1
|
DeCasien AR, Trujillo AE, Janiak MC, Harshaw EP, Caes ZN, Galindo GA, Petersen RM, Higham JP. Equivocal evidence for a link between megalencephaly-related genes and primate brain size evolution. Sci Rep 2022; 12:10902. [PMID: 35764790 PMCID: PMC9239989 DOI: 10.1038/s41598-022-12953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
A large brain is a defining feature of modern humans, and much work has been dedicated to exploring the molecular underpinnings of this trait. Although numerous studies have focused on genes associated with human microcephaly, no studies have explicitly focused on genes associated with megalencephaly. Here, we investigate 16 candidate genes that have been linked to megalencephaly to determine if: (1) megalencephaly-associated genes evolved under positive selection across primates; and (2) selection pressure on megalencephaly-associated genes is linked to primate brain size. We found evidence for positive selection for only one gene, OFD1, with 1.8% of the sites estimated to have dN/dS values greater than 1; however, we did not detect a relationship between selection pressure on this gene and brain size across species, suggesting that selection for changes to non-brain size traits drove evolutionary changes to this gene. In fact, our primary analyses did not identify significant associations between selection pressure and brain size for any candidate genes. While we did detect positive associations for two genes (GPC3 and TBC1D7) when two phyletic dwarfs (i.e., species that underwent recent evolutionary decreases in brain size) were excluded, these associations did not withstand FDR correction. Overall, these results suggest that sequence alterations to megalencephaly-associated genes may have played little to no role in primate brain size evolution, possibly due to the highly pleiotropic effects of these genes. Future comparative studies of gene expression levels may provide further insights. This study enhances our understanding of the genetic underpinnings of brain size evolution in primates and identifies candidate genes that merit further exploration.
Collapse
Affiliation(s)
- Alex R DeCasien
- Department of Anthropology, New York University, New York, USA.
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA.
- Section on Developmental Neurogenomics, National Institute of Mental Health (NIMH), Bethesda, USA.
| | - Amber E Trujillo
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| | - Mareike C Janiak
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- Department of Anthropology, Rutgers University, New Brunswick, USA
| | - Etta P Harshaw
- Department of Art History, University of Southern California, Los Angeles, USA
- Eleanor Roosevelt High School, New York, USA
| | - Zosia N Caes
- Department of Chemistry, Yale University, New Haven, USA
- Columbia Secondary School for Math, Science, and Engineering, New York, USA
| | | | - Rachel M Petersen
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, USA
- New York Consortium in Evolutionary Primatology (NYCEP), New York, USA
| |
Collapse
|
2
|
Sun T, Hanif Q, Chen H, Lei C, Dang R. Copy Number Variations of Four Y-Linked Genes in Swamp Buffaloes. Animals (Basel) 2019; 10:ani10010031. [PMID: 31877875 PMCID: PMC7023270 DOI: 10.3390/ani10010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The amplification of the male-specific region of the Y chromosome was a unique phenomenon during mammalian sex chromosome evolution. The Y-linked copy number variations of many species have been confirmed. However, the Y-linked copy number variations (CNVs) in water buffalo are still unknown. In this study, we investigated the copy number variations of four Y-linked genes (SRY, UTY, DBY, and OFD1Y) in buffalo. Our results showed that UTY was a single-copy gene in buffalo, while DBY, OFD1Y, and SRY exhibited copy number variations in buffalo. Abstract Copy number variation (CNV), a significant source of genetic diversity in the mammalian Y chromosome, is associated with the development of many complex phenotypes, such as spermatogenesis and male fertility. The contribution of Y-linked CNVs has been studied in various species, however, water buffalo has not been explored in this area and the genetic information still remains unknown. The aim of the current study was to investigate the CNVs of four Y-linked genes, including, sex determining Region of Y-Chromosome (SRY), ubiquitously transcribed tetratricopeptide repeat gene protein on the chromosome Y (UTY), DEAD-box helicase 3 Y-linked (DDX3Y, also known as DBY), and oral-facial-digital syndrome 1 Y-linked (OFD1Y) in 254 swamp buffaloes from 15 populations distributed across China, Vietnam, and Laos using quantitative real-time PCR (qPCR). Our results revealed the prevalence of a single-copy UTY gene in buffaloes. The DBY and OFD1Y represented CNVs among and within different buffalo breeds. The SRY showed CNVs only in Vietnamese and Laotian buffaloes. In conclusion, this study indicated that DBY, OFD1Y, and SRY showed CNVs, while the UTY was a single-copy gene in swamp buffaloes.