1
|
Chaves-Arquero B, Martínez-Lumbreras S, Sibille N, Camero S, Bernadó P, Jiménez MÁ, Zorrilla S, Pérez-Cañadillas JM. eIF4G1 N-terminal intrinsically disordered domain is a multi-docking station for RNA, Pab1, Pub1, and self-assembly. Front Mol Biosci 2022; 9:986121. [PMID: 36213119 PMCID: PMC9537944 DOI: 10.3389/fmolb.2022.986121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Yeast eIF4G1 interacts with RNA binding proteins (RBPs) like Pab1 and Pub1 affecting its function in translation initiation and stress granules formation. We present an NMR and SAXS study of the N-terminal intrinsically disordered region of eIF4G1 (residues 1-249) and its interactions with Pub1, Pab1 and RNA. The conformational ensemble of eIF4G11-249 shows an α-helix within the BOX3 conserved element and a dynamic network of fuzzy π-π and π-cation interactions involving arginine and aromatic residues. The Pab1 RRM2 domain interacts with eIF4G1 BOX3, the canonical interaction site, but also with BOX2, a conserved element of unknown function to date. The RNA1 region interacts with RNA through a new RNA interaction motif and with the Pub1 RRM3 domain. This later also interacts with eIF4G1 BOX1 modulating its intrinsic self-assembly properties. The description of the biomolecular interactions involving eIF4G1 to the residue detail increases our knowledge about biological processes involving this key translation initiation factor.
Collapse
Affiliation(s)
- Belén Chaves-Arquero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Santiago Martínez-Lumbreras
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Sergio Camero
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - M. Ángeles Jiménez
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry “Rocasolano”, CSIC, Madrid, Spain
| | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC, Madrid, Spain
| | | |
Collapse
|
2
|
Embarc-Buh A, Francisco-Velilla R, Camero S, Pérez-Cañadillas JM, Martínez-Salas E. The RBS1 domain of Gemin5 is intrinsically unstructured and interacts with RNA through conserved Arg and aromatic residues. RNA Biol 2021; 18:496-506. [PMID: 34424823 PMCID: PMC8677033 DOI: 10.1080/15476286.2021.1962666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.
Collapse
Affiliation(s)
| | | | - Sergio Camero
- Instituto de Química Física Rocasolano, CSIC, Madrid
| | | | | |
Collapse
|
3
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
4
|
Martín‐Expósito M, Gas M, Mohamad N, Nuño‐Cabanes C, Tejada‐Colón A, Pascual‐García P, de la Fuente L, Chaves‐Arquero B, Merran J, Corden J, Conesa A, Pérez‐Cañadillas JM, Bravo J, Rodríguez‐Navarro S. Mip6 binds directly to the Mex67 UBA domain to maintain low levels of Msn2/4 stress-dependent mRNAs. EMBO Rep 2019; 20:e47964. [PMID: 31680439 PMCID: PMC6893359 DOI: 10.15252/embr.201947964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/09/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP, as a functional and physical interactor of the export factor Mex67. Mip6-RRM4 directly interacts with the ubiquitin-associated (UBA) domain of Mex67 through a loop containing tryptophan 442. Mip6 shuttles between the nucleus and the cytoplasm in a Mex67-dependent manner and concentrates in cytoplasmic foci under stress. Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation experiments show preferential binding of Mip6 to mRNAs regulated by the stress-response Msn2/4 transcription factors. Consistent with this binding, MIP6 deletion affects their export and expression levels. Additionally, Mip6 interacts physically and/or functionally with proteins with a role in mRNA metabolism and transcription such as Rrp6, Xrn1, Sgf73, and Rpb1. These results reveal a novel role for Mip6 in the homeostasis of Msn2/4-dependent transcripts through its direct interaction with the Mex67 UBA domain.
