismatches (MM). The absence of donor (d) HLA-C2 ligand (dC2−) ligand increases CR concerning their presence (13.1% vs. 5.6%; p = 0.018). A significant increase of CR was observed in rKIR2DL3+/dC1− (p = 0.015), rKIR2DS4/dC1− (p = 0.014) and rKIR2DL3+/rKIR2DS4+/dC1− (p = 0.006). Long-term patient survival was significantly lower in rKIR2DS1+rKIR2DS4+/dC1− at 5–10 years post-transplant. This study shows the influence of rKIR/dHLA-C combinations and aKIR gene-gene mismatches in increasing CR and KIR2DS1+/C1-ligands and the influence of KIR2DS4+/C1-ligands in long-term graft survival.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
- Correspondence: ; Tel.: +34-868883957; Fax: +34-868834307
| | - Jose Miguel Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Jose Antonio Campillo
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - María R. Moya-Quiles
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Manuel Miras
- Digestive Medicine Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| | - María R. Álvarez-López
- Immunology Service, Instituto Murciano de Investigación biosanitaria (IMIB), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
| |
Collapse
|
5
|
Zamir MR, Shahi A, Salehi S, Amirzargar A. Natural killer cells and killer cell immunoglobulin-like receptors in solid organ transplantation: Protectors or opponents? Transplant Rev (Orlando) 2022; 36:100723. [DOI: 10.1016/j.trre.2022.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
|
6
|
Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int 2021; 101:692-710. [PMID: 34915041 DOI: 10.1016/j.kint.2021.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Necker-Enfants Malades Institute, French National Institute of Health and Medical Research (INSERM) Unit 1151, Paris, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Priyanka Koshy
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Callemeyn J, Senev A, Coemans M, Lerut E, Sprangers B, Kuypers D, Koenig A, Thaunat O, Emonds MP, Naesens M. Missing Self-Induced Microvascular Rejection of Kidney Allografts: A Population-Based Study. J Am Soc Nephrol 2021; 32:2070-2082. [PMID: 34301794 PMCID: PMC8455279 DOI: 10.1681/asn.2020111558] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/29/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Circulating anti-HLA donor-specific antibodies (HLA-DSA) are often absent in kidney transplant recipients with microvascular inflammation (MVI). Missing self, the inability of donor endothelial cells to provide HLA I-mediated signals to inhibitory killer cell Ig-like receptors (KIRs) on recipient natural killer cells, can cause endothelial damage in vitro, and has been associated with HLA-DSA-negative MVI. However, missing self's clinical importance as a nonhumoral trigger of allograft rejection remains unclear. METHODS In a population-based study of 924 consecutive kidney transplantations between March 2004 and February 2013, we performed high-resolution donor and recipient HLA typing and recipient KIR genotyping. Missing self was defined as the absence of A3/A11, Bw4, C1, or C2 donor genotype, with the presence of the corresponding educated recipient inhibitory KIR gene. RESULTS We identified missing self in 399 of 924 transplantations. Co-occurrence of missing self types had an additive effect in increasing MVI risk, with a threshold at two concurrent types (hazard ratio [HR], 1.78; 95% confidence interval [95% CI], 1.26 to 2.53), independent of HLA-DSA (HR, 5.65; 95% CI, 4.01 to 7.96). Missing self and lesions of cellular rejection were not associated. No HLA-DSAs were detectable in 146 of 222 recipients with MVI; 28 of the 146 had at least two missing self types. Missing self associated with transplant glomerulopathy after MVI (HR, 2.51; 95% CI, 1.12 to 5.62), although allograft survival was better than with HLA-DSA-associated MVI. CONCLUSION Missing self specifically and cumulatively increases MVI risk after kidney transplantation, independent of HLA-DSA. Systematic evaluation of missing self improves understanding of HLA-DSA-negative MVI and might be relevant for improved diagnostic classification and patient risk stratification.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Aleksandar Senev
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross‐Flanders, Mechelen, Belgium
| | - Maarten Coemans
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium,Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Alice Koenig
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Lyon, France
| | - Olivier Thaunat
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Lyon, France
| | - Marie-Paule Emonds