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad 577, Pakistan
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-153-8862-7637
| |
Collapse
|
3
|
Wu Y, Zhang WX, Zuo F, Zhang GW. Comparison of mRNA expression from Y-chromosome X-degenerate region genes in taurine cattle, yaks and interspecific hybrid bulls. Anim Genet 2019; 50:740-743. [PMID: 31475374 DOI: 10.1111/age.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
The yattle (dzo) is an interspecific hybrid of the taurine cattle (Bos taurus) and the domestic yak (Bos grunniens). F1 hybrid yattle bulls are sterile due to spermatogenic arrest and have misregulation of spermatogenesis genes in the testes. However, the expression pattern of Y chromosome-linked genes in cattle, yaks and yattle testes is still unknown. In this study, we analyzed the mRNA expression pattern of 10 genes known to be present as single copies in the X-degenerate region of the bovine male-specific region of the Y chromosome. Using male-specific primers and reverse transcription quantitative PCR, the ubiquitously transcribed tetratricopeptide repeat gene, Y-linked (UTY), oral-facial-digital syndrome 1, Y-linked (OFD1Y) and ubiquitin specific peptidase 9, Y-linked (USP9Y) genes were ubiquitously expressed and significantly more highly expressed in yattle than in cattle and yaks testes (P < 0.001). RNA binding motif protein, Y-linked (RBMY) had testes-specific expression, and eukaryotic translation initiation factor 1A, Y-linked (EIF1AY) was expressed mainly in testis, whereas yattle and cattle did not show significant differences with respect to the expression of RBMY and EIF1AY. Thus, based on the model of yattle bull sterility, the high expression of UTY, OFD1Y and USP9Y may be associated with yattle infertility.
Collapse
Affiliation(s)
- Y Wu
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| | - W-X Zhang
- Animal Husbandry and Veterinary Bureau of Rongchang, Rongchang, Chongqing, 402460, China
| | - F Zuo
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| | - G-W Zhang
- College of Animal Science, Southwest University, Rongchang, Chongqing, 402460, China.,Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, 402460, China
| |
Collapse
|
4
|
Tsai KL, Evans JM, Noorai RE, Starr-Moss AN, Clark LA. Novel Y Chromosome Retrocopies in Canids Revealed through a Genome-Wide Association Study for Sex. Genes (Basel) 2019; 10:genes10040320. [PMID: 31027231 PMCID: PMC6523286 DOI: 10.3390/genes10040320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of an annotated reference sequence for the canine Y chromosome has limited evolutionary studies, as well as our understanding of the role of Y-linked sequences in phenotypes with a sex bias. In genome-wide association studies (GWASs), we observed spurious associations with autosomal SNPs when sex was unbalanced in case-control cohorts and hypothesized that a subset of SNPs mapped to autosomes are in fact sex-linked. Using the Illumina 230K CanineHD array in a GWAS for sex, we identified SNPs that amplify in both sexes but possess significant allele frequency differences between males and females. We found 48 SNPs mapping to 14 regions of eight autosomes and the X chromosome that are Y-linked, appearing heterozygous in males and monomorphic in females. Within these 14 regions are eight genes: three autosomal and five X-linked. We investigated the autosomal genes (MITF, PPP2CB, and WNK1) and determined that the SNPs are diverged nucleotides in retrocopies that have transposed to the Y chromosome. MITFY and WNK1Y are expressed and appeared recently in the Canidae lineage, whereas PPP2CBY represents a much older insertion with no evidence of expression in the dog. This work reveals novel canid Y chromosome sequences and provides evidence for gene transposition to the Y from autosomes and the X.
