1
|
Fremuntova Z, Hanusova ZB, Soukup J, Mosko T, Matej R, Holada K. Simple 3D spheroid cell culture model for studies of prion infection. Eur J Neurosci 2024; 60:4437-4452. [PMID: 38887188 DOI: 10.1111/ejn.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Kong Y, Chen Z, Zhang J, Wu L. Erythrocyte Indices in Creutzfeldt-Jakob Disease Predict Survival Time. Front Neurol 2022; 13:839081. [PMID: 35237232 PMCID: PMC8884143 DOI: 10.3389/fneur.2022.839081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background Creutzfeldt–Jakob disease (CJD) is a devastating neurodegenerative disease caused by propagation of abnormally folded prion proteins (PrPSc). Some fluid biomarkers have been reported to be associated with disease duration in CJD. Based on studies which have found that prion protein (PrPC) played a role in erythrocytic hematopoiesis, we evaluated the association between peripheral red blood cell indices and survival time in CJD. Methods We retrospectively collected data on peripheral red blood cell indices, including red blood cell (RBC) count, hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and red cell distribution width (RDW), from 125 CJD patients. Cox proportional hazard models were generated to determine whether red cell indices correlated with survival time of patients with CJD. Results Of the 125 included participants, 70 (56%) were male, and the mean age at diagnosis (SD) was 60.3 (9.5) years. Hemoglobin levels (hazard ratio 1.710, 95% CI 1.124–2.600, p = 0.012) and HCT (hazard ratio 1.689, 95% CI 1.112–2.565, p=0.014) were significantly associated with survival time after controlling for sex, age, and Barthel Index. Red blood cell count, MCV, MCH, MCHC, and RDW were not associated with survival time before or after adjusting for covariates. Conclusions Our study found that Hb and HCT were significantly associated with survival time in patients with CJD. These results may inform evaluation of the mechanisms of interaction between prion disease and hematopoiesis, and indicate that Hb and HCT may be potential prognostic biomarkers.
Collapse
Affiliation(s)
- Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Kostelanska M, Holada K. Prion Strains Differ in Susceptibility to Photodynamic Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030611. [PMID: 35163872 PMCID: PMC8840242 DOI: 10.3390/molecules27030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.
Collapse
|
4
|
Bianchini M, Giambelluca MA, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Funel N, Ricci C, Gaeta R, Pollina LE, Falcone A, Vivaldi C, Di Candio G, Biagioni F, Busceti CL, Morelli L, Fornai F. Detailing the ultrastructure's increase of prion protein in pancreatic adenocarcinoma. World J Gastroenterol 2021; 27:7324-7339. [PMID: 34876792 PMCID: PMC8611201 DOI: 10.3748/wjg.v27.i42.7324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent evidences have shown a relationship between prion protein (PrPc) expression and pancreatic ductal adenocarcinoma (PDAC). Indeed, PrPc could be one of the markers explaining the aggressiveness of this tumor. However, studies investigating the specific compartmentalization of increased PrPc expression within PDAC cells are lacking, as well as a correlation between ultrastructural evidence, ultrastructural morphometry of PrPc protein and clinical data. These data, as well as the quantitative stoichiometry of this protein detected by immuno-gold, provide a significant advancement in understanding the biology of disease and the outcome of surgical resection. AIM To analyze quantitative stoichiometry and compartmentalization of PrPc in PDAC cells and to correlate its presence with prognostic data. METHODS Between June 2018 and December 2020, samples from pancreatic tissues of 45 patients treated with pancreatic resection for a preoperative suspicion of PDAC at our Institution were collected. When the frozen section excluded a PDAC diagnosis, or the nodules were too small for adequate sampling, patients were ruled out from the present study. Western blotting was used to detect, quantify and compare the expression of PrPc in PDAC and control tissues, such as those of non-affected neighboring pancreatic tissue of the same patient. To quantify the increase of PrPc and to detect the subcellular compartmentalization of PrPc within PDAC cells, immuno-gold stoichiometry within specific cell compartments was analyzed with electron microscopy. Finally, an analysis of quantitative PrPc expression according to prognostic data, such as cancer stage, recurrence of the disease at 12 mo after surgery and recurrence during adjuvant chemotherapy was made. RESULTS The amount of PrPc within specimen from 38 out of 45 patients was determined by semi-quantitative analysis by using Western blotting, which indicates that PrPc increases almost three-fold in tumor pancreatic tissue compared with healthy pancreatic regions [242.41 ± 28.36 optical density (OD) vs 95 ± 17.40 OD, P < 0.0001]. Quantitative morphometry carried out by using immuno-gold detection at transmission electron microscopy confirms an increased PrPc expression in PDAC ductal cells of all patients and allows