- Histocompatibility and Immunogenetics Laboratory, Belgian Red Cross‐Flanders, Mechelen, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Zhou Y, Chen X, Zheng Y, Shen R, Sun S, Yang F, Min J, Bao L, Zhang Y, Zhao X, Wang J, Wang Q. Long Non-coding RNAs and mRNAs Expression Profiles of Monocyte-Derived Dendritic Cells From PBMCs in AR. Front Cell Dev Biol 2021; 9:636477. [PMID: 33644074 PMCID: PMC7906227 DOI: 10.3389/fcell.2021.636477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Objective The objective of this study is to explore the long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) expression profiles of monocyte-derived dendritic cells (DCs) obtained from peripheral blood mononuclear cells (PBMCs). DCs are known to play a major role in the regulating function of allergic rhinitis (AR). Methods PBMCs were separately isolated from the human peripheral blood of patients with AR and normal person (NP). The mixed lymphocyte reaction (MLR) assay was used to evaluate the function of DCs. Flow cytometry was used to determine the immune regulatory function of immature DCs (imDCs) and mature DCs (mDCs). lncRNAs and mRNAs in the NP group (DCs isolated from NP) and the test group (DCs isolated from patients with AR) were identified via chip technology and bioinformatic analyses. Moreover, bioinformatic analyses were employed to identify the related biological functions of monocyte-derived DCs and construct the functional networks of lncRNAs and mRNAs that are differentially expressed (DE) in imDCs and mDCs. Results MLR was significantly higher in the mDCs group than that in the imDCs group. CD14 was highly expressed in imDCs, whereas HLA-DR, CD80, and CD86 were highly expressed in mDCs (p < 0.001). We identified 962 DE lncRNAs and 308 DE mRNAs in the imDCs of NP and patients with AR. Additionally, there were 601 DE lncRNAs and 168 DE mRNAs in the mDCs in the NP and test groups. Quantitative RT-qPCR was used to study the significant fold changes of lncRNAs and mRNAs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found 16 significant regulated pathways in imDCs and 10 significant regulated pathways in mDCs, including the phagosome, cell adhesion signaling pathway, and inflammatory mediator regulation of TRP channels pathway. Conclusion Our research studied the lncRNA and mRNA expression profiles of monocyte-derived DCs and demonstrated the functional networks that are involved in monocyte-derived DCs-mediated regulation in AR. These results provided possible molecular mechanisms of monocyte-derived DCs in the immunoregulating function and laid the foundation for the molecular therapeutic targets of AR.
Collapse
Affiliation(s)
- Yumei Zhou
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Chen
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rongmin Shen
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxian Sun
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fei Yang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiayu Min
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Bao
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Wan N, Li D, Zhou Z, Shao Y, Zheng S, Wang S. Comprehensive RNA-Sequencing Analysis in Peripheral Blood Cells Reveals Differential Expression Signatures with Biomarker Potential for Idiopathic Membranous Nephropathy. DNA Cell Biol 2019; 38:1223-1232. [PMID: 31566423 DOI: 10.1089/dna.2019.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, the clinical course of idiopathic membranous nephropathy (iMN) remains unclear and lacks direct and effective diagnostic methods. To better understand the host gene expression changes involved in the iMN process and identify the potential signatures for clinical diagnosis, we performed a whole genome-wide transcriptome profile of peripheral blood cells (PBC) from patients with iMN and healthy controls (HCs). A total of 188 differentially expressed genes (DEGs) were detected in patients with iMN versus HCs. Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that these DEGs were mainly correlated with protein targeting, ion homeostasis GO terms, and ribosome and phagosome pathways. The top 10 differentially expressed protein-coding genes with >2-fold changes and high expression levels were validated using quantitative real-time PCR, and showed high consistency with the high-throughput sequencing results. HLA-C, S100A8, and FTH1 genes were selected for further validation and showed the most significant difference between the iMN and HC group, indicating that they could be used as potential clinical diagnostic biomarkers. Our results provide novel potential diagnostic signatures for iMN and have important implications for better understanding the pathogenesis of iMN.
