1
|
Wang Y, Kang Z, Zhang L, Zhu Z. Elucidating the Interactions between a [NiFe]-hydrogenase and Carbon Electrodes for Enhanced Bioelectrocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuanming Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
| | - Zepeng Kang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
| | - Lingling Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, People’s Republic of China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, People’s Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, People’s Republic of China
| |
Collapse
|
2
|
Wang Y, Song Y, Ma C, Xia HQ, Wu R, Zhu Z. Electrochemical characterization of a truncated hydrogenase from Pyrococcus furiosus. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Extreme thermophiles as emerging metabolic engineering platforms. Curr Opin Biotechnol 2019; 59:55-64. [DOI: 10.1016/j.copbio.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
|
4
|
Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:7459310. [PMID: 29225512 PMCID: PMC5684531 DOI: 10.1155/2017/7459310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 11/29/2022]
Abstract
Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA) by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER). In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr-) and arginine decarboxylase- (argD-) deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.
Collapse
|
5
|
Loder AJ, Zeldes BM, Conway JM, Counts JA, Straub CT, Khatibi PA, Lee LL, Vitko NP, Keller MW, Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Adams MW, Kelly RM. Extreme Thermophiles as Metabolic Engineering Platforms: Strategies and Current Perspective. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andrew J. Loder
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Benjamin M. Zeldes
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Jonathan M. Conway
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - James A. Counts
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Christopher T. Straub
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Piyum A. Khatibi
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Laura L. Lee
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Nicholas P. Vitko
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| | - Matthew W. Keller
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Amanda M. Rhaesa
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gabe M. Rubinstein
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Israel M. Scott
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Gina L. Lipscomb
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Michael W.W. Adams
- University of Georgia; Department of Biochemistry and Molecular Biology; Life Sciences Bldg., University of Georgia, Athens GA 30602-7229, USA
| | - Robert M. Kelly
- North Carolina State University; Department of Chemical and Biomolecular Engineering; EB-1, 911 Partners Way Raleigh NC 27695-7905 USA
| |
Collapse
|
6
|
Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 2015; 6:1209. [PMID: 26594201 PMCID: PMC4633485 DOI: 10.3389/fmicb.2015.01209] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.
Collapse
Affiliation(s)
- Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
7
|
Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:912582. [PMID: 26543406 PMCID: PMC4620386 DOI: 10.1155/2015/912582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022]
Abstract
Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.
Collapse
|
8
|
McTernan PM, Chandrayan SK, Wu CH, Vaccaro BJ, Lancaster WA, Adams MWW. Engineering the respiratory membrane-bound hydrogenase of the hyperthermophilic archaeon Pyrococcus furiosus and characterization of the catalytically active cytoplasmic subcomplex. Protein Eng Des Sel 2015; 28:1-8. [PMID: 25476267 PMCID: PMC6373663 DOI: 10.1093/protein/gzu051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/14/2022] Open
Abstract
The archaeon Pyrococcus furiosus grows optimally at 100°C by converting carbohydrates to acetate, carbon dioxide and hydrogen gas (H2), obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is classified as a Group 4 hydrogenase and is encoded by a 14-gene operon that contains hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged 4-subunit cytoplasmic subcomplex of MBH (C-MBH) was engineered and expressed in P. furiosus by differential transcription of the MBH operon. It was purified under anaerobic conditions by affinity chromatography without detergent. Purified C-MBH had a Fe : Ni ratio of 14 : 1, similar to the predicted value of 13 : 1. The O2 sensitivities of C-MBH and the 14-subunit membrane-bound version were similar (half-lives of ∼15 h in air), but C-MBH was more thermolabile (half-lives at 90°C of 8 and 25 h, respectively). C-MBH evolved H2 with the physiological electron donor, reduced ferredoxin, optimally at 60°C. This is the first report of the engineering and characterization of a soluble catalytically active subcomplex of a membrane-bound respiratory hydrogenase.
