1
|
Therapeutic Molecular Insights into the Active Engagement of Cannabinoids in the Therapy of Parkinson's Disease: A Novel and Futuristic Approach. Neurotox Res 2023; 41:85-102. [PMID: 36567416 DOI: 10.1007/s12640-022-00619-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death. Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain's dopaminergic systems, a condition for which there is now no treatment. The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson's disease, making it immensely useful in the treatment of such a debilitating illness.
Collapse
|
2
|
Zamani M, Budde T, Bozorgi H. Intracerebroventricular administration of N-type calcium channel blocker ziconotide displays anticonvulsant, anxiolytic, and sedative effects in rats: A preclinical and pilot study. Epilepsy Behav 2020; 111:107251. [PMID: 32593873 DOI: 10.1016/j.yebeh.2020.107251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ziconotide (ω-conotoxin MVIIA peptide) is a novel analgesic agent acting on voltage-gated calcium channels and is administered intrathecally for neuropathic pain. While antiepileptic activities of other types of calcium channel blockers (T- or L-type) are well established, there is no information regarding the effect of ziconotide as an N-type calcium channel antagonist in pentylenetetrazol-induced seizures or its anxiolytic and sedative activities. The present study is the first to report on these effects. METHODS To evaluate the anticonvulsant activity of ziconotide in the pentylenetetrazol (60 mg/kg) seizure model, ziconotide was administered intracerebroventricular (i.c.v.) as a single dose (1 μg/rat) or repeatedly (chronic administration: 0.1, 0.3, or 1 μg/rat once a day for seven days). The anxiolytic and sedative actions of ziconotide were evaluated with the elevated plus maze, light/dark (LD) box, and pentobarbital-induced sleep tests. Immediately after behavioral testing, the amygdala was completely removed bilaterally to determine corticosterone levels by immunoassay. RESULTS In all dosing regimens, ziconotide significantly decreased the seizure frequency and also delayed the latency period compared with control. Chronic administration affected the percentage of mortality protection, while a single dose of ziconotide did not. In behavioral tests, ziconotide significantly increased both the number of entries and the percentage of time spent in the open arms of the elevated plus maze. Furthermore, ziconotide significantly increased the latency period and the number of entries into the light compartment during the LD box examination. Chronic administration of ziconotide significantly reduced the latency to sleep and increased sleeping time, whereas these parameters were not affected by a single dose. Additionally, amygdala corticosterone levels were significantly decreased in rats treated with ziconotide compared with control. CONCLUSION Ziconotide displays beneficial neurobehavioral effects in a model of epilepsy with anxiety as its comorbid event. It seems that at least one of the mechanisms involved in these effects is associated with a decrease in brain corticosterone levels. The main advantage of ziconotide over benzodiazepines (routine anxiolytic and sedative drugs) is that it does not cause tolerance, dependency, and addiction. Therefore, more than ever, it is necessary to improve the convenience of drug delivery protocols and attenuate the adverse effects associated with ziconotide-based therapies.
Collapse
Affiliation(s)
- Melika Zamani
- Department of Pharmacology, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University, Münster, Germany
| | - Hooman Bozorgi
- Department of Pharmacology, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Drieu A, Lanquetin A, Levard D, Glavan M, Campos F, Quenault A, Lemarchand E, Naveau M, Pitel AL, Castillo J, Vivien D, Rubio M. Alcohol exposure-induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight 2020; 5:129226. [PMID: 31990687 DOI: 10.1172/jci.insight.129226] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol abuse is a major public health problem worldwide, causing a wide range of preventable morbidity and mortality. In this translational study, we show that heavy drinking (HD) (≥6 standard drinks/day) is independently associated with a worse outcome for ischemic stroke patients. To study the underlying mechanisms of this deleterious effect of HD, we performed an extensive analysis of the brain inflammatory responses of mice chronically exposed or not to 10% alcohol before and after ischemic stroke. Inflammatory responses were analyzed at the parenchymal, perivascular, and vascular levels by using transcriptomic, immunohistochemical, in vivo 2-photon microscopy and molecular MRI analyses. Alcohol-exposed mice show, in the absence of any other insult, a neurovascular inflammatory priming (i.e., an abnormal inflammatory status including an increase in brain perivascular macrophages [PVM]) associated with exacerbated inflammatory responses after a secondary insult (ischemic stroke or LPS challenge). Similar to our clinical data, alcohol-exposed mice showed larger ischemic lesions. We show here that PVM are key players on this aggravating effect of alcohol, since their specific depletion blocks the alcohol-induced aggravation of ischemic lesions. This study opens potentially new therapeutic avenues aiming at blocking alcohol-induced exacerbation of the neurovascular inflammatory responses triggered after ischemic stroke.
