1
|
Slanovc J, Mikulčić M, Jahn N, Wizsy NGT, Sattler W, Malle E, Hrzenjak A. Prostaglandin 15d-PGJ 2 inhibits proliferation of lung adenocarcinoma cells by inducing ROS production and activation of apoptosis via sirtuin-1. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166924. [PMID: 37898426 DOI: 10.1016/j.bbadis.2023.166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Lung adenocarcinoma (LUADC) belongs to the most prevalent and lethal cancer types. As 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) displays anti-oxidative, -inflammatory, and -cancer properties, we investigated whether this cyclopentenone PG, a stable degradation end-product of cyclooxygenase-generated PGD2, exerts beneficial effects in three LUADC cell lines (A549, H1299, H23). We here report that 15d-PGJ2 had substantial cytotoxic effects in all three LUADC cell lines by promoting early apoptosis and inhibiting the cell cycle, proliferation, and migration. As indicators of cell malignancy, scratch closure and colony formation were significantly inhibited by 15d-PGJ2. 15d-PGJ2 induced generation of ROS and subsequent activation of MAPKs. Expression of Nrf-2, a well-known tumor driver, was markedly diminished by 15d-PGJ2 treatment. Although PPARγ, DP1, and DP2 are expressed in LUADC cells, blocking these receptors with specific inhibitors (SR16832 and BW245C) did not reverse 15d-PGJ2-mediated cytotoxicity, suggesting receptor-independent effects. 15d-PGJ2 decreased SIRT1 expression in LUADC cells and the knockdown of SIRT1 diminished the cytotoxic effects of 15d-PGJ2. Importantly, 15d-PGJ2 significantly reduced tumor growth using the chorioallantoic membrane (CAM) assay. The structural analog of 15d- PGJ2, 9,10-dihydro-15d-PGJ2 (lacking the α,β-unsaturated ketone structural element), did not show any toxic effects in LUADC cells. Altogether, our findings suggest that 15d-PGJ2 led to significantly reduced tumor growth and cell proliferation in three LUADC cell lines. The CAM assay results suggest that 15d-PGJ2 is a suitable endogenous compound to interfere with LUADC tumor progression. We show that SIRT1 modulates the effects of 15d-PGJ2 and may be used as a therapeutic target for LUADC.
Collapse
Affiliation(s)
- Julia Slanovc
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | - Nicole Jahn
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
2
|
Prat M, Coulson K, Blot C, Jacquemin G, Romano M, Renoud ML, AlaEddine M, Le Naour A, Authier H, Rahabi MC, Benmoussa K, Salon M, Parny M, Delord JP, Ferron G, Lefèvre L, Couderc B, Coste A. PPARγ activation modulates the balance of peritoneal macrophage populations to suppress ovarian tumor growth and tumor-induced immunosuppression. J Immunother Cancer 2023; 11:e007031. [PMID: 37586764 PMCID: PMC10432661 DOI: 10.1136/jitc-2023-007031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPβ and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.
Collapse
Affiliation(s)
- Mélissa Prat
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Kimberley Coulson
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Clément Blot
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Godefroy Jacquemin
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mathilde Romano
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie-Laure Renoud
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mohamad AlaEddine
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Augustin Le Naour
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
| | - Hélène Authier
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mouna Chirine Rahabi
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Khaddouj Benmoussa
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Marie Salon
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Mélissa Parny
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | | | - Gwenaël Ferron
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Lise Lefèvre
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| | - Bettina Couderc
- UMR1037 Centre de Recherche en Cancérologie de Toulouse (CRCT), Université de Toulouse, INSERM, Toulouse, France
- Institut Claudius Regaud, IUCT Oncopole, Toulouse, France
| | - Agnès Coste
- RESTORE Research Center, Université de Toulouse, INSERM-1301, CNRS-5070, EFS, ENVT, Toulouse, France
| |
Collapse
|
3
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
4
|
Li X, He Y, Wu S, Zhang P, Gan M, Chen L, Zhao Y, Niu L, Zhang S, Jiang Y, Guo Z, Wang J, Shen L, Zhu L. Regulation of SIRT1 in Ovarian Function: PCOS Treatment. Curr Issues Mol Biol 2023; 45:2073-2089. [PMID: 36975503 PMCID: PMC10047008 DOI: 10.3390/cimb45030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The sirtuin family, a group of NAD+-dependent class 3 histone deacetylases (HDACs), was extensively studied initially as a group of longevity genes that are activated in caloric restriction and act in concert with nicotinamide adenine dinucleotides to extend the lifespan. Subsequent studies have found that sirtuins are involved in various physiological processes, including cell proliferation, apoptosis, cell cycle progression, and insulin signaling, and they have been extensively studied as cancer genes. In recent years, it has been found that caloric restriction increases ovarian reserves, suggesting that sirtuins may play a regulatory role in reproductive capacity, and interest in the sirtuin family has continued to increase. The purpose of this paper is to summarize the existing studies and analyze the role and mechanism of SIRT1, a member of the sirtuin family, in regulating ovarian function. Research and review on the positive regulation of SIRT1 in ovarian function and its therapeutic effect on PCOS syndrome.
