1
|
Saunthararajah Y. Oncotherapy resistance explained by Darwinian and Lamarckian models. J Clin Invest 2024; 134:e179788. [PMID: 38618954 PMCID: PMC11014649 DOI: 10.1172/jci179788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Cell and antibody therapies directed against surface molecules on B cells, e.g., CD19-targeting chimeric antigen receptor T cells (CD19 CAR-T), are now standard for patients with chemorefractory B cell acute lymphoblastic leukemias and other B cell malignancies. However, early relapse rates remain high. In this issue of the JCI, Aminov, Giricz, and colleagues revealed that leukemia cells resisting CD19-targeted therapy had reduced CD19 but also low CD22 expression and were sensitive to Bruton's tyrosine kinase and/or MEK inhibition. Overall, their observations support the evolution of resistance following a Lamarckian model: the oncotherapy directly elicits adaptive, resistance-conferring reconfigurations, which are then inherited by daughter cells as epigenetic changes. The findings prompt reflection also on the broader role of epigenetics in decoupling of replication from lineage differentiation activation by the B cell lineage master transcription factor hub. Such oncogenesis and resistance mechanisms, being predictable and epigenetic, offer practical opportunities for intervention, potentially non-cross-resistant and safe vis-à-vis present cytotoxic and CAR-T treatments.
Collapse
|
2
|
Kıvrak H, Yüksel S, Ateş C, Merter M, Kaygusuz G, Özcan M, Kuzu I. The Relevance of Additional Immunohistochemical Markers on the Differential Diagnosis of Small B-Cell Lymphomas: A Case-control Study. Turk J Haematol 2021; 39:178-187. [PMID: 34619856 PMCID: PMC9421338 DOI: 10.4274/tjh.galenos.2021.2021.0349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Clinical and pathological differential diagnosis of small B-cell lymphomas (SBCLs) is still controversial and may be difficult due to their overlapping morphology, phenotype, and differentiation to plasma cells. We aimed to examine the expression of the immune receptor translocation-associated protein 1 (IRTA1), myeloid cell nuclear differentiation antigen (MNDA), lymphoid enhancer-binding factor-1 (LEF1), and stathmin 1 (STMN1) markers in SBCL cases involving different sites that may have plasma cell differentiation. Materials and Methods: We studied 154 tissue samples with lymphoma involvement from 116 patients and evaluated the staining distribution of the markers. Expressions were evaluated in 21 chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), 7 follicular lymphoma (FL), 14 nodal marginal zone lymphoma, 17 extranodal marginal zone lymphoma, 55 splenic marginal zone lymphoma, 22 marginal zone lymphoma-not otherwise specified, and 18 lymphoplasmacytic lymphoma/Waldenström macroglobulinemia cases by immunohistochemistry. Results: The results confirmed that LEF1 was the most sensitive and specific marker for CLL/SLL and STMN1 was the most sensitive and specific marker for FL (p<0.001). MNDA and IRTA1 were useful markers to distinguish marginal zone lymphomas. Conclusion: Our results suggest that LEF1 for CLL/SLL and STMN1 for FL are reliable markers. LEF1, MNDA, STMN1, and IRTA1 are helpful with other routinely used immunohistochemical markers in a diagnostic algorithm considering their limitations.
Collapse
Affiliation(s)
- Hale Kıvrak
- Ankara University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Seher Yüksel
- Ankara University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Can Ateş
- Aksaray University Faculty of Medicine, Department of Biostatistics and Medical Informatics, Aksaray, Turkey.,Ankara University Faculty of Medicine, Department of Biostatistics, Ankara, Turkey
| | - Mustafa Merter
- Fırat University Faculty of Medicine, Department of Hematology, Elazığ, Turkey.,Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Gülşah Kaygusuz
- Ankara University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Muhit Özcan
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey
| | - Işınsu Kuzu
- Ankara University Faculty of Medicine, Department of Pathology, Ankara, Turkey
| |
Collapse
|
3
|
Ng A, Chiorazzi N. Potential Relevance of B-cell Maturation Pathways in Defining the Cell(s) of Origin for Chronic Lymphocytic Leukemia. Hematol Oncol Clin North Am 2021; 35:665-685. [PMID: 34174979 DOI: 10.1016/j.hoc.2021.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a common, incurable disease of undefined cause. Notably, the normal cell equivalents of CLL cells remain elusive, and it is possible that the disease emanates from several normal B-cell subsets. This article reviews the literature relating to this issue, focusing on recent findings, in particular made through epigenetic analyses that strongly support the disease developing from a normal Ag-experienced and memory cell-like B lymphocyte. It also reports the known pathways whereby normal B lymphocytes mature after antigenic challenge and proposes that this information is relevant in defining the cells of origin of this disease.