to detect a specific compartmentalization of PrPc within tumor cells. In particular, the number of immuno-gold particles of PrPc was significantly higher in PDAC cells respect to controls, when considering the whole cell (19.8 ± 0.79 particles vs 9.44 ± 0.45, P < 0.0001). Remarkably, considering PDAC cells, the increase of PrPc was higher in the nucleus than cytosol of tumor cells, which indicates a shift in PrPc compartmentalization within tumor cells. In fact, the increase of immuno-gold within nuclear compartment exceeds at large the augment of PrPc which was detected in the cytosol (nucleus: 12.88 ± 0.59 particles vs 5.12 ± 0.32, P < 0.0001; cytosol: 7.74. ± 0.44 particles vs 4.3 ± 0.24, P < 0.0001). In order to analyze the prognostic impact of PrPc, we found a correlation between PrPc expression and cancer stage according to pathology results, with a significantly higher expression of PrPc for advanced stages. Moreover, 24 patients with a mean follow-up of 16.8 mo were considered. Immuno-blot analysis revealed a significantly higher expression of PrPc in patients with disease recurrence at 12 mo after radical surgery (360.71 ± 69.01 OD vs 170.23 ± 23.06 OD, P = 0.023), also in the subgroup of patients treated with adjuvant CT (368.36 ± 79.26 OD in the recurrence group vs 162.86 ± 24.16 OD, P = 0.028), which indicates a correlation with a higher chemo-resistance. CONCLUSION Expression of PrPc is significantly higher in PDAC cells compared with control, with the protein mainly placed in the nucleus. Preliminary clinical data confirm the correlation with a poorer prognosis.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Maria Anita Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Niccola Funel
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Claudio Ricci
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Raffaele Gaeta
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa 56124, Italy
| | - Alfredo Falcone
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Caterina Vivaldi
- Division of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
| | - Francesca Biagioni
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli 86077, Italy
| | | | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
- EndoCAS (Center for Computer Assisted Surgery), University of Pisa, Pisa 56124, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56124, Italy
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli 86077, Italy
| |
Collapse
|
5
|
Hujacova A, Sirc J, Pekarkova K, Brozova T, Kostelanska M, Soukup J, Mosko T, Holada K, Stranak Z. Large Platelet and Endothelial Extracellular Vesicles in Cord Blood of Preterm Newborns: Correlation with the Presence of Hemolysis. Diagnostics (Basel) 2021; 11:1316. [PMID: 34441251 PMCID: PMC8394910 DOI: 10.3390/diagnostics11081316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Different biomarkers are investigated to detect the causes of severe complications in preterm infants. Extracellular vesicles (EVs) are recognized as an important part of cell-to-cell communication, and their increased levels were reported in numerous pathological states. We aimed to increase our knowledge about the incidence of platelet and endothelial EVs in cord blood of preterm newborns using conventional flow cytometry. The presence of platelet (CD36+CD41+), activated platelet (CD41+CD62+), and endothelial (CD31+CD105+) EVs was analyzed. Immune electron microscopy was used to confirm the presence of EVs and the specificity of their labeling. The size of detected extracellular vesicles was in the range 400-2000 nm. The differences in the counts of EVs between the preterm and control group were not significant and no correlation of EVs count with gestation age was recorded. Cord blood plasma samples with free hemoglobin level > 1 mg/mL had more than threefold higher counts of CD36+CD41+ and CD41+CD62+ EVs (p < 0.001), while the count of CD31+CD105+ EVs was only moderately increased (p < 0.05). Further studies utilizing cytometers with improved sensitivity are needed to confirm that the analysis of large platelet and endothelial EVs mirrors the quantitative situation of their whole plasma assemblage.
Collapse
Affiliation(s)
- Andrea Hujacova
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
| | - Jan Sirc
- Department of Neonatology, Institute for the Care of Mother and Child, Podolske Nabrezí 157/36, 14700 Prague 4, Czech Republic; (J.S.); (T.B.); (Z.S.)
| | - Kristyna Pekarkova
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
| | - Tereza Brozova
- Department of Neonatology, Institute for the Care of Mother and Child, Podolske Nabrezí 157/36, 14700 Prague 4, Czech Republic; (J.S.); (T.B.); (Z.S.)
| | - Marie Kostelanska
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
| | - Jakub Soukup
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
| | - Tibor Mosko
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
| | - Karel Holada
- First Faculty of Medicine, Institute of Immunology and Microbiology, Charles University, General University Hospital in Prague, Studnickova 7, 12820 Prague 2, Czech Republic; (A.H.); (K.P.); (M.K.); (J.S.); (T.M.)