Collapse
Affiliation(s)
- Xinrong Li
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiwen Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Zongyi Guo
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing 402460, China
| | - Linyuan Shen
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| | - Li Zhu
- Department of Animal Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.S.); (L.Z.)
| |
Collapse
|
5
|
Chen J, Chen H, Pan L. SIRT1 and gynecological malignancies (Review). Oncol Rep 2021; 45:43. [PMID: 33649834 PMCID: PMC7934219 DOI: 10.3892/or.2021.7994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 1 (SIRT1), a member of the sirtuin protein family, is a nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylase and mono-ADP-ribosyltransferase. SIRT1 can deacetylate histones (H1, H3, and H4) and non-histone proteins, and it is widely involved in various physiological and pathological processes in the body, including metabolism, aging, transcription, DNA damage and repair, apoptosis, cell cycle regulation, inflammation and cancer. Research has shown that SIRT1 is involved in tumorigenesis, tumor metastasis and chemotherapy resistance, but it exerts opposing effects and plays different roles in different pathogenic processes. Recent studies have demonstrated that SIRT1 may be implicated in the pathogenesis, development, treatment and prognosis of tumors; however, its role in gynecological tumors remains elusive. The aim of the present review was to summarize the pathogenic roles of SIRT1 in cancer, and to provide what is, to the best of our knowledge, the first review of recent advances involving SIRT1 in cervical cancer, endometrial cancer (EC) and ovarian cancer (OC). In addition, the critical research gaps regarding SIRT1, particularly its potential involvement in the concurrence of EC and cervical cancer and its antagonistic effect against poly(ADP-ribose) polymerase inhibitors in OC, were highlighted.
Collapse
Affiliation(s)
- Jiayu Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Houzao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Lingya Pan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
6
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
7
|
Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020; 25:E5144. [PMID: 31825806 PMCID: PMC7663840 DOI: 10.3390/molecules25215144] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the highest prevalent diseases in humans. The chances of surviving cancer and its prognosis are very dependent on the affected tissue, body location, and stage at which the disease is diagnosed. Researchers and pharmaceutical companies worldwide are pursuing many attempts to look for compounds to treat this malignancy. Most of the current strategies to fight cancer implicate the use of compounds acting on DNA damage checkpoints, non-receptor tyrosine kinases activities, regulators of the hedgehog signaling pathways, and metabolic adaptations placed in cancer. In the last decade, the finding of a lipid peroxidation increase linked to 15-lipoxygenases isoform 1 (15-LOX-1) activity stimulation has been found in specific successful treatments against cancer. This discovery contrasts with the production of other lipid oxidation signatures generated by stimulation of other lipoxygenases such as 5-LOX and 12-LOX, and cyclooxygenase (COX-2) activities, which have been suggested as cancer biomarkers and which inhibitors present anti-tumoral and antiproliferative activities. These findings support the previously proposed role of lipid hydroperoxides and their metabolites as cancer cell mediators. Depletion or promotion of lipid peroxidation is generally related to a specific production source associated with a cancer stage or tissue in which cancer originates. This review highlights the potential therapeutical use of chemical derivatives to stimulate or block specific cellular routes to generate lipid hydroperoxides to treat this disease.