Collapse
Affiliation(s)
- Antoine Drieu
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Anastasia Lanquetin
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Damien Levard
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Martina Glavan
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Aurélien Quenault
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Eloïse Lemarchand
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Mikaël Naveau
- CNRS, UMR-S 3408, GIP Cyceron, Normandie Université, Caen, France
| | - Anne Lise Pitel
- INSERM, Neuropsychologie et Imagerie de la Mémoire Humaine, UMR-S 1077, Université Paris Sciences et Lettres, Caen, France
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Denis Vivien
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| | - Marina Rubio
- INSERM, Physiopathology and Imaging of Neurological Disorders, UMR-S 1237, Normandie Université, Caen, France
| |
Collapse
|
4
|
Akano EO, Otite FO, Chaturvedi S. Alcohol withdrawal is associated with poorer outcome in acute ischemic stroke. Neurology 2019; 93:e1944-e1954. [PMID: 31653706 DOI: 10.1212/wnl.0000000000008518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/06/2019] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To determine the association between alcohol abuse (AA) and alcohol withdrawal (AW) with acute ischemic stroke (AIS) outcomes. METHODS All adult AIS admissions in the United States from 2004 to 2014 were identified from the National Inpatient Sample (weighted n = 4,438,968). Multivariable-adjusted models were used to evaluate the association of AW with in-hospital medical complications, mortality, cost, and length of stay in patients with AIS. RESULTS Of the AA admissions, 10.6% of patients, representing 0.4% of all AIS, developed AW. The prevalence of AA and AW in AIS increased by 45.2% and 40.0%, respectively, over time (p for trend <0.001). Patients with AA were predominantly men (80.2%), white (65.9%), and in the 40- to 59-year (44.6%) and 60- to 79-year (45.6%) age groups. After multivariable adjustment, AIS admissions with AW had >50% increased odds of urinary tract infection, pneumonia, sepsis, gastrointestinal bleeding, deep venous thrombosis, and acute renal failure compared to those without AW. Patients with AW were also 32% more likely to die during their AIS hospitalization compared to those without AW (odds ratio 1.32, 95% confidence interval 1.11-1.58). AW was associated with ≈15-day increase in length of stay and ≈$5,000 increase in hospitalization cost (p < 0.001). CONCLUSION AW is associated with increased cost, longer hospitalizations, and higher odds of medical complications and in-hospital mortality after AIS. Proactive surveillance and management of AW may be important in improving outcomes in these patients.
Collapse
Affiliation(s)
- Emmanuel O Akano
- From the Molecular Neuropharmacology Unit (E.O.A.), National Institutes of Neurologic Disorders and Stroke, NIH, Bethesda, MD; Division of Neurocritical Care (F.O.O.), Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston; and Department of Neurology (S.C.), University of Maryland School of Medicine, Baltimore.
| | - Fadar Oliver Otite
- From the Molecular Neuropharmacology Unit (E.O.A.), National Institutes of Neurologic Disorders and Stroke, NIH, Bethesda, MD; Division of Neurocritical Care (F.O.O.), Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston; and Department of Neurology (S.C.), University of Maryland School of Medicine, Baltimore.