- Department of Neonatology, Institute for the Care of Mother and Child, Podolske Nabrezí 157/36, 14700 Prague 4, Czech Republic; (J.S.); (T.B.); (Z.S.)
| | - Zbynek Stranak
- Department of Neonatology, Institute for the Care of Mother and Child, Podolske Nabrezí 157/36, 14700 Prague 4, Czech Republic; (J.S.); (T.B.); (Z.S.)
| |
Collapse
|
6
|
Moško T, Galušková S, Matěj R, Brůžová M, Holada K. Detection of Prions in Brain Homogenates and CSF Samples Using a Second-Generation RT-QuIC Assay: A Useful Tool for Retrospective Analysis of Archived Samples. Pathogens 2021; 10:pathogens10060750. [PMID: 34199205 PMCID: PMC8231989 DOI: 10.3390/pathogens10060750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
The possibilities for diagnosing prion diseases have shifted significantly over the last 10 years. The RT-QuIC assay option has been added for neuropsychiatric symptoms, supporting biomarkers and final post-mortem confirmation. Samples of brain homogenates used for final diagnosis, archived for many years, provide the possibility for retrospective studies. We used a second-generation RT-QuIC assay to detect seeding activity in different types of sporadic and genetic prion diseases in archival brain homogenates and post-mortem CSF samples that were 2 to 15 years old. Together, we tested 92 archival brain homogenates: 39 with definite prion disease, 28 with definite other neurological disease, and 25 with no signs of neurological disorders. The sensitivity and specificity of the assay were 97.4% and 100%, respectively. Differences were observed in gCJD E200K, compared to the sporadic CJD group. In 52 post-mortem CSF samples-24 with definite prion disease and 28 controls-we detected the inhibition of seeding reaction due to high protein content. Diluting the samples eliminated such inhibition and led to 95.8% sensitivity and 100% specificity of the assay. In conclusion, we proved the reliability of archived brain homogenates and post-mortem CSF samples for retrospective analysis by RT-QuIC after long-term storage, without changed reactivity.
Collapse
Affiliation(s)
- Tibor Moško
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (S.G.); (K.H.)
- Correspondence: ; Tel.: +420-728-853-503
| | - Soňa Galušková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (S.G.); (K.H.)
| | - Radoslav Matěj
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (R.M.); (M.B.)
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, 10034 Prague, Czech Republic
| | - Magdalena Brůžová
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, 14059 Prague, Czech Republic; (R.M.); (M.B.)
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, 12800 Prague, Czech Republic; (S.G.); (K.H.)
| |
Collapse
|
7
|
Bianchini M, Giambelluca MA, Scavuzzo MC, Di Franco G, Guadagni S, Palmeri M, Furbetta N, Gianardi D, Funel N, Pollina LE, Di Candio G, Fornai F, Morelli L. The occurrence of prion protein in surgically resected pancreatic adenocarcinoma. Pancreatology 2020; 20:1218-1225. [PMID: 32828686 DOI: 10.1016/j.pan.2020.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Among the several new targets for the comprehension of the biology of pancreatic ductal adenocarcinoma (PDAC), Prion proteins (PrPc) deserve particular mention, since they share a marked neurotropism. Actually, PrPc could have also a role in tumorigenesis, as recently demonstrated. However, only few in vitro studies in cell cultures showed the occurrence of PrPc in PDAC cells. We aim to evaluate the presence of PrPc in vivo in PDAC tissues as a potential new biomarker. METHODS Samples from tumors of 23 patients undergone pancreatic resections from July 2018 to May 2020 at our institution were collected and analyzed. Immunohistochemistry and western blotting of PDAC tissues were compared with control tissues. Immunohistochemistry was used also to evaluate the localization of PrPc and of CD155, a tumoral stem-cell marker. RESULTS All cases were moderately differentiated PDAC, with perineural invasion (PNI) in 19/23 cases (83%). According to western-blot analysis, PrPc was markedly expressed in PDAC tissues (273.5 ± 44.63 OD) respect to controls (100 ± 28.35 OD, p = 0.0018). Immunohistochemistry confirmed these findings, with higher linear staining of PrPc in PDAC ducts (127.145 ± 7.56 μm vs 75.21 ± 5.01 μm, p < 0.0001). PrPc and CD155 exactly overlapped in ductal tumoral cells, highlighting the possible relationship of PrPc with cancer stemness. Finally, PrPc expression related with cancer stage and there was a potential correspondence with PNI. CONCLUSIONS Our work provides evidence for increased levels of PrPc in PDAC. This might contribute to cancer aggressiveness and provides a potentially new biomarker. Work is in progress to decipher clinical implications.