Collapse
Affiliation(s)
- Anita Ng
- The Karches Center for Oncology Research, Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, USA
| | - Nicholas Chiorazzi
- The Karches Center for Oncology Research, Institute for Molecular Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 350 Community Drive, Manhasset, NY 11030, USA.
| |
Collapse
|
4
|
Lyapichev KA, Kurt H, Sukswai N, Konoplev S, Bueso-Ramos CE, Khoury JD, Huh YO. Chronic lymphocytic leukemia with plasmacytic differentiation. Ann Hematol 2019; 98:2437-2438. [PMID: 31451834 DOI: 10.1007/s00277-019-03784-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Kirill A Lyapichev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Habibe Kurt
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Narittee Sukswai
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Sergej Konoplev
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang O Huh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Sukswai N, Khoury JD. Immunohistochemistry Innovations for Diagnosis and Tissue-Based Biomarker Detection. Curr Hematol Malig Rep 2019; 14:368-375. [DOI: 10.1007/s11899-019-00533-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Tschumper RC, Shanafelt TD, Kay NE, Jelinek DF. Role of long non-coding RNAs in disease progression of early stage unmutated chronic lymphocytic leukemia. Oncotarget 2019; 10:60-75. [PMID: 30713603 PMCID: PMC6343752 DOI: 10.18632/oncotarget.26538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Predicting disease progression in chronic lymphocytic leukemia (CLL) remains challenging particularly in patients with Rai Stage 0/I disease that have an unmutated immunoglobulin heavy chain variable region (UM IGHV). Even though patients with UM IGHV have a poor prognosis and generally require earlier treatment, not all UM IGHV patients experience more rapid disease progression with some remaining treatment free for many years. This observation suggests biologic characteristics other than known prognostic factors influence disease progression. Alterations in long non-coding RNA (lncRNA) expression levels have been implicated in diagnosis and prognosis of various cancers, however, their role in disease progression of early Rai stage UM CLL is unknown. Here we use microarray analysis to compare lncRNA and mRNA profiles of Rai 0/I UM IGHV patients who progressed in <2 years relative to patients who had not progressed for >5 years. Over 1,300 lncRNAs and 940 mRNAs were differentially expressed (fold change ≥ 2.0; p-value ≤ 0.05). Of interest, the differentially expressed lncRNAs T204050, NR_002947, and uc.436+, have known associated genes that have been linked to CLL. Thus, our study reveals differentially expressed lncRNAs in progressive early stage CLL requiring therapy versus indolent early Rai stage UM CLL. These lncRNAs have the potential to impact relevant biological processes and pathways that influence clinical outcome in CLL.