| | - Seemant Chaturvedi
- From the Molecular Neuropharmacology Unit (E.O.A.), National Institutes of Neurologic Disorders and Stroke, NIH, Bethesda, MD; Division of Neurocritical Care (F.O.O.), Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston; and Department of Neurology (S.C.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
5
|
Abstract
Cannabinoid receptors, endocannabinoids and the enzymes responsible for their biosynthesis and degradation constitute the endocannabinoid system. In recent decades, the endocannabinoid system has attracted considerable interest as a potential therapeutic target in numerous pathological conditions. Its involvement in several physiological processes is well known, such as in energy balance, appetite stimulation, blood pressure, pain modulation, embryogenesis, nausea and vomiting control, memory, learning and immune response, among others, as well as in pathological conditions where it exerts a protective role in the development of certain disorders. As a result, it has been reported that changes in endocannabinoid levels may be related to neurological diseases such as Parkinson's disease, Huntington's disease, Alzheimer's disease and multiple sclerosis, as well as anorexia and irritable bowel syndrome. Alterations in the endocannabinoid system have also been associated with cancer, affecting the growth, migration and invasion of some tumours. Cannabinoids have been tested in several cancer types, including brain, breast and prostate cancers. Cannabinoids have shown promise as analgesics for the treatment of both inflammatory and neuropathic pain. There is also evidence for a role of the endocannabinoid system in the control of emotional states, and cannabinoids could prove useful in decreasing and palliating post-traumatic stress disorder symptoms and anxiolytic disorders. The role of the endocannabinoid system in addictions has also been examined, and cannabinoids have been postulated as alternative and co-adjuvant treatments in some abuse syndromes, mainly in ethanol and opioid abuses. The expression of the endocannabinoid system in the eye suggests that it could be a potential therapeutic target for eye diseases. Considering the importance of the endocannabinoid system and the therapeutic potential of cannabinoids in this vast number of medical conditions, several clinical studies with cannabinoid-based medications are ongoing. In addition, some cannabinoid-based medications have already been approved in various countries, including nabilone and dronabinol capsules for the treatment of nausea and vomiting associated with chemotherapy, dronabinol capsules for anorexia, an oral solution of dronabinol for both vomiting associated with chemotherapy and anorexia, a Δ9-tetrahydrocannabinol/cannabidiol oromucosal spray for pain related to cancer and for spasticity and pain associated with multiple sclerosis, and an oral solution of cannabidiol for Dravet and Lennox-Gastaut syndromes. Here, we review the available efficacy, safety and tolerability data for cannabinoids in a range of medical conditions.
Collapse
Affiliation(s)
- Ana Isabel Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Plaza Ramón y Cajal s/n, 28040 , Madrid, Spain. .,Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 , Madrid, Spain.
| |
Collapse
|
6
|
Bozorgi H, Motaghi E, Zamani M, Ghavimi R. Neuronal calcium channels blocker, ziconotide (ɷ-conotoxin MVIIA), reverses morphine withdrawal-induced memory impairments via alteration in hippocampal NMDA receptor expression in rats. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1525402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hooman Bozorgi
- Laboratory of Learning and Memory, Research Center of Physiology and Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Motaghi
- Department of Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Melika Zamani
- Department of Pharmacology, School of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ghavimi
- Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
Liput DJ, Pauly JR, Stinchcomb AL, Nixon K. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration. Brain Sci 2017; 7:brainsci7120158. [PMID: 29186065 PMCID: PMC5742761 DOI: 10.3390/brainsci7120158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022] Open
Abstract
Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs). The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs), and then evaluated the efficacy of fatty acid amide hydrolase (FAAH) inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [³H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB) staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up "target engagement" study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.