Collapse
Affiliation(s)
- Matteo Bianchini
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Maria Anita Giambelluca
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Maria Concetta Scavuzzo
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Desirée Gianardi
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Niccola Funel
- Division of Surgical Pathology, Department of Surgical, Medical Molecular Pathology and Critical Area, University of Pisa, 56124, Pisa, Italy
| | - Luca Emanuele Pollina
- Division of Surgical Pathology, Department of Surgical, Medical Molecular Pathology and Critical Area, University of Pisa, 56124, Pisa, Italy
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy; IRCCS Neuromed - Istituto Neurologico Mediterraneo, 86077, Pozzilli, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124, Pisa, Italy; EndoCAS (Center for Computer Assisted Surgery), University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|
8
|
Zhang B, Shen P, Yin X, Dai Y, Ding M, Cui L. Expression and functions of cellular prion proteins in immunocytes. Scand J Immunol 2019; 91:e12854. [PMID: 31785109 DOI: 10.1111/sji.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Prion diseases are fatal neurodegenerative processes caused by the accumulation of the pathological prion protein, PrPSc . While pathological lesions are limited to the central nervous system (CNS), disease-specific proteins accumulate and replicate in secondary lymphoid organs prior to neuroinvasion, and their replication there depends on the abundance of cellular prion protein (PrPC ). PrPC is expressed in both central and peripheral lymphoid tissues, and up- or downregulates innate and adaptive immune responses. In addition to prion diseases, PrPC is also immunologically involved in other neurological disorders and infectious diseases, including Alzheimer's disease and human immunodeficiency virus infection. Herein, we summarize the expression and functions of PrPC in various immunocytes, as well as its immunological and pathological roles in neurodegeneration and infection.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pingping Shen
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanyuan Dai
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingxuan Ding
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
9
|
Fremuntova Z, Mosko T, Soukup J, Kucerova J, Kostelanska M, Hanusova ZB, Filipova M, Cervenakova L, Holada K. Changes in cellular prion protein expression, processing and localisation during differentiation of the neuronal cell line CAD 5. Biol Cell 2019; 112:1-21. [PMID: 31736091 DOI: 10.1111/boc.201900045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Cellular prion protein (PrPC ) is infamous for its role in prion diseases. The physiological function of PrPC remains enigmatic, but several studies point to its involvement in cell differentiation processes. To test this possibility, we monitored PrPC changes during the differentiation of prion-susceptible CAD 5 cells, and then we analysed the effect of PrPC ablation on the differentiation process. RESULTS Neuronal CAD 5 cells differentiate within 5 days of serum withdrawal, with the majority of the cells developing long neurites. This process is accompanied by an up to sixfold increase in PrPC expression and enhanced N-terminal β-cleavage of the protein, which suggests a role for the PrPC in the differentiation process. Moreover, the majority of PrPC in differentiated cells is inside the cell, and a large proportion of the protein does not associate with membrane lipid rafts. In contrast, PrPC in proliferating cells is found mostly on the cytoplasmic membrane and is predominantly associated with lipid rafts. To determine the importance of PrPC in cell differentiation, a CAD 5 PrP-/- cell line with ablated PrPC expression was created using the CRISPR/Cas9 system. We observed no considerable difference in morphology, proliferation rate or expression of molecular markers between CAD 5 and CAD 5 PrP-/- cells during the differentiation initiated by serum withdrawal. CONCLUSIONS PrPC characteristics, such as cell localisation, level of expression and posttranslational modifications, change during CAD 5 cell differentiation, but PrPC ablation does not change the course of the differentiation process. SIGNIFICANCE Ablation of PrPC expression does not affect CAD 5 cell differentiation, although we observed many intriguing changes in PrPC features during the process. Our study does not support the concept that PrPC is important for neuronal cell differentiation, at least in simple in vitro conditions.
Collapse
Affiliation(s)
- Zuzana Fremuntova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tibor Mosko
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Soukup
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johanka Kucerova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Kostelanska
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Zdenka Backovska Hanusova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marcela Filipova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | | | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
10
|
Siberchicot C, Gault N, Déchamps N, Barroca V, Aguzzi A, Roméo PH, Radicella JP, Bravard A, Bernardino-Sgherri J. Prion protein deficiency impairs hematopoietic stem cell determination and sensitizes myeloid progenitors to irradiation. Haematologica 2019; 105:1216-1222. [PMID: 31371412 PMCID: PMC7193476 DOI: 10.3324/haematol.2018.205716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.
