1
|
Faria Assoni A, Giove Mitsugi T, Wardenaar R, Oliveira Ferreira R, Farias Jandrey EH, Machado Novaes G, Fonseca de Oliveira Granha I, Bakker P, Kaid C, Zatz M, Foijer F, Keith Okamoto O. Neurodegeneration-associated protein VAPB regulates proliferation in medulloblastoma. Sci Rep 2023; 13:19481. [PMID: 37945695 PMCID: PMC10636017 DOI: 10.1038/s41598-023-45319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
VAMP (Vesicle-associated membrane protein)-associated protein B and C (VAPB) has been widely studied in neurodegenerative diseases such as ALS, but little is known about its role in cancer. Medulloblastoma is a common brain malignancy in children and arises from undifferentiated cells during neuronal development. Therefore, medulloblastoma is an interesting model to investigate the possible relationship between VAPB and tumorigenesis. Here we demonstrate that high VAPB expression in medulloblastoma correlates with decreased overall patient survival. Consistent with this clinical correlation, we find that VAPB is required for normal proliferation rates of medulloblastoma cells in vitro and in vivo. Knockout of VAPB (VAPBKO) delayed cell cycle progression. Furthermore, transcript levels of WNT-related proteins were decreased in the VAPBKO. We conclude that VAPB is required for proliferation of medulloblastoma cells, thus revealing VAPB as a potential therapeutic target for medulloblastoma treatment.
Collapse
Affiliation(s)
- Amanda Faria Assoni
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil.
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | - Thiago Giove Mitsugi
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - René Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Raiane Oliveira Ferreira
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Elisa Helena Farias Jandrey
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Gabriela Machado Novaes
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Isabela Fonseca de Oliveira Granha
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Petra Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands
| | - Carolini Kaid
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, 1, Antonius Deusinglaan, 9713 AV, Groningen, The Netherlands.
| | - Oswaldo Keith Okamoto
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, 106, Rua do Matão, Cidade Universitária, São Paulo, 05508-090, Brazil.
| |
Collapse
|
2
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
3
|
Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1. Sci Rep 2021; 11:1034. [PMID: 33441818 PMCID: PMC7806782 DOI: 10.1038/s41598-020-80524-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
TDP-43 and hnRNPA1 contain tandemly-tethered RNA-recognition-motif (RRM) domains, which not only functionally bind an array of nucleic acids, but also participate in aggregation/fibrillation, a pathological hallmark of various human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), alzheimer's disease (AD) and Multisystem proteinopathy (MSP). Here, by DSF, NMR and MD simulations we systematically characterized stability, ATP-binding and conformational dynamics of TDP-43 and hnRNPA1 RRM domains in both tethered and isolated forms. The results reveal three key findings: (1) upon tethering TDP-43 RRM domains become dramatically coupled and destabilized with Tm reduced to only 49 °C. (2) ATP specifically binds TDP-43 and hnRNPA1 RRM domains, in which ATP occupies the similar pockets within the conserved nucleic-acid-binding surfaces, with the affinity slightly higher to the tethered than isolated forms. (3) MD simulations indicate that the tethered RRM domains of TDP-43 and hnRNPA1 have higher conformational dynamics than the isolated forms. Two RRM domains become coupled as shown by NMR characterization and analysis of inter-domain correlation motions. The study explains the long-standing puzzle that the tethered TDP-43 RRM1–RRM2 is particularly prone to aggregation/fibrillation, and underscores the general role of ATP in inhibiting aggregation/fibrillation of RRM-containing proteins. The results also rationalize the observation that the risk of aggregation-causing diseases increases with aging.
Collapse
|
4
|
Dudás EF, Huynen MA, Lesk AM, Pastore A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J Biol Chem 2021; 296:100421. [PMID: 33609524 PMCID: PMC8005810 DOI: 10.1016/j.jbc.2021.100421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika F Dudás
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, GA Nijmegen, Netherlands
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK.
| |
Collapse
|
5
|
Abstract
Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell-cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell-cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.
