1
|
Tang T, Pei M, Xiao Y, Deng Y, Lu Y, Yu XQ, Wen L, Hu Q. Functional Analysis of Forkhead Transcription Factor Fd59a in the Spermatogenesis of Drosophila melanogaster. INSECTS 2024; 15:480. [PMID: 39057213 PMCID: PMC11277555 DOI: 10.3390/insects15070480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Spermatogenesis is critical for insect reproduction and is regulated by many different genes. In this study, we found that Forkhead transcription factor Fd59a functions as a key factor in the spermatogenesis of Drosophila melanogaster. Fd59a contains a conversed Forkhead domain, and it is clustered to the FoxD subfamily with other FoxD members from some insect and vertebrate species. Mutations in Fd59a caused swelling in the apical region of the testis. More importantly, fewer mature sperm were present in the seminal vesicle of Fd59a mutant flies compared to the control flies, and the fertility of Fd59a2/2 mutant males was significantly lower than that of the control flies. Immunofluorescence staining showed that the homeostasis of the testis stem cell niche in Fd59a2/2 mutant and Fd59a RNAi flies was disrupted and the apoptosis of sperm bundles was increased. Furthermore, results from RNA sequencing and qRT-PCR suggested that Fd59a can regulate the expression of genes related to reproductive process and cell death. Taken together, our results indicated that Fd59a plays a key role in the spermatogenesis of Drosophila.
Collapse
Affiliation(s)
- Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Mengyuan Pei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Yanhong Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Yingshan Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.T.); (M.P.); (Y.X.); (Y.D.); (Y.L.); (X.-Q.Y.)
| |
Collapse
|
2
|
Fingerhut JM, Yamashita YM. The regulation and potential functions of intronic satellite DNA. Semin Cell Dev Biol 2022; 128:69-77. [PMID: 35469677 DOI: 10.1016/j.semcdb.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.
Collapse
Affiliation(s)
- Jaclyn M Fingerhut
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
3
|
Nitschko V, Kunzelmann S, Fröhlich T, Arnold GJ, Förstemann K. Trafficking of siRNA precursors by the dsRBD protein Blanks in Drosophila. Nucleic Acids Res 2020; 48:3906-3921. [PMID: 32025726 PMCID: PMC7144943 DOI: 10.1093/nar/gkaa072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 01/03/2023] Open
Abstract
RNA interference targets aberrant transcripts with cognate small interfering RNAs, which derive from double-stranded RNA precursors. Several functional screens have identified Drosophila blanks/lump (CG10630) as a facilitator of RNAi, yet its molecular function has remained unknown. The protein carries two dsRNA binding domains (dsRBD) and blanks mutant males have a spermatogenesis defect. We demonstrate that blanks selectively boosts RNAi triggered by dsRNA of nuclear origin. Blanks binds dsRNA via its second dsRBD in vitro, shuttles between nucleus and cytoplasm and the abundance of siRNAs arising at many sites of convergent transcription is reduced in blanks mutants. Since features of nascent RNAs - such as introns and transcription beyond the polyA site – contribute to the small RNA pool, we propose that Blanks binds dsRNA formed by cognate nascent RNAs in the nucleus and fosters its export to the cytoplasm for dicing. We refer to the resulting small RNAs as blanks exported siRNAs (bepsiRNAs). While bepsiRNAs were fully dependent on RNA binding to the second dsRBD of blanks in transgenic flies, male fertility was not. This is consistent with a previous report that linked fertility to the first dsRBD of Blanks. The role of blanks in spermatogenesis appears thus unrelated to its role in dsRNA export.