Collapse
Affiliation(s)
- Daniel J Liput
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
8
|
Marszalek-Grabska M, Gibula-Bruzda E, Bodzon-Kulakowska A, Suder P, Gawel K, Talarek S, Listos J, Kedzierska E, Danysz W, Kotlinska JH. ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from 'binge-like' ethanol exposure in rats. Behav Brain Res 2017; 338:9-16. [PMID: 29030082 DOI: 10.1016/j.bbr.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 11/15/2022]
Abstract
Repeated exposure to and withdrawal from ethanol induces deficits in spatial reversal learning. Data indicate that metabotropic glutamate 5 (mGlu5) receptors are implicated in synaptic plasticity and learning and memory. These receptors functionally interact with N-methyl-d-aspartate (NMDA) receptors, and activation of one type results in the activation of the other. We examined whether (S)-(4-fluorophenyl)(3-(3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)-piperidin-1-yl (ADX-47273), a positive allosteric modulator (PAM) of mGlu5 receptor, attenuates deficits in reversal learning induced by withdrawal (11-13days) from 'binge-like' ethanol input (5.0g/kg, i.g. for 5days) in the Barnes maze (a spatial learning) task in rats. We additionally examined the effects of ADX-47273 on the expression of the NMDA receptors subunit, GluN2B, in the hippocampus and prefrontal cortex, on the 13th day of ethanol withdrawal. Herein, withdrawal from repeated ethanol administration impaired reversal learning, but not the probe trial. Moreover, ADX-47273 (30mg/kg, i.p.) given prior to the first reversal learning trial for 3days in the Barnes maze, significantly enhanced performance in the ethanol-treated group. The 13th day of ethanol abstinence decreased the expression of the GluN2B subunit in the selected brain regions, but ADX-47273 administration increased it. In conclusion, positive allosteric modulation of mGlu5 receptors recovered spatial reversal learning impairment induced by withdrawal from 'binge-like' ethanol exposure. Such effect seems to be correlated with the mGlu5 receptors mediated potentiation of GluN2B-NMDA receptor mediated responses in the hippocampus and prefrontal cortex. Thus, our results emphasize the role of mGlu5 receptor PAM in the adaptive learning impaired by ethanol exposure.
Collapse
Affiliation(s)
| | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | | | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
9
|
Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms. Eur J Pharmacol 2016; 786:224-233. [PMID: 27266665 DOI: 10.1016/j.ejphar.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 11/23/2022]
Abstract
Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms.
Collapse
|
10
|
Cannabinoid Ligands and Alcohol Addiction: A Promising Therapeutic Tool or a Humbug? Neurotox Res 2015; 29:173-96. [PMID: 26353844 PMCID: PMC4701763 DOI: 10.1007/s12640-015-9555-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
The vast therapeutic potential of cannabinoids of both synthetic and plant-derived origins currently makes these compounds the focus of a growing interest. Although cannabinoids are still illicit drugs, their possible clinical usefulness, including treatment of acute or neuropathic pain, have been suggested by several studies. In addition, some observations indicate that cannabinoid receptor antagonists may be useful for the treatment of alcohol dependence and addiction, which is a major health concern worldwide. While the synergism between alcohol and cannabinoid agonists (in various forms) creates undesirable side effects when the two are consumed together, the administration of CB1 antagonists leads to a significant reduction in alcohol consumption. Furthermore, cannabinoid antagonists also mitigate alcohol withdrawal symptoms. Herein, we present an overview of studies focusing on the effects of cannabinoid ligands (agonists and antagonists) during acute or chronic consumption of ethanol.