Collapse
Affiliation(s)
- Patrick M McTernan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | - Sanjeev K Chandrayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | - Brian J Vaccaro
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | - W Andrew Lancaster
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-7229, USA
| |
Collapse
|
9
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
10
|
McTernan PM, Chandrayan SK, Wu CH, Vaccaro BJ, Lancaster WA, Yang Q, Fu D, Hura GL, Tainer JA, Adams MWW. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 2014; 289:19364-72. [PMID: 24860091 PMCID: PMC4094048 DOI: 10.1074/jbc.m114.567255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions.
Collapse
Affiliation(s)
- Patrick M McTernan
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Sanjeev K Chandrayan
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Chang-Hao Wu
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Brian J Vaccaro
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - W Andrew Lancaster
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Qingyuan Yang
- the Department of Physiology, John Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Dax Fu
- the Department of Physiology, John Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Greg L Hura
- the Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - John A Tainer
- the Physical Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229,
| |
Collapse
|
11
|
Lipscomb GL, Schut GJ, Thorgersen MP, Nixon WJ, Kelly RM, Adams MWW. Engineering hydrogen gas production from formate in a hyperthermophile by heterologous production of an 18-subunit membrane-bound complex. J Biol Chem 2013; 289:2873-9. [PMID: 24318960 DOI: 10.1074/jbc.m113.530725] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications.
Collapse
Affiliation(s)
- Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602 and
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Joel A. Farkas
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Jonathan W. Picking
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
| | - Thomas J. Santangelo
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523;
| |
Collapse
|
13
|
Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy. Appl Environ Microbiol 2013; 79:5539-49. [PMID: 23835176 DOI: 10.1128/aem.01608-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulfolobus species have become the model organisms for studying the unique biology of the crenarchaeal division of the archaeal domain. In particular, Sulfolobus islandicus provides a powerful opportunity to explore natural variation via experimental functional genomics. To support these efforts, we further expanded genetic tools for S. islandicus by developing a stringent positive selection for agmatine prototrophs in strains in which the argD gene, encoding arginine decarboxylase, has been deleted. Strains with deletions in argD were shown to be auxotrophic for agmatine even in nutrient-rich medium, but growth could be restored by either supplementation of exogenous agmatine or reintroduction of a functional copy of the argD gene from S. solfataricus P2 into the ΔargD host. Using this stringent selection, a robust targeted gene knockout system was established via an improved next generation of the MID (marker insertion and unmarked target gene deletion) method. Application of this novel system was validated by targeted knockout of the upsEF genes involved in UV-inducible cell aggregation formation.
Collapse
|
14
|
Lee SJ, Lee SJ, Lee DW. Design and development of synthetic microbial platform cells for bioenergy. Front Microbiol 2013; 4:92. [PMID: 23626588 PMCID: PMC3630320 DOI: 10.3389/fmicb.2013.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/03/2013] [Indexed: 12/26/2022] Open
Abstract
The finite reservation of fossil fuels accelerates the necessity of development of renewable energy sources. Recent advances in synthetic biology encompassing systems biology and metabolic engineering enable us to engineer and/or create tailor made microorganisms to produce alternative biofuels for the future bio-era. For the efficient transformation of biomass to bioenergy, microbial cells need to be designed and engineered to maximize the performance of cellular metabolisms for the production of biofuels during energy flow. Toward this end, two different conceptual approaches have been applied for the development of platform cell factories: forward minimization and reverse engineering. From the context of naturally minimized genomes,non-essential energy-consuming pathways and/or related gene clusters could be progressively deleted to optimize cellular energy status for bioenergy production. Alternatively, incorporation of non-indigenous parts and/or modules including biomass-degrading enzymes, carbon uptake transporters, photosynthesis, CO2 fixation, and etc. into chassis microorganisms allows the platform cells to gain novel metabolic functions for bioenergy. This review focuses on the current progress in synthetic biology-aided pathway engineering in microbial cells and discusses its impact on the production of sustainable bioenergy.