Collapse
Affiliation(s)
- Capucine Siberchicot
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Nathalie Gault
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Nathalie Déchamps
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Vilma Barroca
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Paul-Henri Roméo
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - J Pablo Radicella
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France.,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France
| | - Anne Bravard
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| | - Jacqueline Bernardino-Sgherri
- French Alternative Energies and Atomic Energy Commission (CEA)/Direction of Fundamental Research (DRF)/Institute of Biology François Jacob (IBFJ)/Institute of Cellular and Molecular Radiobiology (iRCM), 92265 Fontenay-aux-Roses Cedex, France .,Laboratory of Research in Genetic Instability (LRIG), 92265 Fontenay-aux-Roses Cedex, France.,Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.,Université Paris-Sud, Paris, France.,Laboratory of Repair and Transcription in Hematopoietic Stem Cells (LRTS), 92265 Fontenay-aux-Roses Cedex, France.,Inserm U967, 92265 Fontenay-aux-Roses Cedex, France
| |
Collapse
|
11
|
Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells. Oncotarget 2018; 7:38638-38657. [PMID: 27229535 PMCID: PMC5122417 DOI: 10.18632/oncotarget.9575] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype.
Collapse
|
12
|
Hirsch TZ, Martin-Lannerée S, Mouillet-Richard S. Functions of the Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:1-34. [PMID: 28838656 DOI: 10.1016/bs.pmbts.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although initially disregarded compared to prion pathogenesis, the functions exerted by the cellular prion protein PrPC have gained much interest over the past two decades. Research aiming at unraveling PrPC functions started to intensify when it became appreciated that it would give clues as to how it is subverted in the context of prion infection and, more recently, in the context of Alzheimer's disease. It must now be admitted that PrPC is implicated in an incredible variety of biological processes, including neuronal homeostasis, stem cell fate, protection against stress, or cell adhesion. It appears that these diverse roles can all be fulfilled through the involvement of PrPC in cell signaling events. Our aim here is to provide an overview of our current understanding of PrPC functions from the animal to the molecular scale and to highlight some of the remaining gaps that should be addressed in future research.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Séverine Martin-Lannerée
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France
| | - Sophie Mouillet-Richard
- INSERM UMR 1124, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR 1124, Paris, France.
| |
Collapse
|
13
|
Šafařík M, Moško T, Zawada Z, Šafaříková E, Dračínský M, Holada K, Šebestík J. Reactivity of 9-aminoacridine drug quinacrine with glutathione limits its antiprion activity. Chem Biol Drug Des 2017; 89:932-942. [DOI: 10.1111/cbdd.12918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/19/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Martin Šafařík
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague 6 Czech Republic
| | - Tibor Moško
- First Faculty of Medicine; Institute of Immunology and Microbiology; Charles University in Prague; Prague 2 Czech Republic
| | - Zbigniew Zawada
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague 6 Czech Republic
| | - Eva Šafaříková
- First Faculty of Medicine; Institute of Immunology and Microbiology; Charles University in Prague; Prague 2 Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague 6 Czech Republic
| | - Karel Holada
- First Faculty of Medicine; Institute of Immunology and Microbiology; Charles University in Prague; Prague 2 Czech Republic
| | - Jaroslav Šebestík
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Prague 6 Czech Republic
| |
Collapse
|
14
|
Tripathi AK, Singh N. Prion Protein-Hemin Interaction Upregulates Hemoglobin Synthesis: Implications for Cerebral Hemorrhage and Sporadic Creutzfeldt-Jakob Disease. J Alzheimers Dis 2016; 51:107-21. [PMID: 26836195 DOI: 10.3233/jad-151039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemin is known to induce endocytosis of prion-protein (PrP(C)) from the neuronal plasma membrane, potentially limiting propagation of the disease causing PrP-scrapie (PrP(Sc)) isoform. Hemin is therefore an attractive disease-modifying option for sporadic Creutzfeldt-Jakob disease (sCJD), a human prion disorder with no effective treatment. The hemin-PrP(C) interaction is also of interest in cerebral-hemorrhage (CH), a condition where potentially toxic hemin molecules come in contact with neuronal PrP(C). Interestingly, PrP(C) is upregulated in penumbric neurons surrounding CH and is known to confer neuroprotection in a dose-dependent manner. The underlying mechanism, however, is not clear. Here, we report that hemin binds PrP(C) on diverse cell lines, resulting in its aggregation or degradation in a cell-type specific manner. Surprisingly, the hemin-PrP(C) interaction upregulates Hb synthesis in hematopoietic cells, a response reversed by deleting the hemin-binding octa-peptide repeat region of PrP(C). A similar response is noted in brain organotypic cultures where exposure to hemin induces significantly more α-globin in wild-type (PrP(+/+)) relative to PrP-knock-out (PrP(-/-)) samples. Furthermore, red blood cells and brain tissue from PrP(-/-) mice show significantly less α-globin relative to PrP(+/+) controls, indicating a positive effect of PrP(C) on Hb synthesis under physiological conditions as well. Surprisingly, levels of α-globin are significantly higher in sCJD brain tissue relative to controls, suggesting compensatory upregulation of Hb synthesis by surviving neurons or misregulation in diseased brains. These observations reveal a unique function of PrP(C) that is likely to impact the therapeutic management of CH and sCJD.