Collapse
Affiliation(s)
| | - Tait D Shanafelt
- Department of Hematology/Oncology, Stanford University, Stanford, CA, USA
| | - Neil E Kay
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Diane F Jelinek
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA.,Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Darwiche W, Gubler B, Marolleau JP, Ghamlouch H. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective. Front Immunol 2018; 9:683. [PMID: 29670635 PMCID: PMC5893869 DOI: 10.3389/fimmu.2018.00683] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Brigitte Gubler
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Laboratoire d'Oncobiologie Moléculaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666 Lymphocyte Normal - Pathologique et Cancers, HEMATIM, Université de Picardie Jules Verne, Amiens, France.,Service d'Hématologie Clinique et Thérapie cellulaire, Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - Hussein Ghamlouch
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1170, Gustave Roussy, Villejuif, France.,Institut Gustave Roussy, Villejuif, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Janovská P, Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br J Pharmacol 2017; 174:4701-4715. [PMID: 28703283 PMCID: PMC5727250 DOI: 10.1111/bph.13949] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
In this review, we discuss the intricate roles of the Wnt signalling network in the development and progression of mature B-cell-derived haematological malignancies, with a focus on chronic lymphocytic leukaemia (CLL) and related B-cell lymphomas. We review the current literature and highlight the differences between the β-catenin-dependent and -independent branches of Wnt signalling. Special attention is paid to the role of the non-canonical Wnt/planar cell polarity (PCP) pathway, mediated by the Wnt-5-receptor tyrosine kinase-like orphan receptor (ROR1)-Dishevelled signalling axis in CLL. This is mainly because the Wnt/PCP co-receptor ROR1 was found to be overexpressed in CLL and the Wnt/PCP pathway contributes to numerous aspects of CLL pathogenesis. We also discuss the possibilities of therapeutically targeting the Wnt signalling pathways as an approach to disrupt the crucial interaction between malignant cells and their micro-environment. We also advocate the need for research in this direction for other lymphomas, namely, diffuse large B-cell lymphoma, Hodgkin lymphoma, mantle cell lymphoma, Burkitt lymphoma and follicular lymphoma where the Wnt signalling pathway probably plays a similar role. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Pavlína Janovská
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Vítězslav Bryja
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
9
|
Fonte E, Vilia MG, Reverberi D, Sana I, Scarfò L, Ranghetti P, Orfanelli U, Cenci S, Cutrona G, Ghia P, Muzio M. Toll-like receptor 9 stimulation can induce IκBζ expression and IgM secretion in chronic lymphocytic leukemia cells. Haematologica 2017; 102:1901-1912. [PMID: 28775123 PMCID: PMC5664394 DOI: 10.3324/haematol.2017.165878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia cells strongly depend on external stimuli for their survival. Both antigen receptor and co-stimulatory receptors, including Toll-like receptors, can modulate viability and proliferation of leukemic cells. Toll-like receptor ligands, and particularly the TLR9 ligand CpG, mediate heterogeneous responses in patients' samples reflecting the clinical course of the subjects. However, the molecular framework of the key signaling events underlying such heterogeneity is undefined. We focused our studies on a subset of chronic lymphocytic leukemia cases characterized by expression of CD38 and unmutated immunoglobulin genes, who respond to CpG with enhanced metabolic cell activity. We report that, while CpG induces NFKBIZ mRNA in all the samples analyzed, it induces the IκBζ protein in a selected group of cases, through an unanticipated post-transcriptional mechanism. Interestingly, IκBζ plays a causal role in sustaining CpG-induced cell viability and chemoresistance, and CpG stimulation can unleash immunoglobulin secretion by IκBζ-positive malignant cells. These results identify and characterize IκBζ as a marker and effector molecule of distinct key pathways in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Eleonora Fonte
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | | | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Ugo Orfanelli
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Simone Cenci
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Giovanna Cutrona
- UOC Patologia Molecolare, IRCCS AOU S. Martino-IST, Genova, Italy
| | - Paolo Ghia
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| |
Collapse
|
10
|
Solé C, Martínez D, Giné E, Gonzalez-Farre B, Pérez-Galán P, Roncador G, Campo E, Matutes E, López-Guillermo A, Roué G, Martínez A. Expression of a truncated B lymphocyte-induced maturation protein-1 isoform is associated with an incomplete plasmacytic differentiation program in chronic lymphocytic leukemia. Leuk Lymphoma 2017; 59:482-485. [PMID: 28573896 DOI: 10.1080/10428194.2017.1330470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carla Solé
- a Division of Hematology and Oncology , Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
| | - Daniel Martínez
- b Hematopathology Unit, Department of Pathology , Hospital Clinic , Barcelona , Spain
| | - Eva Giné
- c Department of Hematology , Hospital Clinic , Barcelona , Spain
| | - Blanca Gonzalez-Farre
- b Hematopathology Unit, Department of Pathology , Hospital Clinic , Barcelona , Spain
| | - Patricia Pérez-Galán
- a Division of Hematology and Oncology , Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
| | | | - Elías Campo