Collapse
Affiliation(s)
- Sang Jun Lee
- Systems and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology Daejeon, South Korea
| | | | | |
Collapse
|
15
|
Lauterbach L, Lenz O, Vincent KA. H₂-driven cofactor regeneration with NAD(P)⁺-reducing hydrogenases. FEBS J 2013; 280:3058-68. [PMID: 23497170 DOI: 10.1111/febs.12245] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/15/2022]
Abstract
A large number of industrially relevant enzymes depend upon nicotinamide cofactors, which are too expensive to be added in stoichiometric amounts. Existing NAD(P)H-recycling systems suffer from low activity, or the generation of side products. H₂-driven cofactor regeneration has the advantage of 100% atom efficiency and the use of H₂ as a cheap reducing agent, in a world where sustainable energy carriers are increasingly attractive. The state of development of H₂-driven cofactor-recycling systems and examples of their integration with enzyme reactions are summarized in this article. The O₂-tolerant NAD⁺-reducing hydrogenase from Ralstonia eutropha is a particularly attractive candidate for this approach, and we therefore discuss its catalytic properties that are relevant for technical applications.
Collapse
|
16
|
Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc Natl Acad Sci U S A 2013; 110:5840-5. [PMID: 23530213 DOI: 10.1073/pnas.1222607110] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microorganisms can be engineered to produce useful products, including chemicals and fuels from sugars derived from renewable feedstocks, such as plant biomass. An alternative method is to use low potential reducing power from nonbiomass sources, such as hydrogen gas or electricity, to reduce carbon dioxide directly into products. This approach circumvents the overall low efficiency of photosynthesis and the production of sugar intermediates. Although significant advances have been made in manipulating microorganisms to produce useful products from organic substrates, engineering them to use carbon dioxide and hydrogen gas has not been reported. Herein, we describe a unique temperature-dependent approach that confers on a microorganism (the archaeon Pyrococcus furiosus, which grows optimally on carbohydrates at 100°C) the capacity to use carbon dioxide, a reaction that it does not accomplish naturally. This was achieved by the heterologous expression of five genes of the carbon fixation cycle of the archaeon Metallosphaera sedula, which grows autotrophically at 73°C. The engineered P. furiosus strain is able to use hydrogen gas and incorporate carbon dioxide into 3-hydroxypropionic acid, one of the top 12 industrial chemical building blocks. The reaction can be accomplished by cell-free extracts and by whole cells of the recombinant P. furiosus strain. Moreover, it is carried out some 30°C below the optimal growth temperature of the organism in conditions that support only minimal growth but maintain sufficient metabolic activity to sustain the production of 3-hydroxypropionate. The approach described here can be expanded to produce important organic chemicals, all through biological activation of carbon dioxide.
Collapse
|
17
|
Abstract
Extremely thermophilic microorganisms have been sources of thermostable and thermoactive enzymes for over 30 years. However, information and insights gained from genome sequences, in conjunction with new tools for molecular genetics, have opened up exciting new possibilities for biotechnological opportunities based on extreme thermophiles that go beyond single-step biotransformations. Although the pace for discovering novel microorganisms has slowed over the past two decades, genome sequence data have provided clues to novel biomolecules and metabolic pathways, which can be mined for a range of new applications. Furthermore, recent advances in molecular genetics for extreme thermophiles have made metabolic engineering for high temperature applications a reality.