Collapse
|
15
|
Baskakov IV, Katorcha E. Multifaceted Role of Sialylation in Prion Diseases. Front Neurosci 2016; 10:358. [PMID: 27551257 PMCID: PMC4976111 DOI: 10.3389/fnins.2016.00358] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/18/2016] [Indexed: 11/13/2022] Open
Abstract
Mammalian prion or PrP(Sc) is a proteinaceous infectious agent that consists of a misfolded, self-replicating state of a sialoglycoprotein called the prion protein, or PrP(C). Sialylation of the prion protein N-linked glycans was discovered more than 30 years ago, yet the role of sialylation in prion pathogenesis remains poorly understood. Recent years have witnessed extraordinary growth in interest in sialylation and established a critical role for sialic acids in host invasion and host-pathogen interactions. This review article summarizes current knowledge on the role of sialylation of the prion protein in prion diseases. First, we discuss the correlation between sialylation of PrP(Sc) glycans and prion infectivity and describe the factors that control sialylation of PrP(Sc). Second, we explain how glycan sialylation contributes to the prion replication barrier, defines strain-specific glycoform ratios, and imposes constraints for PrP(Sc) structure. Third, several topics, including a possible role for sialylation in animal-to-human prion transmission, prion lymphotropism, toxicity, strain interference, and normal function of PrP(C), are critically reviewed. Finally, a metabolic hypothesis on the role of sialylation in the etiology of sporadic prion diseases is proposed.
Collapse
Affiliation(s)
- Ilia V. Baskakov
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of MedicineBaltimore, MD, USA
| | | |
Collapse
|
16
|
Glier H, Simak J, Panigaj M, Gelderman MP, Vostal JG, Holada K. Expression of the cellular prion protein affects posttransfusion recovery and survival of red blood cells in mice. Transfusion 2015; 55:2590-6. [PMID: 26033638 DOI: 10.1111/trf.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cellular prion protein (PrP(C) ) is expressed on various cell types including red blood cells (RBCs). The PrP(C) plays a key role in the pathogenesis of prion diseases, but its physiologic function remains unclear. PrP(C) is expressed on CD34+ hematopoietic stem cells and its expression is regulated during blood cell differentiation including the erythroid line. STUDY DESIGN AND METHODS We investigated the role of PrP(C) in RBC survival in circulation by transfusing a mix of biotin-labeled RBCs from wild-type (WT) and PrP knockout (KO) mice to groups of recipient mice (WT and KO). The proportion of biotinylated RBCs in peripheral blood was estimated by flow cytometry. RESULTS KO RBCs displayed a markedly higher first-day posttransfusion recovery but had a decreased survival in circulation when compared to WT RBCs. Similar results were obtained in all groups of transfused mice, irrespective of RBCs biotinylation level. In addition, we confirmed this finding in an analogous study using Tga20 mice overexpressing PrP(C) and KO mice of a different genetic background. CONCLUSION Our results demonstrate that PrP(C) expression affects RBC recovery and survival in circulation.
Collapse
Affiliation(s)
- Hana Glier
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Simak
- Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Martin Panigaj
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monique P Gelderman
- Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jaroslav G Vostal
- Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
17
|
Lee YJ, Baskakov IV. The cellular form of the prion protein guides the differentiation of human embryonic stem cells into neuron-, oligodendrocyte-, and astrocyte-committed lineages. Prion 2014; 8:266-75. [PMID: 25486050 DOI: 10.4161/pri.32079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prion protein, PrP(C), is a glycoprotein that is expressed on the cell surface beginning with the early stages of embryonic stem cell differentiation. Previously, we showed that ectopic expression of PrP(C) in human embryonic stem cells (hESCs) triggered differentiation toward endodermal, mesodermal, and ectodermal lineages, whereas silencing of PrP(C) suppressed differentiation toward ectodermal but not endodermal or mesodermal lineages. Considering that PrP(C) might be involved in controlling the balance between cells of different lineages, the current study was designed to test whether PrP(C) controls differentiation of hESCs into cells of neuron-, oligodendrocyte-, and astrocyte-committed lineages. PrP(C) was silenced in hESCs cultured under three sets of conditions that were previously shown to induce hESCs differentiation into predominantly neuron-, oligodendrocyte-, and astrocyte-committed lineages. We found that silencing of PrP(C) suppressed differentiation toward all three lineages. Similar results were observed in all three protocols, arguing that the effect of PrP(C) was independent of differentiation conditions employed. Moreover, switching PrP(C) expression during a differentiation time course revealed that silencing PrP(C) expression during the very initial stage that corresponds to embryonic bodies has a more significant impact than silencing at later stages of differentiation. The current work illustrates that PrP(C) controls differentiation of hESCs toward neuron-, oligodendrocyte-, and astrocyte-committed lineages and is likely involved at the stage of uncommitted neural progenitor cells rather than lineage-committed neural progenitors.