- a Division of Hematology and Oncology , Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain.,b Hematopathology Unit, Department of Pathology , Hospital Clinic , Barcelona , Spain
| | - Estela Matutes
- c Department of Hematology , Hospital Clinic , Barcelona , Spain
| | | | - Gaël Roué
- a Division of Hematology and Oncology , Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
| | - Antonio Martínez
- a Division of Hematology and Oncology , Institut d'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain.,b Hematopathology Unit, Department of Pathology , Hospital Clinic , Barcelona , Spain
| |
Collapse
|
11
|
Toll-like receptors signaling: A complex network for NF-κB activation in B-cell lymphoid malignancies. Semin Cancer Biol 2016; 39:15-25. [DOI: 10.1016/j.semcancer.2016.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022]
|
12
|
Ghamlouch H, Darwiche W, Hodroge A, Ouled-Haddou H, Dupont S, Singh AR, Guignant C, Trudel S, Royer B, Gubler B, Marolleau JP. Factors involved in CLL pathogenesis and cell survival are disrupted by differentiation of CLL B-cells into antibody-secreting cells. Oncotarget 2016; 6:18484-503. [PMID: 26050196 PMCID: PMC4621905 DOI: 10.18632/oncotarget.3941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022] Open
Abstract
Recent research has shown that chronic lymphocytic leukemia (CLL) B-cells display a strong tendency to differentiate into antibody-secreting cells (ASCs) and thus may be amenable to differentiation therapy. However, the effect of this differentiation on factors associated with CLL pathogenesis has not been reported. In the present study, purified CLL B-cells were stimulated to differentiate into ASCs by phorbol myristate acetate or CpG oligodeoxynucleotide, in combination with CD40 ligand and cytokines in a two-step, seven-day culture system. We investigated (i) changes in the immunophenotypic, molecular, functional, morphological features associated with terminal differentiation into ASCs, (ii) the expression of factors involved in CLL pathogenesis, and (iii) the expression of pro- and anti-apoptotic proteins in the differentiated cells. Our results show that differentiated CLL B-cells are able to display the transcriptional program of ASCs. Differentiation leads to depletion of the malignant program and deregulation of the apoptosis/survival balance. Analysis of apoptosis and the cell cycle showed that differentiation is associated with low cell viability and a low rate of cell cycle entry. Our findings shed new light on the potential for differentiation therapy as a part of treatment strategies for CLL.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Immunology, Amiens University Medical Center, Amiens, France.,Department of Clinical Hematology and Cell Therapy, Amiens University Medical Center, Amiens, France
| | - Walaa Darwiche
- PériTox, Périnatalité & Risques Toxiques, UMR-I 01 Unité mixte INERIS, Amiens, France
| | - Ahmed Hodroge
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France
| | | | - Sébastien Dupont
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Clinical Hematology and Cell Therapy, Amiens University Medical Center, Amiens, France
| | | | - Caroline Guignant
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Immunology, Amiens University Medical Center, Amiens, France
| | - Stéphanie Trudel
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Molecular Oncobiology, Amiens University Medical Center, Amiens, France
| | - Bruno Royer
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Clinical Hematology and Cell Therapy, Amiens University Medical Center, Amiens, France
| | - Brigitte Gubler
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Immunology, Amiens University Medical Center, Amiens, France.,Department of Molecular Oncobiology, Amiens University Medical Center, Amiens, France
| | - Jean-Pierre Marolleau
- EA4666, LNPC, Université de Picardie Jules Verne, Amiens, France.,Department of Clinical Hematology and Cell Therapy, Amiens University Medical Center, Amiens, France
| |
Collapse
|
13
|
Patten PEM, Ferrer G, Chen SS, Simone R, Marsilio S, Yan XJ, Gitto Z, Yuan C, Kolitz JE, Barrientos J, Allen SL, Rai KR, MacCarthy T, Chu CC, Chiorazzi N. Chronic lymphocytic leukemia cells diversify and differentiate in vivo via a nonclassical Th1-dependent, Bcl-6-deficient process. JCI Insight 2016; 1. [PMID: 27158669 DOI: 10.1172/jci.insight.86288] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xenografting primary tumor cells allows modeling of the heterogeneous natures of malignant diseases and the influences of the tissue microenvironment. Here, we demonstrate that xenografting primary chronic lymphocytic leukemia (CLL) B lymphocytes with activated autologous T cells into alymphoid mice results in considerable CLL B cell division and sizable T cell expansion. Nevertheless, most/all CD5+CD19+ cells are eventually lost, due in part to differentiation into antibody-secreting plasmablasts/plasma cells. CLL B cell differentiation is associated with isotype class switching and development of new IGHV-D-J mutations and occurs via an activation-induced deaminase-dependent pathway that upregulates IRF4 and Blimp-1 without appreciable levels of the expected Bcl-6. These processes were induced in IGHV-unmutated and IGHV-mutated clones by Th1-polarized T-bet+ T cells, not classical T follicular helper (Tfh) cells. Thus, the block in B cell maturation, defects in T cell action, and absence of antigen-receptor diversification, which are often cardinal characteristics of CLL, are not inherent but imposed by external signals and the microenvironment. Although these activities are not dominant features in human CLL, each occurs in tissue proliferation centers where the mechanisms responsible for clonal evolution operate. Thus, in this setting, CLL B cell diversification and differentiation develop by a nonclassical germinal center-like reaction that might reflect the cell of origin of this leukemia.