Collapse
Affiliation(s)
- Sofia M. Clemente
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
8
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
9
|
Xiong DD, Qin Y, Xu WQ, He RQ, Wu HY, Wei DM, Zeng JJ, Dang YW, Chen G. A Network Pharmacology-Based Analysis of Multi-Target, Multi-Pathway, Multi-Compound Treatment for Ovarian Serous Cystadenocarcinoma. Clin Drug Investig 2018; 38:909-925. [PMID: 30097905 DOI: 10.1007/s40261-018-0683-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological control against ovarian serous cystadenocarcinoma has received increasing attention. The purpose of this study was to investigate multi-drug treatments as synergetic therapy for ovarian serous cystadenocarcinoma and to explore their mechanisms of action by the network pharmacology method. METHODS Genes acting on ovarian serous cystadenocarcinoma were first collected from GEPIA and DisGeNET. Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, Reactome pathway, and Disease Ontology analyses were then conducted. A connectivity map analysis was employed to identify compounds as treatment options for ovarian serous cystadenocarcinoma. Targets of these compounds were obtained from the Search Tool for Interacting Chemicals (STITCH). The intersections between the ovarian serous cystadenocarcinoma-related genes and the compound targets were identified. Finally, the Kyoto Encyclopedia of Genes and Genomes and Reactome pathways in which the overlapped genes participated were selected, and a correspondence compound-target pathway network was constructed. RESULTS A total of 541 ovarian serous cystadenocarcinoma-related genes were identified. The functional enrichment and pathway analyses indicated that these genes were associated with critical tumor-related pathways. Based on the connectivity map analysis, five compounds (resveratrol, MG-132, puromycin, 15-delta prostaglandin J2, and valproic acid) were determined as treatment agents for ovarian serous cystadenocarcinoma. Next, 48 targets of the five compounds were collected. Following mapping of the 48 targets to the 541 ovarian serous cystadenocarcinoma-related genes, we identified six targets (PTGS1, FOS, HMOX1, CASP9, PPARG, and ABCB1) as therapeutic targets for ovarian serous cystadenocarcinoma by the five compounds. By analysis of the compound-target pathway network, we found the synergistic anti-ovarian serous cystadenocarcinoma potential and the underlying mechanisms of action of the five compounds. CONCLUSION In summary, latent drugs against ovarian serous cystadenocarcinoma were acquired and their target actions and pathways were determined by the network pharmacology strategy, which provides a new prospect for medicamentous therapy for ovarian serous cystadenocarcinoma. However, further in-depth studies are indispensable to increase the validity of this study.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yue Qin
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Qing Xu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan-Min Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China.
| |
Collapse
|
10
|
Tae IH, Park EY, Dey P, Son JY, Lee SY, Jung JH, Saloni S, Kim MH, Kim HS. Novel SIRT1 inhibitor 15-deoxy-Δ12,14-prostaglandin J2 and its derivatives exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int J Oncol 2018; 53:2518-2530. [PMID: 30221742 PMCID: PMC6203160 DOI: 10.3892/ijo.2018.4561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
Clinically relevant sirtuin (SIRT) inhibitors may possess antitumor activities. A previous study indicated that 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) exhibited potent anticancer activity by SIRT1 inhibition. Therefore, the aim of the present study was to investigate whether its derivatives (J11-C1 and J19) exhibited anticancer activity against ovarian cancer SKOV3 cells. Cell viability was determined using an MTT assay. Cell cycle arrest, apoptosis and autophagy were determined using flow cytometry or western blot analysis. J11-Cl and J19 were less cytotoxic to SKOV3 cells compared with 15d-PGJ2. Molecular docking studies supported the interactions of 15d-PGJ2, J11-Cl and J19 with various amino acids in SIRT1 proteins. Similar to 15d-PGJ2, J11-C1 and J19 inhibited SIRT1 enzymatic activity and decreased SIRT1 expression levels in a concentration-dependent manner. J11-C1 induced apoptotic cell death more effectively compared with J19, which was associated with markedly decreased expression of the anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2). Furthermore, the levels of light chain 3-II (LC3-II) and beclin-1 were clearly induced in SKOV3 cells treated with J11-Cl. Thus, 15d-PGJ2 and its derivatives exhibited anticancer activity possibly by inducing apoptotic or autophagic cell death pathways. Collectively, the results of the present study suggest that 15d-PGJ2 and its derivatives exerted antitumor activity by selectively modulating the expression of genes associated with cell cycle arrest, apoptosis and autophagy. Notably, J11-C1 is a novel candidate SIRT1 inhibitor with anticancer activity.
Collapse
Affiliation(s)
- In Hwan Tae
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Eun Young Park
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea
| | - Saloni Saloni
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Mi-Hyun Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
11
|
Li R, Wu C, Liang H, Zhao Y, Lin C, Zhang X, Ye C. Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT. Int J Oncol 2018; 53:1763-1773. [PMID: 30066890 DOI: 10.3892/ijo.2018.4495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
The transcription factor twist family bHLH transcription factor 1 (TWIST), which is a member of the basic helix-loop-helix class of proteins, is known to induce epithelial-mesenchymal transition (EMT) and promote cancer metastasis. TWIST has previously been reported to be associated with multidrug resistance (MDR), since its depletion increases drug sensitivity. Although these previous studies have established a strong association between EMT and MDR, the molecular mechanism remains obscure. The present study demonstrated that TWIST protein expression was elevated in liver cancer, and was positively correlated with multidrug resistance protein 1 (MDR1) expression. Conversely, MDR1 was negatively correlated with E‑cadherin expression in liver cancer samples. In addition, the present study indicated that doxorubicin-resistant HepG2 (R‑HepG2) cells acquired an EMT phenotype. TWIST was also more highly expressed in R‑HepG2 cells compared with in parental HepG2 cells. Knockdown of TWIST increased the sensitivity of R‑HepG2 cells to 5-fluroracil, cisplatin and doxorubicin through a reduction in MDR1 expression and drug efflux ability. Furthermore, knockdown of TWIST in R‑HepG2 cells inhibited the migratory ability of cells and suppressed the EMT phenotype. These findings demonstrated that targeting TWIST may be considered a novel strategy to overcome drug resistance in liver cancer.