Collapse
Affiliation(s)
- Volker Nitschko
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Stefan Kunzelmann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Thomas Fröhlich
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Georg J Arnold
- Laboratory of Functional Genome Analysis, Ludwig-Maximilians-Universität, 81377 München, Germany
| | - Klaus Förstemann
- Genzentrum & Department Biochemie, Ludwig-Maximilians-Universität, 81377 München, Germany
| |
Collapse
|
4
|
Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet 2019; 15:e1008028. [PMID: 31071079 PMCID: PMC6508621 DOI: 10.1371/journal.pgen.1008028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
Abstract
Intron gigantism, where genes contain megabase-sized introns, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism. We find that two Drosophila genes with intron gigantism, kl-3 and kl-5, are transcribed in a spatiotemporal manner over the course of spermatocyte differentiation, which spans ~90 hours. The introns of these genes contain megabases of simple satellite DNA repeats that comprise over 99% of the gene loci, and these satellite-DNA containing introns are transcribed. We identify two RNA-binding proteins that specifically localize to kl-3 and kl-5 transcripts and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation. Introns are non-coding elements of eukaryotic genes, often containing important regulatory sequences. Curiously, some genes contain introns so large that more than 99% of the gene locus is non-coding. One of the best-studied large genes, Dystrophin, a causative gene for Duchenne Muscular Dystrophy, spans 2.2Mb, only 11kb of which is coding. This phenomenon, ‘intron gigantism’, is observed across species, yet little is known about its purpose or regulation. Here we identify a unique gene expression program utilized for the proper expression of genes with intron gigantism using Drosophila spermatogenic genes as a model system. We show that the gigantic introns of these genes are transcribed in line with the exons, likely as a single transcript. We identify two RNA-binding proteins that specifically localize to the site of transcription and are needed for the successful transcription or processing of these genes. We propose that genes with intron gigantism require a unique gene expression program, which may serve as a platform to regulate gene expression during cellular differentiation.
Collapse
|
5
|
An RNA-binding protein Blanks plays important roles in defining small RNA and mRNA profiles in Drosophila testes. Heliyon 2018; 4:e00706. [PMID: 30094376 PMCID: PMC6074722 DOI: 10.1016/j.heliyon.2018.e00706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/10/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023] Open
Abstract
Drosophila Blanks is a testes-specific RNA-binding protein required for post-meiotic spermiogenesis. However, Blanks's role in regulating RNA populations in the testes remains unknown. We performed small RNA and mRNA high-throughput sequencing in blanks mutant testes and controls. We identified two miRNAs, one siRNA, and hundreds of mRNAs that are significantly upregulated or downregulated in blanks mutant testes. Pathway analysis revealed that differentially expressed mRNAs are involved in catabolic and metabolic processes, anion and cation transport, mating, and reproductive behavior. Our results reveal that Blanks plays important roles in defining testicular small RNA and mRNA profiles.
Collapse
|
6
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|
7
|
Cheng W, Ip YT, Xu Z. Gudu, an Armadillo repeat-containing protein, is required for spermatogenesis in Drosophila. Gene 2013; 531:294-300. [PMID: 24055424 DOI: 10.1016/j.gene.2013.08.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 08/20/2013] [Accepted: 08/26/2013] [Indexed: 01/08/2023]
Abstract
The Drosophila annotated gene CG5155 encodes a protein that contains 10 Armadillo-repeats and has an unknown function. To fill this gap, we performed loss-of-function studies using RNAi. By analysis of four independent Drosophila RNAi lines targeting two non-overlapping regions of the CG5155 transcript, we demonstrate that this gene is required for male fertility. Therefore, we have named this gene Gudu. The transcript of Gudu is highly enriched in adult testes. Knockdown of Gudu by a ubiquitous driver leads to defects in the formation of the individualization complex that is required for spermatid maturation, thereby impairing spermatogenesis. Furthermore, testis-specific knockdown of Gudu by crossing the RNAi lines with the bam-Gal4 driver is sufficient to cause the infertility and defective spermatogenesis. Since Gudu is highly homologous to vertebrate ARMC4, also an Armadillo-repeat-containing protein enriched in testes, our results suggest that Gudu and ARMC4 are a subfamily of Armadillo-repeat containing proteins that may have an evolutionarily conserved function in spermatogenesis.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Zuoshang Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|