Collapse
Affiliation(s)
- Aida Arcas
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avda, San Juan de Alicante, Spain
| |
Collapse
|
6
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Schultz J, Lee SJ, Cole T, Hoang HD, Vibbert J, Cottee PA, Miller MA, Han SM. The secreted MSP domain of C. elegans VAPB homolog VPR-1 patterns the adult striated muscle mitochondrial reticulum via SMN-1. Development 2017. [PMID: 28634272 PMCID: PMC5482996 DOI: 10.1242/dev.152025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major sperm protein domain (MSPd) has an extracellular signaling function implicated in amyotrophic lateral sclerosis. Secreted MSPds derived from the C. elegans VAPB homolog VPR-1 promote mitochondrial localization to actin-rich I-bands in body wall muscle. Here we show that the nervous system and germ line are key MSPd secretion tissues. MSPd signals are transduced through the CLR-1 Lar-like tyrosine phosphatase receptor. We show that CLR-1 is expressed throughout the muscle plasma membrane, where it is accessible to MSPd within the pseudocoelomic fluid. MSPd signaling is sufficient to remodel the muscle mitochondrial reticulum during adulthood. An RNAi suppressor screen identified survival of motor neuron 1 (SMN-1) as a downstream effector. SMN-1 acts in muscle, where it colocalizes at myofilaments with ARX-2, a component of the Arp2/3 actin-nucleation complex. Genetic studies suggest that SMN-1 promotes Arp2/3 activity important for localizing mitochondria to I-bands. Our results support the model that VAPB homologs are circulating hormones that pattern the striated muscle mitochondrial reticulum. This function is crucial in adults and requires SMN-1 in muscle, likely independent of its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Se-Jin Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
8
|
Cottee PA, Cole T, Schultz J, Hoang HD, Vibbert J, Han SM, Miller MA. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development. Development 2017. [PMID: 28634273 PMCID: PMC5482997 DOI: 10.1242/dev.152207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. Highlighted Article:vpr-1 null mutants are sterile upon hatching, a defect rescued by the expression of MSPd from almost any tissue except for the somatic gonad itself. See also the companion paper by Schultz et al.
Collapse
Affiliation(s)
- Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Wei Y, Lim L, Wang L, Song J. Inter-domain interactions of TDP-43 as decoded by NMR. Biochem Biophys Res Commun 2016; 473:614-9. [PMID: 27040765 DOI: 10.1016/j.bbrc.2016.03.158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
TDP-43 inclusions have been found in ∼97% ALS as well as an increasing spectrum of other neurodegenerative diseases including Alzheimer's. TDP-43 contains an ubiquitin-like fold, two RRMs and a prion-like domain, but whether they interact with each other remains unknown due to being intrinsically aggregation-prone. Nevertheless, this knowledge is pivotal to understanding physiological functions and pathological roles of TDP-43. Here as facilitated by our previous discovery which allowed NMR characterization of TDP-43 and its five dissected fragments, we successfully decoded that TDP-43 does have dynamic inter-domain interactions, which are coordinated by the intrinsically-disordered prion-like domain. Thus, TDP-43 appears to undergo conformational exchanges between "closed" and "open" states which are needed for its functions. Our study thus offers a mechanism by which cellular processes might control TDP-43 physiology and proteinopathy by mediating its inter-domain interactions.
Collapse
Affiliation(s)
- Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Lu Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Jianxing Song
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260.
| |
Collapse
|
10
|
Gupta G, Song J. C-Terminal Auto-Regulatory Motif of Hepatitis C Virus NS5B Interacts with Human VAPB-MSP to Form a Dynamic Replication Complex. PLoS One 2016; 11:e0147278. [PMID: 26784321 PMCID: PMC4718513 DOI: 10.1371/journal.pone.0147278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 01/02/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is a pathogen of global importance and nearly 200 million people are chronically infected with HCV. HCV is an enveloped single-stranded RNA virus, which is characteristic of the formation of the host membrane associated replication complex. Previous functional studies have already established that the human ER-anchored VAPB protein acts as a host factor to form a complex with HCV NS5A and NS5B, which may be established as a drug target. However, there is lacking of biophysical characterization of the structures and interfaces of the complex, partly due to the dynamic nature of the complex formation and dissociation, which is extensively involved in intrinsically-disordered domains. Here by an integrated use of domain dissection and NMR spectroscopy, for the first time we have successfully deciphered that the HCV NS5B utilizes its auto-regulatory C-linker to bind the VAPB-MSP domain to form a dynamic complex. This finding implies that the NS5B C-linker is capable of playing dual roles by a switch between the folded and disordered states. Interestingly, our previous and present studies together reveal that both HCV NS5A and NS5B bind to the MSP domains of the dimeric VAP with significantly overlapped interfaces and similar affinities. The identification that EphA2 and EphA5 bind to the MSP domain with higher affinity than EphA4 provides a biophysical basis for further exploring whether other than inducing ALS-like syndrome, the HCV infection might also trigger pathogenesis associated with signalling pathways mediated by EphA2 and EphA5.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