Collapse
Affiliation(s)
- Rong Li
- Department of Pathology and Pathophysiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Changli Wu
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Hongying Liang
- Laboratory of Physiological Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yinghai Zhao
- Department of Pathology and Pathophysiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Chunyan Lin
- Laboratory of Physiological Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Xiujuan Zhang
- Department of Physiology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Caiguo Ye
- China-America United Cancer Research Institute, Guangdong Medical University, Dongguan, Guangdong 523800, P.R. China
| |
Collapse
|
12
|
Sugimoto M, Kitagawa Y, Yamada M, Yajima Y, Utoh R, Seki M. Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions. LAB ON A CHIP 2018; 18:1378-1387. [PMID: 29658964 DOI: 10.1039/c7lc01280b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell migration and invasion are of significant importance in physiological phenomena, including wound healing and cancer metastasis. Here we propose a new system for quantitatively evaluating cancer cell invasion in a three-dimensional (3D), in vivo tissue-like environment. This system uses composite hydrogel microfibers whose cross section has a relatively soft micropassage region and that were prepared using a multilayered microfluidic device; cancer cells are encapsulated in the core and fibroblasts are seeded in the shell regions surrounding the core. Cancer cell proliferation is guided through the micropassage because of the physical restriction imposed by the surrounding solid shell regions. Quantitative analysis of cancer cell invasion is possible simply by counting the cancer cell colonies that form outside the fiber. This platform enables the evaluation of anticancer drug efficacy (cisplatin, paclitaxel, and 5-fluorouracil) based on the degree of invasion and the gene expression of cancer cells (A549 cells) with or without the presence of fibroblasts (NIH-3T3 cells). The presented hydrogel fiber-based migration assays could be useful for studying cell behaviors under 3D coculture conditions and for drug screening and evaluation.
Collapse
Affiliation(s)
- Manami Sugimoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Colin C, Meyer M, Cerella C, Kleinclauss A, Monard G, Boisbrun M, Diederich M, Flament S, Grillier-Vuissoz I, Kuntz S. Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells. Int J Oncol 2018; 52:1991-2000. [PMID: 29620161 DOI: 10.3892/ijo.2018.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/05/2022] Open
Abstract
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
| | - Maxime Meyer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Claudia Cerella
- Laboratory for Molecular and Cellular Biology of Cancer, Kirchberg Hospital, L‑2540 Luxembourg, Luxembourg
| | | | - Gérald Monard
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | | | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | | | | | - Sandra Kuntz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
14
|
Vladimirov YA, Sarisozen C, Vladimirov GK, Filipczak N, Polimova AM, Torchilin VP. The Cytotoxic Action of Cytochrome C/Cardiolipin Nanocomplex (Cyt-CL) on Cancer Cells in Culture. Pharm Res 2017; 34:1264-1275. [PMID: 28321609 DOI: 10.1007/s11095-017-2143-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE The effect of existing anti-cancer therapies is based mainly on the stimulation of apoptosis in cancer cells. Here, we have demonstrated the ability of a catalytically-reactive nanoparticle-based complex of cytochrome c with cardiolipin (Cyt-CL) to induce the apoptosis and killing of cancer cells in a monolayer cell culture. METHODS Cyt-CL nanoparticles were prepared by complexing CytC with different molar excesses of CL. Following characterization, cytotoxicity and apoptosis inducing effects of nanoparticles were investigated. In an attempt to identify the anticancer activity mechanism of Cyt-CL, pseudo-lipoxygenase and lipoperoxidase reaction kinetics were measured by chemiluminescence. RESULTS Using chemiluminescence, we have demonstrated that the Cyt-CL complex produces lipoperoxide radicals in two reactions: by decomposition of lipid hydroperoxides, and by lipid peroxidation under the action of H2O2. Antioxidants inhibited the formation of lipid radicals. Cyt-CL nanoparticles, but not the CytC alone, dramatically enhanced the level of apoptosis and cell death in two cell lines: drug-sensitive (A2780) and doxorubicin-resistant (A2780-Adr). The proposed mechanism of the cytotoxic action of Cyt-CL involves either penetration through the cytoplasm and outer mitochondrial membrane and catalysis of lipid peroxidation reactions at the inner mitochondrial membrane, or/and activation of lipid peroxidation within the cytoplasmic membrane. CONCLUSIONS Here we propose a new type of anticancer nano-formulation, with an action based on the catalytic action of Cyt-CL nanoparticles on the cell membrane and and/or mitochondrial membranes that results in lipid peroxidation reactions, which give rise to activation of apoptosis in cancer cells, including multidrug resistant cells.