Collapse
Grants
- BFU2014-57636 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- BFU2015-71978 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2015-67077-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- SAF2017-89901-R Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- CTQ2018-84371 Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- PGC2018-099872-B-I00 Ministerio de Ciencia, Innovación y Universidades (Ministry of Science, Innovation and Universities)
- PROM/2012/061 Generalitat Valenciana (Regional Government of Valencia)
- PROMETEO 2016/093 Generalitat Valenciana (Regional Government of Valencia)
- ACOMP2014/061 Generalitat Valenciana (Regional Government of Valencia)
- B2017/BMD-3770 Comunidad de Madrid (Madrid Autonomous Community)
- Ministerio de Economía, Industria y Competitividad, Gobierno de España (MINECO)
- Comunidad de Madrid (Madrid Autonomous Community)
Collapse
Affiliation(s)
- Manuel Martín‐Expósito
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Maria‐Eugenia Gas
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Nada Mohamad
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Carme Nuño‐Cabanes
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Ana Tejada‐Colón
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Pau Pascual‐García
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
- Present address:
Department of Cell and Developmental BiologyEpigenetics InstitutePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Lorena de la Fuente
- Genomics of Gene Expression LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | - Belén Chaves‐Arquero
- Department of Biological Physical ChemistryInstitute of Physical‐Chemistry “Rocasolano” (CSIC)MadridSpain
| | - Jonathan Merran
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jeffry Corden
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Ana Conesa
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
- Microbiology and Cell Science DepartmentInstitute for Food and Agricultural ResearchUniversity of FloridaGainesvilleFLUSA
| | | | - Jerónimo Bravo
- Signal Transduction LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
| | - Susana Rodríguez‐Navarro
- Gene Expression and RNA Metabolism LaboratoryInstituto de Biomedicina de Valencia (CSIC)ValenciaSpain
- Gene Expression and RNA Metabolism LaboratoryCentro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| |
Collapse
|
5
|
Franco-Echevarría E, González-Polo N, Zorrilla S, Martínez-Lumbreras S, Santiveri CM, Campos-Olivas R, Sánchez M, Calvo O, González B, Pérez-Cañadillas JM. The structure of transcription termination factor Nrd1 reveals an original mode for GUAA recognition. Nucleic Acids Res 2017; 45:10293-10305. [PMID: 28973465 PMCID: PMC5737872 DOI: 10.1093/nar/gkx685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Transcription termination of non-coding RNAs is regulated in yeast by a complex of three RNA binding proteins: Nrd1, Nab3 and Sen1. Nrd1 is central in this process by interacting with Rbp1 of RNA polymerase II, Trf4 of TRAMP and GUAA/G terminator sequences. We lack structural data for the last of these binding events. We determined the structures of Nrd1 RNA binding domain and its complexes with three GUAA-containing RNAs, characterized RNA binding energetics and tested rationally designed mutants in vivo. The Nrd1 structure shows an RRM domain fused with a second α/β domain that we name split domain (SD), because it is formed by two non-consecutive segments at each side of the RRM. The GUAA interacts with both domains and with a pocket of water molecules, trapped between the two stacking adenines and the SD. Comprehensive binding studies demonstrate for the first time that Nrd1 has a slight preference for GUAA over GUAG and genetic and functional studies suggest that Nrd1 RNA binding domain might play further roles in non-coding RNAs transcription termination.
Collapse
Affiliation(s)
- Elsa Franco-Echevarría
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | | | - Silvia Zorrilla
- Department of Cellular and Molecular Biology, Biological Research Center, CSIC
| | - Santiago Martínez-Lumbreras
- Department of Chemistry, King's College London.,Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - Clara M Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Olga Calvo
- Instituto de Biología Funcional y Genómica, IBFG-CSIC, Universidad de Salamanca
| | - Beatriz González
- Departament of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| | - José Manuel Pérez-Cañadillas
- Department of Biological Physical Chemistry, Institute of Physical-Chemistry "Rocasolano", CSIC, C/ Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
6
|
The excluded DNA strand is SEW important for hexameric helicase unwinding. Methods 2016; 108:79-91. [DOI: 10.1016/j.ymeth.2016.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
|
7
|
Cruz-Gallardo I, Aroca Á, Gunzburg MJ, Sivakumaran A, Yoon JH, Angulo J, Persson C, Gorospe M, Karlsson BG, Wilce JA, Díaz-Moreno I. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain. RNA Biol 2014; 11:766-76. [PMID: 24824036 DOI: 10.4161/rna.28801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| | - Menachem J Gunzburg
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Andrew Sivakumaran
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Je-Hyun Yoon
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - Jesús Angulo
- Instituto de Investigaciones Químicas; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain; School of Pharmacy; University of East Anglia; Norwich Research Park; Norwich, UK
| | - Cecilia Persson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Myriam Gorospe
- Laboratory of Genetics; National Institute on Aging-Intramural Research Program; NIH; Baltimore, MD USA
| | - B Göran Karlsson
- Swedish NMR Centre; University of Gothenburg; Gothenburg, Sweden
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology; Monash University; Clayton, Victoria, Australia
| | - Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis; Centro de Investigaciones Científicas Isla de la Cartuja; Universidad de Sevilla-CSIC; Sevilla, Spain
| |
Collapse
|
8
|
Cruz-Gallardo I, Aroca Á, Persson C, Karlsson BG, Díaz-Moreno I. RNA binding of T-cell intracellular antigen-1 (TIA-1) C-terminal RNA recognition motif is modified by pH conditions. J Biol Chem 2013; 288:25986-25994. [PMID: 23902765 DOI: 10.1074/jbc.m113.489070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms.
Collapse
Affiliation(s)
- Isabel Cruz-Gallardo
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and
| | - Ángeles Aroca
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and
| | - Cecilia Persson
- the Swedish NMR Centre, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - B Göran Karlsson
- the Swedish NMR Centre, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Irene Díaz-Moreno
- From the Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), 41092 Seville, Spain and.
| |
Collapse
|