Collapse
Affiliation(s)
- Nan Wan
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.,Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Dingchen Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Zhe Zhou
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yong Shao
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sihan Zheng
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Shengqi Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
11
|
Littera R, Piredda G, Argiolas D, Lai S, Congeddu E, Ragatzu P, Melis M, Carta E, Michittu MB, Valentini D, Cappai L, Porcella R, Alba F, Serra M, Loi V, Maddi R, Orrù S, La Nasa G, Caocci G, Cusano R, Arras M, Frongia M, Pani A, Carcassi C. KIR and their HLA Class I ligands: Two more pieces towards completing the puzzle of chronic rejection and graft loss in kidney transplantation. PLoS One 2017; 12:e0180831. [PMID: 28686681 PMCID: PMC5501603 DOI: 10.1371/journal.pone.0180831] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kidney transplantation is a life-saving treatment for patients with end-stage renal disease. However, despite progress in surgical techniques and patient management, immunological rejection continues to have a negative impact on graft function and overall survival. Incompatibility between donors and recipients for human leukocyte antigens (HLA) of the major histocompatibility complex (MHC) generates a series of complex cellular and humoral immune response mechanisms that are largely responsible for rejection and loss of graft function. Within this context, a growing amount of evidence shows that alloreactive natural killer (NK) cells play a critical role in the immune response mechanisms elicited by the allograft. Killer immunoglobulin-like receptors (KIRs) are prominent mediators of NK cell alloreactivity. METHODS AND FINDINGS A cohort of 174 first cadaveric kidney allograft recipients and their donors were selected from a total cohort of 657 transplanted patients for retrospective immunogenetic analyses. Patients with HLA Class II mismatches were excluded. HLA Class I allele frequencies were compared among patients with chronic rejection, patients with stable graft function and a group of 2388 healthy controls. Activating and inhibitory KIR gene frequencies, KIR haplotypes, KIR-HLA ligand matches/mismatches and combinations of recipient KIRs and donor HLA Class I ligands were compared among patients with and without chronic rejection and a group of 221 healthy controls. Patients transplanted from donors homozygous for HLA-C1 antigens had a significantly higher risk for chronic rejection than patients transplanted from donors homozygous or heterozygous for HLA-C2 antigens or with epitopes belonging to the HLA-Bw4 ligand group. The Kaplan-Meier curves obtained by dividing the patients into 3 groups according to the presence or absence of one or both of the combinations of recipient KIRs and donor HLA ligands (rKIR2DL1/dHLA-C2 and rKIR3DL1/dHLA-Bw4) showed a significantly higher cumulative incidence of chronic rejection in the group of patients completely lacking these functional units. These patients showed a progressively stronger decline in modification of diet in renal disease-estimated glomerular filtration rate. CONCLUSIONS KIR genotyping should be performed at the time of enrolment of patients on the waiting list for organ transplantation. In our study, a significantly higher risk of chronic rejection after kidney transplantation was observed when recipient (r) and donor (d) pairs completely lacked the two functional rKIR-dHLA ligand combinations rKIR2DL1/dHLA-C2 and rKIR3DL1/dHLA-Bw4. This immunogenetic profile corresponds to low levels of NK cell inhibition. Therefore, patients with this high risk profile could benefit from immunosuppressive therapy aimed at reducing NK-cell cytotoxicity.
Collapse
MESH Headings
- Adult
- Cadaver
- Case-Control Studies
- Female
- Gene Expression
- Glomerular Filtration Rate
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Graft Survival/genetics
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-C Antigens/genetics
- HLA-C Antigens/immunology
- Histocompatibility
- Humans
- Kidney Failure, Chronic/immunology
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/surgery
- Kidney Transplantation
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Ligands
- Male
- Middle Aged
- Receptors, KIR2DL1/genetics
- Receptors, KIR2DL1/immunology
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Transplantation, Homologous
- Unrelated Donors
Collapse
Affiliation(s)
- Roberto Littera
- Regional Transplant Center, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
- * E-mail:
| | - Gianbenedetto Piredda
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | - Davide Argiolas
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | - Sara Lai
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Elena Congeddu
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | - Paola Ragatzu
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | - Maurizio Melis
- Regional Transplant Center, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Elisabetta Carta
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | - Maria Benigna Michittu
- Kidney Transplant Unit, Department of Renal Dieases, G. Brotzu Hospital, Cagliari, Italy
| | | | - Luisella Cappai
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Rita Porcella
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Francesco Alba
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Maria Serra
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Valentina Loi
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Roberta Maddi
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Sandro Orrù
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giorgio La Nasa
- Bone Marrow Transplant Center, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
- Hematology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Caocci
- Bone Marrow Transplant Center, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