Collapse
Affiliation(s)
- Yury A Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Prospekt, Moscow, 119192, Russian Federation. .,Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation.
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Georgy K Vladimirov
- Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, 27/1 Lomonosovsky Prospekt, Moscow, 119192, Russian Federation.,Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| | - Anastasia M Polimova
- Federal Research Center: Crystallography and Photonics, Russian Academy of Sciences, Leninsky Prospekt 59, Moscow, 119333, Russian Federation
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts, 02115, USA
| |
Collapse
|
15
|
Serini S, Ottes Vasconcelos R, Fasano E, Calviello G. Epigenetic regulation of gene expression and M2 macrophage polarization as new potential omega-3 polyunsaturated fatty acid targets in colon inflammation and cancer. Expert Opin Ther Targets 2016; 20:843-58. [PMID: 26781478 DOI: 10.1517/14728222.2016.1139085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION It has become increasingly clear that dietary habits may affect the risk/progression of chronic diseases with a pathogenic inflammatory component, such as colorectal cancer. Considerable attention has been directed toward the ability of nutritional agents to target key molecular pathways involved in these inflammatory-related diseases. AREAS COVERED ω-3 Polyunsaturated fatty acids (PUFA) and their oxidative metabolites have attracted considerable interest as possible anti-inflammatory and anti-cancer agents, especially in areas such as the large bowel, where the influence of orally introduced substances is high and tumors show deranged PUFA patterns. On this basis, we have analyzed pre-clinical findings that have recently revealed new insight into the molecular pathways targeted by ω-3 PUFA. EXPERT OPINION The findings analyzed herein demonstrate that ω-3 PUFA may exert beneficial effects by targeting the epigenetic regulation of gene expression and altering M2 macrophage polarization during the inflammatory response. These mechanisms need to be better explored in the large bowel, and further studies could better clarify their role and the potential of dietary interventions with ω-3 PUFA in the large bowel. The epigenomic mechanism is discussed in view of the potential of ω-3 PUFA to enhance the efficacy of other agents used in the therapy of colorectal cancer.
Collapse
Affiliation(s)
- Simona Serini
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Renata Ottes Vasconcelos
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy.,b Institute of Biological Sciences , Federal University of Rio Grande - FURG , Rio Grande , Brazil
| | - Elena Fasano
- c Department of Internal Medicine, Unit of Medical Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Gabriella Calviello
- a Institute of General Pathology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
16
|
Koyani CN, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, Windischhofer W, Sattler W, Malle E. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol 2016; 104:29-41. [PMID: 26801686 PMCID: PMC4782222 DOI: 10.1016/j.bcp.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts to improve treatment modalities for osteosarcoma (OS), patient survival remains poor mainly due to pro-survival pathways in OS cells. Among others, prostaglandins (PGs) are the potent regulators of bone homoeostasis and OS pathophysiology. Therefore, the present study aimed to elucidate the impact of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, a stable PGD2 degradation product) on cell death/cell survival pathways in p53-deficient MG-63 OS cells. Our findings show that 15d-PGJ2 induces generation of reactive oxygen species that promote p38 MAPK activation and subsequent Akt phosphorylation. This pathway induced nuclear expression of Nrf2 and Egr1, and increased transcription of haem oxygenase-1 (HO-1) and the catalytic subunit of glutamate cysteine ligase (GCLc), catalysing the first step in GSH synthesis. Silencing of Nrf2, Egr1 and HO-1 significantly elevated 15d-PGJ2-mediated reduction of cellular metabolic activity. Activation of cell survival genes including HO-1 and GCLc inhibited 15d-PGJ2-induced cleavage of pro-caspase-3 and PARP. Annexin V/propidium iodide staining showed an increase in early/late apoptotic cells in response to 15d-PGJ2. The observed 15d-PGJ2-mediated signalling events are independent of PGD2 receptors (DP1 and DP2) and PPARγ. In addition, the electrophilic carbon atom C9 is a prerequisite for the observed activity of 15d-PGJ2. The present data show that the intracellular redox imbalance acted as a node and triggered both death and survival pathways in response to 15d-PGJ2. Pharmacological or genetic interference of the pro-survival pathway, the p38 MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis, sensitizes MG-63 cells towards 15d-PGJ2-mediated apoptosis.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Kerstin Kitz
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Evelyn Huber
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christopher Trummer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Endogenous Generation and Signaling Actions of Omega-3 Fatty Acid Electrophilic Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501792. [PMID: 26339618 PMCID: PMC4538325 DOI: 10.1155/2015/501792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/28/2022]
Abstract