Collapse
|
11
|
Lemarchand E, Gauberti M, Martinez de Lizarrondo S, Villain H, Repessé Y, Montagne A, Vivien D, Ali C, Rubio M. Impact of alcohol consumption on the outcome of ischemic stroke and thrombolysis: role of the hepatic clearance of tissue-type plasminogen activator. Stroke 2015; 46:1641-50. [PMID: 25922513 DOI: 10.1161/strokeaha.114.007143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Tissue-type plasminogen activator (tPA) is the only acute treatment for ischemic stroke. Unfortunately, the benefit of tPA-driven thrombolysis is not systematic, and understanding the reasons for this is mandatory. The balance between beneficial and detrimental effects of tPA might explain the limited overall efficiency of thrombolysis. Here, we investigated whether this balance could be influenced by excessive alcohol intake. METHODS We used a murine model of thromboembolic stroke, coupled to an array of biochemical assays, near-infrared or magnetic resonance imaging scans, 2-photon microscopy, hydrodynamic transfections, and immunohistological techniques. RESULTS We found that 6 weeks of alcohol consumption (10% in drinking water) worsens ischemic lesions and cancels the beneficial effects of tPA-induced thrombolysis. We accumulate in vivo and in vitro evidence showing that this aggravation is correlated with a decrease in lipoprotein receptor-related protein 1-mediated hepatic clearance of tPA in alcohol-exposed mice. CONCLUSIONS An efficient liver-driven clearance of tPA might influence the safety of thrombolysis after stroke.
Collapse
Affiliation(s)
- Eloïse Lemarchand
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Maxime Gauberti
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Sara Martinez de Lizarrondo
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Hélène Villain
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Yohann Repessé
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Axel Montagne
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Denis Vivien
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Carine Ali
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.)
| | - Marina Rubio
- From the INSERM UMR-S U919 "serine proteases and pathophysiology of the neurovascular unit" - SP2U Université Caen Basse-Normandie, GIP CYCERON, Caen, France (E.L., M.G., S.M.d.L., H.V., Y.R., A.M., D.V., C.A., M.R.); Service d'Hématologie CHU Caen, France (Y.R.); and Délégation Recherche Clinique et Innovation (DRCI), CHU de Caen, Caen, France (M.R.).
| |
Collapse
|
12
|
Changes in cerebral CB1 receptor availability after acute and chronic alcohol abuse and monitored abstinence. J Neurosci 2014; 34:2822-31. [PMID: 24553924 DOI: 10.1523/jneurosci.0849-13.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Involvement of the type 1 cannabinoid receptor (CB1R) in the effects of alcohol on the brain is supported by animal experiments, but how in vivo CB1R levels are altered in alcoholic patients is still unclear. To assess the short-time effects of a binge drinking episode on CB1R availability, 20 healthy social drinkers underwent [(18)F]MK-9470-positron emission tomography (PET) at baseline and after intravenous ethanol administration (ALC ACU). Moreover, 26 alcoholic patients underwent sequential CB1R PET after chronic heavy drinking (ALC CHR) and after 1 month of abstinence (ALC ABST). Seventeen healthy subjects served as controls. Compared with baseline, ALC ACU resulted in a global increase of CB1R availability (+15.8%). In contrast, a global decreased CB1R availability was found in ALC CHR patients (-16.1%) compared with controls, which remained unaltered after abstinence (-17.0%). Voxel-based analysis showed that ALC CHR patients had reduced CB1R availability, especially in the cerebellum and parieto-occipital cortex. After abstinence, reduced CB1R availability extended also to other areas such as the ventral striatum and mesotemporal lobe. In conclusion, whereas the acute alcohol effect is an increase in CB1R availability, chronic heavy drinking leads to reduced CB1R availability that is not reversible after 1 month of abstinence. Longer follow-up is required to differentiate whether this is a compensatory effect of repeated endocannabinoid overstimulation or an enduring trait-like feature. An enhanced CB1R signaling may offer a new therapeutic direction for treatment of the negative affective state produced by alcohol withdrawal and abstinence, which is critical for the maintenance of alcohol addiction.