Collapse
Key Words
- CNTF, ciliary neurotrophic factor
- EBs, embryoid bodies
- EFG, epidermal growth factor
- ESCs, embryonic stem cells
- GFAP, glial fibrillary acidic protein
- GRM, glial restrictive medium
- Lenti-ShPrPC, lentiviral vector expressing short hairpin RNA against PrPC
- Lenti-ShScram, lentiviral vector expressing scrambled shRNA
- Lenti-TetR, lentiviral vector expressing tetracycline repressor
- MEF-CM, mouse embryonic feeder-conditioned medium
- MEFs, mouse embryonic fibroblasts
- NDM, neuronal differentiation medium
- NIM, neural induction medium
- NPM, neural proliferation medium
- Olig1, a marker of oligodendrocyte-committed lineages
- PrPC, normal, cellular isoform of the prion protein
- RA, retinoic acid
- Syn, synapsin I
- TH, tyrosine hydroxylase
- Tet, tetracycline
- TetR, tetracycline repressor
- bFGF, basic fibroblast growth factor
- hES+TetR+ShPrPC, hESCs transfected with Lenti-TetR and Lenti-ShPrPC
- hES+TetR+ShScram, hESCs transfected with Lenti-TetR and Lenti-ShScram
- hESCs, human ESCs
- human embryonic stem cells
- neural progenitor cells
- neuron-committed lineages
- prion protein
- stem cell differentiation
Collapse
Affiliation(s)
- Young Jin Lee
- a Center for Biomedical Engineering and; Technology Department of Anatomy and Neurobiology ; University of Maryland School of Medicine ; Baltimore , MD USA
| | | |
Collapse
|
18
|
Martin-Lannerée S, Hirsch TZ, Hernandez-Rapp J, Halliez S, Vilotte JL, Launay JM, Mouillet-Richard S. PrP(C) from stem cells to cancer. Front Cell Dev Biol 2014; 2:55. [PMID: 25364760 PMCID: PMC4207012 DOI: 10.3389/fcell.2014.00055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/11/2014] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein PrP(C) was initially discovered as the normal counterpart of the pathological scrapie prion protein PrP(Sc), the main component of the infectious agent of Transmissible Spongiform Encephalopathies. While clues as to the physiological function of this ubiquitous protein were greatly anticipated from the development of knockout animals, PrP-null mice turned out to be viable and to develop without major phenotypic abnormalities. Notwithstanding, the discovery that hematopoietic stem cells from PrP-null mice have impaired long-term repopulating potential has set the stage for investigating into the role of PrP(C) in stem cell biology. A wealth of data have now exemplified that PrP(C) is expressed in distinct types of stem cells and regulates their self-renewal as well as their differentiation potential. A role for PrP(C) in the fate restriction of embryonic stem cells has further been proposed. Paralleling these observations, an overexpression of PrP(C) has been documented in various types of tumors. In line with the contribution of PrP(C) to stemness and to the proliferation of cancer cells, PrP(C) was recently found to be enriched in subpopulations of tumor-initiating cells. In the present review, we summarize the current knowledge of the role played by PrP(C) in stem cell biology and discuss how the subversion of its function may contribute to cancer progression.