- Hematology Unit, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Roberto Cusano
- Center for Advanced Studies, Research and Development (CRS4) Biomedical Sector, "Polaris" Technology Park, Pula, Cagliari, Italy
| | - Marcella Arras
- Bone Marrow Transplant Center, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
| | - Mauro Frongia
- Complex Structure of Urology, Kidney Transplantation and Robotic Surgery, G. Brotzu Hospital, Cagliari, Italy
| | - Antonello Pani
- Complex Structure of Nephrology and Dialysis, Department of Renal Diseases, G. Brotzu Hospital, Cagliari, Italy
| | - Carlo Carcassi
- Medical Genetics, R. Binaghi Hospital, ASSL Cagliari, ATS Sardegna, Italy
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Assadiasl S, Sepanjnia A, Aghili B, Nafar M, Ahmadpoor P, Pourrezagholi F, Parvin M, Shahlaee A, Nicknam MH, Amirzargar A. Natural Killer Cell Subsets and IL-2, IL-15, and IL-18 Genes Expressions in Chronic Kidney Allograft Dysfunction and Graft Function in Kidney Allograft Recipients. Int J Organ Transplant Med 2016; 7:212-217. [PMID: 28078060 PMCID: PMC5219582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND While acute rejection and early graft loss rates have decreased substantially over the past four decades, progressive chronic allograft dysfunction (CAD) still remains a common cause of late graft loss in kidney transplant recipients. OBJECTIVE This study was conducted to investigate the percentage of natural killer (NK) cell subsets and IL-2, 15 and 18 genes expression in two groups of CAD and well-function graft (WFG) recipients. METHODS 30 renal allograft recipients with biopsy-proven interstitial fibrosis/tubular atrophy (IF/TA) and impaired renal function, and 30 sex- and age-matched WFG patients were enrolled in this study. The percentage of NK cell subsets including NK CD56bright and NK CD56dim cells were determined by flowcytometry; IL-2, IL-15, and IL-18 genes expressions were assessed by real-time PCR. RESULTS Compared to WFG patients, there was a significant (p<0.05) increase in the percentage of NK CD56bright cells in CAD patients. However, the difference in percentage of NK CD56dim cells or CD56dim/CD56bright ratio between the studied groups was not significant. In addition, IL-2, 15 and 18 genes expressions were almost similar in CAD and WFG patients. CONCLUSION We found higher percentages of NK CD56bright subset in kidney transplant recipients with CAD without considerable changes in related cytokines' gene expression, suggesting a possible defect of NK cells maturation in these patients.
Collapse
Affiliation(s)
- S. Assadiasl
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Sepanjnia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B. Aghili
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Nafar
- Chronic Kidney Disease Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - P. Ahmadpoor
- Chronic Kidney Disease Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F. Pourrezagholi
- Chronic Kidney Disease Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Parvin
- Department of Pathology, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Shahlaee
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - M. H. Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
|
14
|
|
15
|
Abstract
PURPOSE OF REVIEW Achieving allograft tolerance is the holy grail of transplantation. However, tolerance and rejection are two extreme ends of a scale that can be tipped in either direction. We review the novel effector and regulatory mechanisms involved and factors that tip the balance in favor of rejection or regulation. RECENT FINDINGS It is increasingly recognized that established T-cell phenotypes could change their commitments. New data point to the plasticity of Th17 cells in vivo with a reciprocal balance of Th17 cells and regulatory T cells (Tregs) driven by the local cytokine environment. Treg-cell profiles have been linked to acute and chronic allograft outcomes, and emerging data also indicate a novel role of a regulatory B-cell population. Current research efforts are looking into factors that tip the balance toward allograft tolerance by targeting cytokines, novel costimulatory pathways such as T-cell immunoglobulin mucin molecules, and components of innate immunity, particularly dendritic cells. SUMMARY The balance of effector and regulatory mechanisms contributing to allograft outcome is very complex. It is likely that targeting multiple pathways will be required to achieve tolerance. Further studies are warranted to define this balance and identify optimal combination of therapeutic interventions.
Collapse
|
16
|
Kuśnierczyk P. Are killer cell immunoglobulin-like receptor genes important for the prediction of kidney graft rejection? Arch Immunol Ther Exp (Warsz) 2013; 61:321-5. [PMID: 23552952 DOI: 10.1007/s00005-013-0225-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/25/2013] [Indexed: 01/03/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed on natural killer cells and minor subpopulations of thymus-derived (T) lymphocytes. KIRs may have a long cytoplasmic tail and inhibit cell activation upon ligand (HLA class I) binding, or they may have a short cytoplasmic tail and activate a cell after ligand binding. They are encoded by up to 14 genes present in different individuals in different combinations, whence their associations with several human diseases. KIR involvement in the fate of kidney allograft has not been extensively studied; nevertheless some associations had already been noticed. Their results are not concordant: some authors found no effect of KIR genotype, whereas others detected protective effect of KIR2DL2/KIR2DS2 or KIR-KIR ligand mismatch. We found an association of KIR2DS4 gene with acute rejection and a protective effect of KIR2DS5 gene. Interestingly, in patients, whose end-stage renal disease was caused by glomerulonephritis, the effect of KIR2DS4 was stronger than HLA mismatch, whereas opposite was true for recipients with other causes of renal failure.