Collapse
|
13
|
Lax P, Esquiva G, Altavilla C, Cuenca N. Neuroprotective effects of the cannabinoid agonist HU210 on retinal degeneration. Exp Eye Res 2014; 120:175-85. [PMID: 24495949 DOI: 10.1016/j.exer.2014.01.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022]
Abstract
Cannabinoids have been demonstrated to exert neuroprotective effects on different types of neuronal insults. Here we have addressed the therapeutic potential of the synthetic cannabinoid HU210 on photoreceptor degeneration, synaptic connectivity and functional activity of the retina in the transgenic P23H rat, an animal model for autosomal dominant retinitis pigmentosa (RP). In P23H rats administered with HU210 (100 μg/kg, i.p.) from P24 to P90, ERG recordings showed an amelioration of vision loss, as compared to vehicle-administered animals. Under scotopic conditions, the maximum a-wave amplitudes recorded at P60 and P90 were higher in HU210-treated animals, as compared to the values obtained in untreated animals. The scotopic b-waves were significantly higher in treated animals than in untreated rats at P30, P60 and P90. This attenuation of visual deterioration correlated with a delay in photoreceptor degeneration and the preservation of retinal cytoarchitecture. HU210-treated animals had 40% more photoreceptors than untreated animals. Presynaptic and postsynaptic elements, as well as the synaptic contacts between photoreceptors and bipolar or horizontal cells, were also preserved in HU210-treated P23H rats. These results indicate that HU210 preserves cone and rod structure and function, together with their contacts with postsynaptic neurons, in P23H rats. These data suggest that cannabinoids are potentially useful to delay retinal degeneration in RP patients.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Gema Esquiva
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Cesare Altavilla
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain; Institute Ramón Margalef, University of Alicante, Alicante, Spain.
| |
Collapse
|
14
|
Guest J, Grant R, Mori TA, Croft KD. Changes in oxidative damage, inflammation and [NAD(H)] with age in cerebrospinal fluid. PLoS One 2014; 9:e85335. [PMID: 24454842 PMCID: PMC3891813 DOI: 10.1371/journal.pone.0085335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/04/2013] [Indexed: 12/27/2022] Open
Abstract
An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD+), an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H)] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity) in the cerebrospinal fluid (CSF) of healthy humans across a wide age range (24–91 years). CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes) (p = 0.04) and inflammation (IL-6) (p = 0.00) and decreased levels of both total antioxidant capacity (p = 0.00) and NAD(H) (p = 0.05), compared to their younger counterparts. A positive association was also observed between plasma [NAD(H)] and CSF NAD(H) levels (p = 0.03). Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H)] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H) compared to those who consumed no alcohol (p<0.05). An increase in CSF IL-6 was observed in participants who reported drinking >0–1 (p<0.05) and >1 (p<0.05) standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H)] in the brain which may be exacerbated by alcohol intake.
Collapse
Affiliation(s)
- Jade Guest
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, New South Wales, Australia
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ross Grant
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Trevor A. Mori
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Kevin D. Croft
- School of Medicine and Pharmacology, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
15
|
Hirvonen J, Zanotti-Fregonara P, Umhau JC, George DT, Rallis-Frutos D, Lyoo CH, Li CT, Hines CS, Sun H, Terry GE, Morse C, Zoghbi SS, Pike VW, Innis RB, Heilig M. Reduced cannabinoid CB1 receptor binding in alcohol dependence measured with positron emission tomography. Mol Psychiatry 2013; 18:916-21. [PMID: 22776901 PMCID: PMC3594469 DOI: 10.1038/mp.2012.100] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/12/2012] [Indexed: 11/09/2022]
Abstract
Brain cannabinoid CB1 receptors contribute to alcohol-related behaviors in experimental animals, but their potential role in humans with alcohol dependence is poorly understood. We measured CB1 receptors in alcohol dependent patients in early and protracted abstinence, and in comparison with control subjects without alcohol use disorders, using positron emission tomography and [(18)F]FMPEP-d2, a radioligand for CB1 receptors. We scanned 18 male in-patients with alcohol dependence twice, within 3-7 days of admission from ongoing drinking, and after 2-4 weeks of supervised abstinence. Imaging data were compared with those from 19 age-matched healthy male control subjects. Data were also analyzed for potential influence of a common functional variation (rs2023239) in the CB1 receptor gene (CNR1) that may moderate CB1 receptor density. On the first scan, CB1 receptor binding was 20-30% lower in patients with alcohol dependence than in control subjects in all brain regions and was negatively correlated with years of alcohol abuse. After 2-4 weeks of abstinence, CB1 receptor binding remained similarly reduced in these patients. Irrespective of the diagnostic status, C allele carriers at rs2023239 had higher CB1 receptor binding compared with non-carriers. Alcohol dependence is associated with a widespread reduction of cannabinoid CB1 receptor binding in the human brain and this reduction persists at least 2-4 weeks into abstinence. The correlation of reduced binding with years of alcohol abuse suggests an involvement of CB1 receptors in alcohol dependence in humans.