Collapse
Affiliation(s)
- Séverine Martin-Lannerée
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Théo Z Hirsch
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| | - Julia Hernandez-Rapp
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France ; Université Paris Sud 11, ED419 Biosigne Orsay, France
| | - Sophie Halliez
- U892 Virologie et Immunologie Moléculaires, INRA Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- UMR1313 Génétique Animale et Biologie Intégrative, INRA Jouy-en-Josas, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière Paris, France ; Pharma Research Department, F. Hoffmann-La-Roche Ltd. Basel, Switzerland
| | - Sophie Mouillet-Richard
- Toxicology, Pharmacology and Cellular Signaling, INSERM UMR-S1124 Paris, France ; Toxicology, Pharmacology and Cellular Signaling, Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124 Paris, France
| |
Collapse
|
19
|
Singh A, Haldar S, Horback K, Tom C, Zhou L, Meyerson H, Singh N. Prion protein regulates iron transport by functioning as a ferrireductase. J Alzheimers Dis 2013; 35:541-52. [PMID: 23478311 DOI: 10.3233/jad-130218] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prion protein (PrPC) is implicated in the pathogenesis of prion disorders, but its normal function is unclear. We demonstrate that PrPC is a ferrireductase (FR), and its absence causes systemic iron deficiency in PrP knock-out mice (PrP-/-). When exposed to non-transferrin-bound (NTB) radioactive-iron (59FeCl3) by gastric-gavage, PrP-/- mice absorb significantly more 59Fe from the intestinal lumen relative to controls, indicating appropriate systemic response to the iron deficiency. Chronic exposure to excess dietary iron corrects this deficiency, but unlike wild-type (PrP+/+) controls that remain iron over-loaded, PrP-/- mice revert back to the iron deficient phenotype after 5 months of chase on normal diet. Bone marrow (BM) preparations of PrP-/- mice on normal diet show relatively less stainable iron, and this phenotype is only partially corrected by intraperitoneal administration of excess iron-dextran. Cultured PrP-/- BM-macrophages incorporate significantly less NTB-59Fe in the absence or presence of excess extracellular iron, indicating reduced uptake and/or storage of available iron in the absence of PrPC. When expressed in neuroblastoma cells, PrPC exhibits NAD(P)H-dependent cell-surface and intracellular FR activity that requires the copper-binding octa-peptide-repeat region and linkage to the plasma membrane for optimal function. Incorporation of NTB-59Fe by neuroblastoma cells correlates with FR activity of PrPC, implicating PrPC in cellular iron uptake and metabolism. These observations explain the correlation between PrPC expression and cellular iron levels, and the cause of iron imbalance in sporadic-Creutzfeldt-Jakob-disease brains where PrPC accumulates as insoluble aggregates.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Lee YJ, Baskakov IV. The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 2012; 124:310-22. [PMID: 22860629 DOI: 10.1111/j.1471-4159.2012.07913.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 11/27/2022]
Abstract
Prion protein (PrP(C) ), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrP(C) in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline-regulated lentiviral vectors that up-regulate or suppresses PrP(C) expression. Here, we show that expression of PrP(C) in pluripotent hESCs cultured under self-renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrP(C) in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over-expression of PrP(C) in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrP(C) is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self-renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrP(C) is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self-renewal state, control cell proliferation activity, and define stem cell fate.
Collapse
Affiliation(s)
- Young Jin Lee
- Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Matej R, Olejar T, Janouskova O, Holada K. Deletion of protease-activated receptor 2 prolongs survival of scrapie-inoculated mice. J Gen Virol 2012; 93:2057-2061. [DOI: 10.1099/vir.0.043877-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteinase-activated receptor 2 (PAR2) has recently been identified to be a possible modulator of neurodegeneration. To investigate whether PAR2 plays a role in prion infection, we inoculated PAR2-deficient (PAR2−/−) and wild-type (WT) mice intracerebrally with the Rocky Mountain Laboratory strain of scrapie. PAR2−/− mice demonstrated a delayed onset of clinical symptoms, including weight loss, and demonstrated moderate but highly significant prolongation of survival over WT controls. Concomitantly, no apparent differences in brain pathology, infectivity or features of brain prion protein between deceased WT and PAR2−/− mice were found. Our study suggests that PAR2 deletion modulates dynamics of the disease without gross perturbation of its pathogenesis.
Collapse
Affiliation(s)
- Radoslav Matej
- Department of Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, Prague 10, 100 00, Czech Republic
- Department of Pathology and Molecular Medicine, Thomayer Teaching Hospital, Videnska 800, Prague 4, 140 59, Czech Republic
| | - Tomas Olejar
- Department No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, 142 20, Czech Republic
- Department of Pathology and Molecular Medicine, Thomayer Teaching Hospital, Videnska 800, Prague 4, 140 59, Czech Republic
| | - Olga Janouskova
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2, 128 20, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague, Studnickova 7, Prague 2, 128 20, Czech Republic
| |
Collapse
|
22
|
Glier H, Holada K. Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism. J Immunol Methods 2012; 380:65-72. [DOI: 10.1016/j.jim.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
|
23
|
Bertuchi FR, Bourgeon DMG, Landemberger MC, Martins VR, Cerchiaro G. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice. Biochem Biophys Res Commun 2011; 418:27-32. [PMID: 22222374 DOI: 10.1016/j.bbrc.2011.12.098] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 11/20/2022]
Abstract
The PrP(C) protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP(C) in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP(C) decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu(2+)/ascorbate/H(2)O(2)), which was demonstrated by approximately 70% less DMPO/OH(). In cultured PrP(C)-knockout astrocytes from mice, the absence of PrP(C) caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3h of H(2)O(2) treatment. This rapid increase in ROS disrupted the cell cycle in the PrP(C)-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP(C) in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.
Collapse
Affiliation(s)
- Fernanda R Bertuchi
- Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo André, SP, Brazil
| | | | | | | | | |
Collapse
|