Dietary omega-3 polyunsaturated fatty acids (PUFAs) are beneficial for a number of conditions ranging from cardiovascular disease to chronic airways disorders, neurodegeneration, and cancer. Growing evidence has shown that bioactive oxygenated derivatives are responsible for transducing these salutary effects. Electrophilic oxo-derivatives of omega-3 PUFAs represent a class of oxidized derivatives that can be generated via enzymatic and nonenzymatic pathways. Inflammation and oxidative stress favor the formation of these signaling species to promote the resolution of inflammation within a fine autoregulatory loop. Endogenous generation of electrophilic oxo-derivatives of omega-3 PUFAs has been observed in in vitro and ex vivo human models and dietary supplementation of omega-3 PUFAs has been reported to increase their formation. Due to the presence of an α,β-unsaturated ketone moiety, these compounds covalently and reversibly react with nucleophilic residues on target proteins triggering the activation of cytoprotective pathways, including the Nrf2 antioxidant response, the heat shock response, and the peroxisome proliferator activated receptor γ (PPARγ) and suppressing the NF-κB proinflammatory pathway. The endogenous nature of electrophilic oxo-derivatives of omega-3 PUFAs combined with their ability to simultaneously activate multiple cytoprotective pathways has made these compounds attractive for the development of new therapies for the treatment of chronic disorders and acute events characterized by inflammation and oxidative stress.
Collapse
|
18
|
Ren P, Zhang Y, Huang Y, Yang Y, Jiang M. Functions of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in Gynecologic Disorders. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2015; 9:43-9. [PMID: 25987855 PMCID: PMC4412418 DOI: 10.4137/cmo.s23527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/25/2015] [Accepted: 02/27/2015] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of a class of nuclear hormone receptors intimately involved in the regulation of expression of myriad genes that regulate energy metabolism, cell differentiation, apoptosis, and inflammation. Although originally discovered as a pivotal regulator of adipocyte differentiation, the roles that PPARγ plays in gynecological disorders are still unknown. There are a number of studies on the functions of PPARγ and its agonists in gynecological disorders. In this mini-review, we provide a brief summary of the advances in recent years.
Collapse
Affiliation(s)
- Ping Ren
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Huang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yingli Yang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China ; Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Jiang
- Laboratory of Nuclear Receptors and Cancer Research, Basic Medical Research Center, Nantong University School of Medicine, Nantong, Jiangsu, China
| |
Collapse
|
19
|
Juengel E, Nowaz S, Makarevi J, Natsheh I, Werner I, Nelson K, Reiter M, Tsaur I, Mani J, Harder S, Bartsch G, Haferkamp A, Blaheta RA. HDAC-inhibition counteracts everolimus resistance in renal cell carcinoma in vitro by diminishing cdk2 and cyclin A. Mol Cancer 2014; 13:152. [PMID: 24935000 PMCID: PMC4073177 DOI: 10.1186/1476-4598-13-152] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Background Targeted therapies have improved therapeutic options of treating renal cell carcinoma (RCC). However, drug response is temporary due to resistance development. Methods Functional and molecular changes in RCC Caki-1 cells, after acquired resistance to the mammalian target of rapamycin (mTOR)-inhibitor everolimus (Cakires), were investigated with and without additional application of the histone deacetylase (HDAC)-inhibitor valproic acid (VPA). Cell growth was evaluated by MTT assay, cell cycle progression and apoptosis by flow cytometry. Target molecules of everolimus and VPA, apoptotic and cell cycle regulating proteins were investigated by western blotting. siRNA blockade was performed to evaluate the functional relevance of the proteins. Results Everolimus resistance was accompanied by significant increases in the percentage of G2/M-phase cells and in the IC50. Akt and p70S6K, targets of everolimus, were activated in Cakires compared to drug sensitive cells. The most prominent change in Cakires cells was an increase in the cell cycle activating proteins cdk2 and cyclin A. Knock-down of cdk2 and cyclin A caused significant growth inhibition in the Cakires cells. The HDAC-inhibitor, VPA, counteracted everolimus resistance in Cakires, evidenced by a significant decrease in tumor growth and cdk2/cyclin A. Conclusion It is concluded that non-response to everolimus is characterized by increased cdk2/cyclin A, driving RCC cells into the G2/M-phase. VPA hinders everolimus non-response by diminishing cdk2/cyclin A. Therefore, treatment with HDAC-inhibitors might be an option for patients with advanced renal cell carcinoma and acquired everolimus resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Roman A Blaheta
- Department of Urology, Goethe-University, Interdisciplinary Science Building, Building 25A, Room 404, Theodor-Stern-Kai 7, Frankfurt / Main D-60590, Germany.
| |
Collapse
|
20
|
Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R. The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 2014; 6:836-43. [PMID: 24582957 DOI: 10.1016/j.celrep.2014.01.031] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 01/23/2014] [Indexed: 12/28/2022] Open
Abstract
The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1), an NAD(+)-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.