Collapse
Affiliation(s)
- Kate L Tsai
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Jacquelyn M Evans
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-2152, USA.
| | - Rooksana E Noorai
- Clemson University Genomics and Bioinformatics Facility, Clemson University, Clemson, SC 29634, USA.
| | - Alison N Starr-Moss
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
5
|
Skinner BM, Sargent CA, Churcher C, Hunt T, Herrero J, Loveland JE, Dunn M, Louzada S, Fu B, Chow W, Gilbert J, Austin-Guest S, Beal K, Carvalho-Silva D, Cheng W, Gordon D, Grafham D, Hardy M, Harley J, Hauser H, Howden P, Howe K, Lachani K, Ellis PJI, Kelly D, Kerry G, Kerwin J, Ng BL, Threadgold G, Wileman T, Wood JMD, Yang F, Harrow J, Affara NA, Tyler-Smith C. The pig X and Y Chromosomes: structure, sequence, and evolution. Genome Res 2015; 26:130-9. [PMID: 26560630 PMCID: PMC4691746 DOI: 10.1101/gr.188839.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/09/2015] [Indexed: 12/19/2022]
Abstract
We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.
Collapse
Affiliation(s)
- Benjamin M Skinner
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Carole A Sargent
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Carol Churcher
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Toby Hunt
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Javier Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom; Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Jane E Loveland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matt Dunn
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - William Chow
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - James Gilbert
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Kathryn Beal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Denise Carvalho-Silva
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Cheng
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Daria Gordon
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Darren Grafham
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matt Hardy
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jo Harley
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Heidi Hauser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Philip Howden
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Kerstin Howe
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Kim Lachani
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Peter J I Ellis
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Daniel Kelly
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Giselle Kerry
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - James Kerwin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Bee Ling Ng
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Glen Threadgold
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Thomas Wileman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jonathan M D Wood
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jen Harrow
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Nabeel A Affara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
6
|
Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proc Natl Acad Sci U S A 2013; 110:12373-8. [PMID: 23842086 DOI: 10.1073/pnas.1221104110] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The male-specific region of the mammalian Y chromosome (MSY) contains clusters of genes essential for male reproduction. The highly repetitive and degenerative nature of the Y chromosome impedes genomic and transcriptomic characterization. Although the Y chromosome sequence is available for the human, chimpanzee, and macaque, little is known about the annotation and transcriptome of nonprimate MSY. Here, we investigated the transcriptome of the MSY in cattle by direct testis cDNA selection and RNA-seq approaches. The bovine MSY differs radically from the primate Y chromosomes with respect to its structure, gene content, and density. Among the 28 protein-coding genes/families identified on the bovine MSY (12 single- and 16 multicopy genes), 16 are bovid specific. The 1,274 genes identified in this study made the bovine MSY gene density the highest in the genome; in comparison, primate MSYs have only 31-78 genes. Our results, along with the highly transcriptional activities observed from these Y-chromosome genes and 375 additional noncoding RNAs, challenge the widely accepted hypothesis that the MSY is gene poor and transcriptionally inert. The bovine MSY genes are predominantly expressed and are differentially regulated during the testicular development. Synonymous substitution rate analyses of the multicopy MSY genes indicated that two major periods of expansion occurred during the Miocene and Pliocene, contributing to the adaptive radiation of bovids. The massive amplification and vigorous transcription suggest that the MSY serves as a genomic niche regulating male reproduction during bovid expansion.
Collapse
|
7
|
Li G, Davis BW, Raudsepp T, Pearks Wilkerson AJ, Mason VC, Ferguson-Smith M, O'Brien PC, Waters PD, Murphy WJ. Comparative analysis of mammalian Y chromosomes illuminates ancestral structure and lineage-specific evolution. Genome Res 2013; 23:1486-95. [PMID: 23788650 PMCID: PMC3759724 DOI: 10.1101/gr.154286.112] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here, we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multiordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 17 MSY genes, most being constrained by negative selection for nearly 100 million years. The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved noncoding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species.
Collapse
Affiliation(s)
- Gang Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | | | |
Collapse
|