Collapse
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
17
|
Tran TH, Unterrainer C, Fiedler G, Döhler B, Scherer S, Ruhenstroth A, Adamek M, Middleton D, Opelz G. No impact of KIR-ligand mismatch on allograft outcome in HLA-compatible kidney transplantation. Am J Transplant 2013; 13:1063-1068. [PMID: 23398855 DOI: 10.1111/ajt.12134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 01/25/2023]
Abstract
Natural killer (NK) cell function can be modulated by the killer cell immunoglobulin-like receptors (KIR) which interact with human leukocyte antigen (HLA) class I molecules on target cells. KIR-ligand mismatching has recently been shown by van Bergen et al. (American Journal of Transplantation 2011; 11(9): 1959-1964) to be a significant risk factor for long-term graft loss in HLA-A, -B and -DR compatible kidney transplants. To verify this potentially important finding, we performed genotyping of 608 deceased-donor kidney graft recipients and their HLA-A, -B and -DR compatible donors for KIR and HLA, using samples and clinical data provided by the Collaborative Transplant Study. Graft survival of KIR-ligand-matched and -mismatched transplants was compared. We found no impact of KIR-ligand mismatching on 10-year graft survival in HLA-A, -B, -DR compatible kidney transplants. Further analysis did not reveal a significant effect of recipient activating/inhibitory KIR or KIR genotypes on graft survival. Our data do not support the concept that KIR-HLA matching might serve as a tool to improve long-term renal allograft survival.
Collapse
Affiliation(s)
- T H Tran
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - C Unterrainer
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - G Fiedler
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - B Döhler
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - S Scherer
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - A Ruhenstroth
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - M Adamek
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - D Middleton
- Transplant Immunology, Royal Liverpool University Hospital, Liverpool, UK
| | - G Opelz
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Nowak I, Magott-Procelewska M, Kowal A, Miazga M, Wagner M, Niepiekło-Miniewska W, Kamińska M, Wiśniewski A, Majorczyk E, Klinger M, Łuszczek W, Pawlik A, Płoski R, Barcz E, Senitzer D, Kuśnierczyk P. Killer immunoglobulin-like receptor (KIR) and HLA genotypes affect the outcome of allogeneic kidney transplantation. PLoS One 2012; 7:e44718. [PMID: 23028591 PMCID: PMC3441441 DOI: 10.1371/journal.pone.0044718] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/09/2012] [Indexed: 02/04/2023] Open
Abstract
Background Recipient NK cells may detect the lack of recipient's (i.e., self) HLA antigens on donor renal tissue by means of their killer cell immunoglobulin-like receptors (KIRs). KIR genes are differently distributed in individuals, possibly contributing to differences in response to allogeneic graft. Methodology/Principal Findings We compared frequencies of 10 KIR genes by PCR-SSP in 93 kidney graft recipients rejecting allogeneic renal transplants with those in 190 recipients accepting grafts and 690 healthy control individuals. HLA matching results were drawn from medical records. We observed associations of both a full-length KIR2DS4 gene and its variant with 22-bp deletion with kidney graft rejection. This effect was modulated by the HLA-B,-DR matching, particularly in recipients who did not have glomerulonephritis but had both forms of KIR2DS4 gene. In contrast, in recipients with glomerulonephritis, HLA compatibility seemed to be much less important for graft rejection than the presence of KIR2DS4 gene. Simultaneous presence of both KIR2DS4 variants strongly increased the probability of rejection. Interestingly, KIR2DS5 seemed to protect the graft in the presence of KIR2DS4fl but in the absence of KIR2DS4del. Conclusions/Significance Our results suggest a protective role of KIR2DS5 in graft rejection and an association of KIR2DS4 with kidney rejection, particularly in recipients with glomerulonephritis.
Collapse
Affiliation(s)
- Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maria Magott-Procelewska
- Department and Clinic of Nephrology and Transplant Medicine, Faculty of Medicine, Medical University of Wroclaw, Wrocław, Poland
| | - Agnieszka Kowal
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Maciej Miazga
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Małgorzata Kamińska
- Health Care Center at the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Andrzej Wiśniewski
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Edyta Majorczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marian Klinger
- Department and Clinic of Nephrology and Transplant Medicine, Faculty of Medicine, Medical University of Wroclaw, Wrocław, Poland
| | - Wioleta Łuszczek
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Pawlik
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University, Szczecin, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Centre of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Barcz
- 1st Chair and Clinic of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - David Senitzer
- City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
- * E-mail:
| |
Collapse
|