Collapse
Affiliation(s)
- Piers E M Patten
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; King's College London, Department of Haematological Medicine, London, United Kingdom
| | - Gerardo Ferrer
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Shih-Shih Chen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Rita Simone
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sonia Marsilio
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Xiao-Jie Yan
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Zachary Gitto
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Chaohui Yuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, USA
| | - Jonathan E Kolitz
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Jacqueline Barrientos
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Steven L Allen
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Kanti R Rai
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, New York, USA
| | - Charles C Chu
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA.; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Nicholas Chiorazzi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA.; Department of Medicine, Hofstra Northwell School of Medicine, Manhasset, New York, USA.; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| |
Collapse
|
14
|
The many faces of small B cell lymphomas with plasmacytic differentiation and the contribution of MYD88 testing. Virchows Arch 2015; 468:259-75. [PMID: 26454445 DOI: 10.1007/s00428-015-1858-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022]
Abstract
Plasmacytic differentiation may occur in almost all small B cell lymphomas (SBLs), although it varies from being uniformly present (as in lymphoplasmacytic lymphoma (LPL)) to very uncommon (as in mantle cell lymphomas (MCLs)). The discovery of MYD88 L265P mutations in the vast majority of LPLs has had a major impact on the study of these lymphomas. Review of the cases contributed to the 2014 European Association for Haematopathology/Society for Hematopathology slide workshop illustrated how mutational testing has helped refine the diagnostic criteria for LPL, emphasizing the importance of identifying a clonal monotonous lymphoplasmacytic population and highlighting how LPL can still be diagnosed with extensive nodal architectural effacement, very subtle plasmacytic differentiation, follicular colonization, or uncommon phenotypes such as CD5 or CD10 expression. MYD88 L265P mutations were found in 11/11 LPL cases versus only 2 of 28 other SBLs included in its differential diagnosis. Mutational testing also helped to exclude other cases that would have been considered LPL in the past. The workshop also highlighted how plasmacytic differentiation can occur in chronic lymphocytic leukemia/small lymphocytic lymphoma, follicular lymphoma, SOX11 negative MCL, and particularly in marginal zone lymphomas, all of which can cause diagnostic confusion with LPL. The cases also highlighted the difficulty in distinguishing lymphomas with marked plasmacytic differentiation from plasma cell neoplasms. Some SBLs with plasmacytic differentiation can be associated with amyloid, other immunoglobulin deposition, or crystal-storing histiocytosis, which may obscure the underlying neoplasm. Finally, although generally indolent, LPL may transform, with the workshop cases suggesting a role for TP53 abnormalities.
Collapse
|
15
|
García-Muñoz R, Feliu J, Llorente L. The top ten clues to understand the origin of chronic lymphocytic leukemia (CLL). J Autoimmun 2015; 56:81-6. [DOI: 10.1016/j.jaut.2014.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/12/2014] [Accepted: 10/18/2014] [Indexed: 11/24/2022]
|
16
|
García-Muñoz R, Llorente L. Chronic lymphocytic leukaemia: could immunological tolerance mechanisms be the origin of lymphoid neoplasms? Immunology 2014; 142:536-50. [PMID: 24645778 PMCID: PMC4107664 DOI: 10.1111/imm.12285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance theory in chronic lymphocytic leukaemia (CLL): we suggest that B cells that express B-cell receptors (BCR) that recognize their own BCR epitopes are viewed by immune system as 'dangerous cells'. BCR autonomous signalling may induce constant receptor editing and mistakes in allelic exclusion. The fact that whole BCR recognizes a self-antigen or foreing antigen may be irrelevant in early B cell development. In early B cells, autonomous signalling induced by recognition of the BCR's own epitopes simulates an antigen-antibody engagement. In the bone marrow this interaction is viewed as recognition of self-molecules and induces receptor editing. In mature B cells autonomous signalling by the BCR may promote 'reversible anergy' and also may correct self-reactivity induced by the somatic hypermutation mechanisms in mutated CLL B cells. However, in unmutated CLL B cells, BCR autonomous signalling in addition to self-antigen recognition augments B cell activation, proliferation and genomic instability. We suggest that CLL originates from a coordinated normal immunologic tolerance mechanism to destroy self-reactive B cells. Additional genetic damage induced by tolerance mechanisms may immortalize self-reactive B cells and transform them into a leukemia.