Collapse
Affiliation(s)
- Andrew D Frock
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905
| | | |
Collapse
|
18
|
Genome sequencing of a genetically tractable Pyrococcus furiosus strain reveals a highly dynamic genome. J Bacteriol 2012; 194:4097-106. [PMID: 22636780 DOI: 10.1128/jb.00439-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The model archaeon Pyrococcus furiosus grows optimally near 100°C on carbohydrates and peptides. Its genome sequence (NCBI) was determined 12 years ago. A genetically tractable strain, COM1, was very recently reported, and here we describe its genome sequence. Of 1,909,827 bp in size, it is 1,571 bp longer (0.1%) than the reference NCBI sequence. The COM1 genome contains numerous chromosomal rearrangements, deletions, and single base changes. COM1 also has 45 full or partial insertion sequences (ISs) compared to 35 in the reference NCBI strain, and these have resulted in the direct deletion or insertional inactivation of 13 genes. Another seven genes were affected by chromosomal deletions and are predicted to be nonfunctional. In addition, the amino acid sequences of another 102 of the 2,134 predicted gene products are different in COM1. These changes potentially impact various cellular functions, including carbohydrate, peptide, and nucleotide metabolism; DNA repair; CRISPR-associated defense; transcriptional regulation; membrane transport; and growth at 72°C. For example, the IS-mediated inactivation of riboflavin synthase in COM1 resulted in a riboflavin requirement for growth. Nevertheless, COM1 grew on cellobiose, malto-oligosaccharides, and peptides in complex and minimal media at 98 and 72°C to the same extent as did both its parent strain and a new culture collection strain (DSMZ 3638). This was in spite of COM1 lacking several metabolic enzymes, including nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase and beta-glucosidase. The P. furiosus genome is therefore of high plasticity, and the availability of the COM1 sequence will be critical for the future studies of this model hyperthermophile.
Collapse
|
19
|
Recombinogenic properties of Pyrococcus furiosus strain COM1 enable rapid selection of targeted mutants. Appl Environ Microbiol 2012; 78:4669-76. [PMID: 22544252 DOI: 10.1128/aem.00936-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or "pop-out," of the selected marker. We used this method to construct a "markerless" deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene.
Collapse
|
20
|
Abstract
Microorganisms growing near the boiling point have enormous biotechnological potential but only recently have molecular engineering tools become available for them. We have engineered the hyperthermophilic archaeon Pyrococcus furiosus, which grows optimally at 100°C, to switch its end products of fermentation in a temperature-controlled fashion without the need for chemical inducers. The recombinant strain (LAC) expresses a gene (ldh) encoding lactate dehydrogenase from the moderately thermophilic Caldicellulosiruptor bescii (optimal growth temperature [Topt] of 78°C) controlled by a “cold shock” promoter that is upregulated when cells are transferred from 98°C to 72°C. At 98°C, the LAC strain fermented sugar to produce acetate and hydrogen as end products, and lactate was not detected. When the LAC strain was grown at 72°C, up to 3 mM lactate was produced instead. Expression of a gene from a moderately thermophilic bacterium in a hyperthermophilic archaeon at temperatures at which the hyperthermophile has low metabolic activity provides a new perspective to engineering microorganisms for bioproduct and biofuel formation. IMPORTANCE Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers. Extremely thermostable enzymes from microorganisms that grow near or above the boiling point of water are already used in biotechnology. However, the use of hyperthermophilic microorganisms themselves for biotechnological applications has been limited by the lack of their genetic accessibility. Recently, a genetic system for Pyrococcus furiosus, which grows optimally near 100°C, was developed in our laboratory. In this study, we present the first heterologous protein expression system for a microorganism that grows optimally at 100°C, a first step towards the potential expression of genes involved in biomass degradation or biofuel production in hyperthermophiles. Moreover, we developed the first system for specific gene induction in P. furiosus. As the cold shock promoter for protein expression used in this study is activated at suboptimal growth temperatures of P. furiosus, it is a powerful genetic tool for protein expression with minimal interference of the host’s metabolism and without the need for chemical inducers.
Collapse
|
21
|
Chandrayan SK, McTernan PM, Hopkins RC, Sun J, Jenney FE, Adams MWW. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic [NiFe]-hydrogenase. J Biol Chem 2011; 287:3257-64. [PMID: 22157005 DOI: 10.1074/jbc.m111.290916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.
Collapse
Affiliation(s)
- Sanjeev K Chandrayan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|