Collapse
Affiliation(s)
- Jussi Hirvonen
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | | | - John C. Umhau
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - David T. George
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - Denise Rallis-Frutos
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Chul Hyoung Lyoo
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Cheng-Ta Li
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Christina S. Hines
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Hui Sun
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| | - Garth E. Terry
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Cheryl Morse
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, NIH, Bethesda, MD
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD
| |
Collapse
|
16
|
Coelhoso CC, Engelke DS, Filev R, Silveira DX, Mello LE, Santos-Junior JG. Temporal and behavioral variability in cannabinoid receptor expression in outbred mice submitted to ethanol-induced locomotor sensitization paradigm. Alcohol Clin Exp Res 2013; 37:1516-26. [PMID: 23647533 DOI: 10.1111/acer.12130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 02/04/2013] [Indexed: 01/29/2023]
Abstract
BACKGROUND There is a close relationship between the endocannabinoid system and alcoholism. This study investigated possible differential expression of cannabinoid receptors CB1 (CB1R) and CB2 (CB2R) in an outbred mice strain displaying behavioral variability to ethanol (EtOH)-induced locomotor sensitization. METHODS Male adult Swiss mice treated chronically with EtOH (2 g/kg, i.p., daily for 21 days) were classified as "EtOH_High" or "EtOH_Low" according to their locomotor activity after the 21st EtOH injection. A control group was similarly injected with saline. Temporal analysis of CB1R and CB2R immunoreactivity was performed in 3 different occasions: (i) at the end of chronic EtOH treatment, (ii) on the fifth day of EtOH withdrawal, and (iii) after EtOH challenge. RESULTS Overall, no differences were seen between experimental groups regarding the CB1R at the end of acquisition. However, there were decreases in CB2R in the prefrontal cortex and the hippocampus in EtOH_Low mice. On the fifth day of withdrawal, only EtOH_High mice presented increase in CB1R. Nonetheless, CB2R up-regulation was observed in both EtOH_High and EtOH_Low mice. EtOH challenge counteracted CB1R and CBR2 up-regulation, mainly in the EtOH_High, in structures related to emotionality, such as prefrontal cortex, ventral tegmental area, amygdala, striatum, and hippocampus. CONCLUSIONS There are different patterns of cannabinoid receptor expression during locomotor sensitization paradigm, at both temporal and behavioral perspectives. We hypothesize that CB2R down-regulation might be related to resilience to develop locomotor sensitization, while CB1R up-regulation relates to withdrawal aspects in sensitized mice.
Collapse
Affiliation(s)
- Cássia C Coelhoso
- Laboratory of Neurobiology , Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S. The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 2013; 33:246-64. [DOI: 10.1002/jat.2828] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Panagiotis Zogopoulos
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Ioanna Vasileiou
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Efstratios Patsouris
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| | - Stamatios Theocharis
- 1st Department of Pathology, Medical School; National and Kapodistrian University of Athens; Athens; Greece
| |
Collapse
|