Collapse
Affiliation(s)
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMéxico City, México
| |
Collapse
|
17
|
Ghamlouch H, Ouled-Haddou H, Guyart A, Regnier A, Trudel S, Claisse JF, Fuentes V, Royer B, Marolleau JP, Gubler B. TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20(+) Antibody-Secreting Cells. Front Immunol 2014; 5:292. [PMID: 24982661 PMCID: PMC4058906 DOI: 10.3389/fimmu.2014.00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/03/2014] [Indexed: 12/22/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most frequent adult leukemia in the Western world. It is a heterogeneous disease characterized by clonal proliferation and the accumulation of CD5+ mature B lymphocytes. However, the normal counterpart from which the latter cells arise has not yet been identified. CD27 expression and gene expression profiling data suggest that CLL cells are related to memory B-cells. In vitro, memory B-cells differentiate into plasma cells when stimulated with CpG oligodeoxynucleotide (CpG). The objective of the present study was therefore to investigate the ability of CpG, in the context of CD40 ligation, to induce the differentiation of CLL B-cells into antibody-secreting cells (ASCs). CD20+CD38− CLL B-cells were stimulated with a combination of CpG, CD40 ligand and cytokines (CpG/CD40L/c) in a two-step, 7-day culture system. We found that the CpG/CD40L/c culture system prompted CLL B-cells to differentiate into CD19+CD20+CD27+CD38−ASCs. These cells secreted large amounts of IgM and had the same shape as plasma cells. However, only IgMs secreted by ASCs that had differentiated from unmutated CLL B-cells were poly/autoreactive. Class-switch recombination (CSR) to IgG and IgA was detected in cells expressing the activation-induced cytidine deaminase gene (AICDA). Although these ASCs expressed high levels of the transcription factors PRDM1 (BLIMP1), IRF4, and XBP1s, they did not downregulate expression of PAX5. Our results suggest that CLL B-cells can differentiate into ASCs, undergo CSR and produce poly/autoreactive antibodies. Furthermore, our findings may be relevant for (i) identifying the normal counterpart of CLL B-cells and (ii) developing novel treatment strategies in CLL.
Collapse
Affiliation(s)
- Hussein Ghamlouch
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Hakim Ouled-Haddou
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Aude Guyart
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Aline Regnier
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Stéphanie Trudel
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Laboratoire d'Oncobiologie Moléculaire, Department of Molecular Oncobiology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Jean-François Claisse
- Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Vincent Fuentes
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France
| | - Bruno Royer
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Jean-Pierre Marolleau
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Service d'Hématologie Clinique et Thérapie Cellulaire, Department of Hematology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| | - Brigitte Gubler
- EA4666, Department of Immunology, Université de Picardie Jules Verne , Amiens , France ; Laboratoire d'Oncobiologie Moléculaire, Department of Molecular Oncobiology, Centre Hospitalier Régional Universitaire d'Amiens , Amiens , France
| |
Collapse
|
18
|
Tiemessen MM, Staal FJT. Wnt signaling in leukemias and myeloma: T-cell factors are in control. Future Oncol 2014; 9:1757-72. [PMID: 24156335 DOI: 10.2217/fon.13.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aberrant activation of the Wnt pathway has been implicated in the pathogenesis of many malignancies, especially solid tumors. During the past decade it also became clear that in hematological malignancies abnormal regulation of the Wnt pathway can either be causative or enhance disease progression, which will be discussed in detail in this review.