Collapse
Affiliation(s)
- Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Alejandro Martin-Montalvo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Evi M Mercken
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hector H Palacios
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Theresa M Ward
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gelareh Abulwerdi
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Robin K Minor
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - George P Vlasuk
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - James L Ellis
- Sirtris, a GSK company, 200 Technology Square, Cambridge, MA 02139, USA
| | - David A Sinclair
- Glenn Labs for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - John Dawson
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David B Allison
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Gene Expression and Genomics Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
21
|
Larco DO, Semsarzadeh NN, Cho-Clark M, Mani SK, Wu TJ. β-Arrestin 2 is a mediator of GnRH-(1-5) signaling in immortalized GnRH neurons. Endocrinology 2013; 154:4726-36. [PMID: 24140715 DOI: 10.1210/en.2013-1286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have previously demonstrated that the cleavage product of the full-length GnRH, GnRH-(1-5), is biologically active, binds G protein-coupled receptor 173 (GPR173), and inhibits the migration of cells in the immortalized GnRH-secreting GN11 cell. In this study, we attempted to characterize the GnRH-(1-5) intracellular signaling mechanism. To determine whether the signaling pathway mediating GnRH-(1-5) regulation of migration involves a G protein-dependent mechanism, cells were treated with a generic G protein antagonist in the presence and absence of GnRH-(1-5), and a wound-healing assay was conducted to measure migration. G Protein antagonist 2 treatment abolished the GnRH-(1-5) inhibition of migration, indicating that the mechanism of GnRH-(1-5) is G protein coupled. To identify the potential Gα-subunit recruited by GnRH-(1-5) binding GPR173, we measured the second messengers cAMP and inositol triphosphate levels. GnRH-(1-5) treatment did not alter cAMP levels relative to cells treated with vehicle or forskolin, suggesting that GnRH-(1-5) does not couple to the Gαs or Gαi subunits. Similarly, inositol triphosphate levels remained unchanged with GnRH-(1-5) treatment, indicating a mechanism not mediated by the Gαq/11 subunit. Therefore, we also examined whether GnRH-(1-5) activating GPR173 deviated from the canonical G protein-coupled receptor signaling pathway by coupling to β-arrestin 1/2 to regulate migration. Our coimmunoprecipitation studies indicate that GnRH-(1-5) induces the rapid interaction between GPR173 and β-arrestin 2 in GN11 cells. Furthermore, we demonstrate that this association recruits phosphatase and tensin homolog to mediate the downstream action of GnRH-(1-5). These findings suggest that the GnRH-(1-5) mechanism deviates from the canonical G protein-coupled receptor pathway to regulate cell migration in immortalized GnRH neurons.
Collapse
Affiliation(s)
- Darwin O Larco
- PhD, Department of Obstetrics and Gynecology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, Maryland 20814.
| | | | | | | | | |
Collapse
|
22
|
Pierron A, Le Pape E, Montaudié H, Castela E, De Donatis GM, Allegra M, Bertolotto C, Rocchi S, Cheli Y, Ballotti R, Passeron T. PGJ2 restores RA sensitivity in melanoma cells by decreasing PRAME and EZH2. J Dermatol Sci 2013; 73:258-61. [PMID: 24289988 DOI: 10.1016/j.jdermsci.2013.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Anne Pierron
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France
| | - Elodie Le Pape
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France
| | - Henri Montaudié
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France; University Hospital of Nice, Department of Dermatology, Nice, France
| | - Emeline Castela
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France; University Hospital of Nice, Department of Dermatology, Nice, France
| | - Gian Marco De Donatis
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France
| | - Maryline Allegra
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 1, Nice, France
| | - Corine Bertolotto
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 1, Nice, France
| | - Stéphane Rocchi
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 1, Nice, France
| | - Yann Cheli
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 1, Nice, France
| | - Robert Ballotti
- University Hospital of Nice, Department of Dermatology, Nice, France; INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 1, Nice, France
| | - Thierry Passeron
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), team 12, Nice, France; University Hospital of Nice, Department of Dermatology, Nice, France.
| |
Collapse
|
23
|
Ali MW, Cacan E, Liu Y, Pierce JY, Creasman WT, Murph MM, Govindarajan R, Eblen ST, Greer SF, Hooks SB. Transcriptional suppression, DNA methylation, and histone deacetylation of the regulator of G-protein signaling 10 (RGS10) gene in ovarian cancer cells. PLoS One 2013; 8:e60185. [PMID: 23533674 PMCID: PMC3606337 DOI: 10.1371/journal.pone.0060185] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/22/2013] [Indexed: 01/10/2023] Open
Abstract
RGS10 regulates ovarian cancer cell growth and survival, and RGS10 expression is suppressed in cell models of ovarian cancer chemoresistance. However, the mechanisms governing RGS10 expression in ovarian cancer are poorly understood. Here we report RGS10 suppression in primary ovarian cancer and CAOV-3 ovarian cancer cells compared to immortalized ovarian surface epithelial (IOSE) cells, and in A2780-AD chemoresistant cells compared to parental A2780 cells. RGS10-1 and RGS10-2 transcripts are expressed in ovarian cancer cells, but only RGS10-1 is suppressed in A2780-AD and CAOV-3 cells, and the RGS10-1 promoter is uniquely enriched in CpG dinucleotides. Pharmacological inhibition of DNA methyl-transferases (DNMTs) increased RGS10 expression, suggesting potential regulation by DNA methylation. Bisulfite sequencing analysis identified a region of the RGS10-1 promoter with significantly enhanced DNA methylation in chemoresistant A2780-AD cells relative to parental A2780 cells. DNA methylation in CAOV-3 and IOSE cells was similar to A2780 cells. More marked differences were observed in histone acetylation of the RGS10-1 promoter. Acetylated histone H3 associated with the RGS10-1 promoter was significantly lower in A2780-AD cells compared to parental cells, with a corresponding increase in histone deacetylase (HDAC) enzyme association. Similarly, acetylated histone levels at the RGS10-1 promoter were markedly lower in CAOV-3 cells compared to IOSE cells, and HDAC1 binding was doubled in CAOV-3 cells. Finally, we show that pharmacological inhibition of DNMT or HDAC enzymes in chemoresistant A2780-AD cells increases RGS10 expression and enhances cisplatin toxicity. These data suggest that histone de-acetylation and DNA methylation correlate with RGS10 suppression and chemoresistance in ovarian cancer. Markers for loss of RGS10 expression may identify cancer cells with unique response to therapeutics.
Collapse
Affiliation(s)
- Mourad W. Ali
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Ercan Cacan
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Yuying Liu
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer Young Pierce
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - William T. Creasman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mandi M. Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| | - Scott T. Eblen
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Susanna F. Greer
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Shelley B. Hooks
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
24
|
Larco DO, Cho-Clark M, Mani SK, Wu TJ. The metabolite GnRH-(1-5) inhibits the migration of immortalized GnRH neurons. Endocrinology 2013; 154:783-95. [PMID: 23321696 DOI: 10.1210/en.2012-1746] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decapeptide GnRH is an important regulator of reproductive behavior and function. In the extracellular matrix, GnRH is metabolized by the endopeptidase EC3.4.24.15 (EP24.15) to generate the pentapeptide GnRH-(1-5). In addition to its expression in the adult hypothalamus, EP24.15 is expressed along the migratory path of GnRH-expressing neurons during development. Although we have previously demonstrated a role for EP24.15 in the generation of the biologically active pentapeptide GnRH-(1-5) in regulating GnRH expression and mediating sexual behavior during adulthood in rodents, the modulatory role of GnRH-(1-5) in the migration of GnRH neurons during development remains unknown. To address this information gap, we examined the effect of GnRH-(1-5) on the cellular migration of a premigratory GnRH-secreting neuronal cell line, the GN11 cell, using a wound-healing assay. Dose- and time-response studies demonstrated that GnRH-(1-5) significantly delayed wound closure. We then sought to identify the mechanism by which GnRH-(1-5) inhibits migration. Because the cognate GnRH receptor is a G protein-coupled receptor, we examined whether GnRH-(1-5) regulates migration by also activating a G protein-coupled receptor. Using a high-throughput β-arrestin recruitment assay, we identified an orphan G protein-coupled receptor (GPR173) that was specifically activated by GnRH-(1-5). Interestingly, small interfering RNA to GPR173 reversed the GnRH-(1-5)-mediated inhibition on migration of GN11 neurons. Furthermore, we also demonstrate that the GnRH-(1-5)-activated GPR173-dependent signal transduction pathway involves the activation of the signal transducer and activator of transcription 3 in GnRH migration. These findings indicate a potential regulatory role for GnRH-(1-5) in GnRH neuronal migration during development.
Collapse
Affiliation(s)
- Darwin O Larco
- Program in Molecular and Cellular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
25
|
Acetylation of histone H3 prevents resistance development caused by chronic mTOR inhibition in renal cell carcinoma cells. Cancer Lett 2012; 324:83-90. [DOI: 10.1016/j.canlet.2012.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 12/23/2022]
|