Collapse
Affiliation(s)
- Machteld M Tiemessen
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
19
|
Variable induction of PRDM1 and differentiation in chronic lymphocytic leukemia is associated with anergy. Blood 2014; 123:3277-85. [PMID: 24637363 DOI: 10.1182/blood-2013-11-539049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite antigen engagement and intact B-cell-receptor (BCR) signaling, chronic lymphocytic leukemia (CLL) cells fail to undergo terminal differentiation. We hypothesized that such failure may be due to anergy, as CLL cells exhibit variable levels of nonresponsiveness to surface IgM stimulation that is reversible in vitro. Moreover, anergy is associated with reduced differentiation capacity in normal B cells. We investigated responses of CLL cells to two potent differentiation-promoting agents, IL-21 and cytosine guanine dinucleotide-enriched oligo-deoxynucleotides. The induction of PR domain-containing protein 1 (PRDM1; also known as Blimp-1), a critical regulator of plasmacytic differentiation, by these agents was closely correlated but varied between individual cases, despite functionally intact IL-21 receptor- and Toll-like receptor 9-mediated signal transducer and activator of transcription 3, and nuclear factor-κB pathways. PRDM1 induction was inversely correlated with the extent of anergy as measured by the ability to mobilize intracellular Ca(2+) following BCR crosslinking. PRDM1 responsiveness was associated with other markers of differentiation and proliferation but not with differences in apoptosis. The ability to induce PRDM1 did correlate with differential transcriptional and epigenetic regulation of the PRDM1 gene. These studies extend our understanding of CLL pathobiology, demonstrating that reduced differentiation capacity may be a consequence of anergy. Epigenetic drugs may offer possibilities to reactivate PRDM1 expression as part of novel differentiation therapy approaches.
Collapse
|
20
|
Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells. Cell Rep 2013; 4:566-77. [PMID: 23933259 DOI: 10.1016/j.celrep.2013.07.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 05/27/2013] [Accepted: 07/10/2013] [Indexed: 11/22/2022] Open
Abstract
There is increasing interest in the chronic lymphocytic leukemia (CLL) microenvironment and the mechanisms that may promote CLL cell survival and proliferation. A role for T helper (Th) cells has been suggested, but current evidence is only circumstantial. Here we show that CLL patients had memory Th cells that were specific for endogenous CLL antigens. These Th cells activated autologous CLL cell proliferation in vitro and in human → mouse xenograft experiments. Moreover, CLL cells were efficient antigen-presenting cells that could endocytose and process complex proteins through antigen uptake pathways, including the B cell receptor. Activation of CLL cells by Th cells was contact and CD40L dependent. The results suggest that CLL is driven by ongoing immune responses related to Th cell-CLL cell interaction. We propose that Th cells support malignant B cells and that they could be targeted in the treatment of CLL.
Collapse
|
21
|
Landau DA, Wu CJ. Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics. Genome Med 2013; 5:47. [PMID: 23731665 PMCID: PMC3706960 DOI: 10.1186/gm451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) has been consistently at the forefront of genetic research owing to its prevalence and the accessibility of sample material. Recently, genome-wide technologies have been intensively applied to CLL genetics, with remarkable progress. Single nucleotide polymorphism arrays have identified recurring chromosomal aberrations, thereby focusing functional studies on discrete genomic lesions and leading to the first implication of somatic microRNA disruption in cancer. Next-generation sequencing (NGS) has further transformed our understanding of CLL by identifying novel recurrently mutated putative drivers, including the unexpected discovery of somatic mutations affecting spliceosome function. NGS has further enabled in-depth examination of the transcriptional and epigenetic changes in CLL that accompany genetic lesions, and has shed light on how different driver events appear at different stages of disease progression and clonally evolve with relapsed disease. In addition to providing important insights into disease biology, these discoveries have significant translational potential. They enhance prognosis by highlighting specific lesions associated with poor clinical outcomes (for example, driver events such as mutations in the splicing factor subunit gene SF3B1) or with increased clonal heterogeneity (for example, the presence of subclonal driver mutations). Here, we review new genomic discoveries in CLL and discuss their possible implications in the era of precision medicine.
Collapse
Affiliation(s)
- Dan A Landau
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Broad Institute, Cambridge, MA 02142, USA ; Department of Hematology, Yale Cancer Center, New Haven, CT 06510, USA ; Université Paris Diderot, Paris 75013, France
| | - Catherine J Wu
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA ; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|