11
|
Qin H, Lim LZ, Song J. Dynamic principle for designing antagonistic/agonistic molecules for EphA4 receptor, the only known ALS modifier. ACS Chem Biol 2015; 10:372-8. [PMID: 25334011 DOI: 10.1021/cb500413n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Additional to involvement in diverse physiological and pathological processes such as axon regeneration, synaptic plasticity, and cancers, EphA4 receptor has been recently identified as the only amyotrophic lateral sclerosis (ALS) modifier. Previously, we found that two small molecules bind the same EphA4 channel at almost equivalent affinities but mysteriously trigger opposite signaling outputs: one activated but another inhibited. Here, we determined the solution structure of the 181-residue EphA4 LBD, which represents the first for 16 Eph receptors. Further NMR dynamic studies deciphered that the agonistic and antagonistic effects of two small molecules are dynamically driven, which are achieved by oppositely modulating EphA4 dynamics. Consequently, in design of drugs to target EphA4, the dynamic requirement also needs to be satisfied in addition to the classic criteria. For example, to increase the survival of ALS patients by inhibiting EphA4, the drugs must enhance, or at least not suppress, the EphA4 dynamics.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| | - Liang-Zhong Lim
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| | - Jianxing Song
- Department of Biological
Sciences, Faculty of Science, National University of Singapore, 10 Kent
Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
12
|
Chattopadhyay D, Sengupta S. First evidence of pathogenicity of V234I mutation of hVAPB found in Amyotrophic Lateral Sclerosis. Biochem Biophys Res Commun 2014; 448:108-13. [PMID: 24792378 DOI: 10.1016/j.bbrc.2014.04.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Amyotrophic Lateral Sclerosis is a motor neurodegenerative disease which is characterized by progressive loss of motor neurons followed by paralysis and eventually death. In human, VAMP-associated protein B (VAPB) is the causative gene of the familial form of ALS8. Previous studies have shown that P56S and T46I point mutations of hVAPB are present in this form of ALS. Recently, another mutation, V234I of hVAPB was found in one familial case of ALS. This is the first study where we have shown that V234I-VAPB does not form aggregate like other two mutants of VAPB and localizes differently than the wild type VAPB. It induces Ubiquitin aggregation followed by cell death. We propose that V234I-VAPB exhibits the characteristics of ALS in spite of not having the typical aggregation property of different mutations in various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Soma Sengupta
- Department of Biochemistry, University of Calcutta, India.
| |
Collapse
|
13
|
|
14
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013; 2:221. [PMID: 25254094 PMCID: PMC4168755 DOI: 10.12688/f1000research.2-221.v2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 12/12/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
15
|
Qin H, Lim L, Wei Y, Gupta G, Song J. Resolving the paradox for protein aggregation diseases: NMR structure and dynamics of the membrane-embedded P56S-MSP causing ALS imply a common mechanism for aggregation-prone proteins to attack membranes. F1000Res 2013. [PMID: 25254094 DOI: 10.12688/f1000research.2-221.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have increasingly been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP domain of vesicle-associated membrane protein-associated protein B (VAPB) by the ALS-causing P56S mutation. Despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Yuanyuan Wei
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
16
|
Huan X, Shi J, Lim L, Mitra S, Zhu W, Qin H, Pasquale EB, Song J. Unique structure and dynamics of the EphA5 ligand binding domain mediate its binding specificity as revealed by X-ray crystallography, NMR and MD simulations. PLoS One 2013; 8:e74040. [PMID: 24086308 PMCID: PMC3782497 DOI: 10.1371/journal.pone.0074040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022] Open
Abstract
The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.
Collapse
Affiliation(s)
- Xuelu Huan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Jiahai Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Sayantan Mitra
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Wanlong Zhu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Pathology Department, University of California San Diego, La Jolla, California, United States of America
| | - Jianxing Song
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Republic of Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
17
|
Song J. Why do proteins aggregate? "Intrinsically insoluble proteins" and "dark mediators" revealed by studies on "insoluble proteins" solubilized in pure water. F1000Res 2013; 2:94. [PMID: 24555050 PMCID: PMC3869494 DOI: 10.12688/f1000research.2-94.v1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/22/2022] Open
Abstract
In 2008, I reviewed and proposed a model for our discovery in 2005 that unrefoldable and insoluble proteins could in fact be solubilized in unsalted water. Since then, this discovery has offered us and other groups a powerful tool to characterize insoluble proteins, and we have further addressed several fundamental and disease-relevant issues associated with this discovery. Here I review these results, which are conceptualized into several novel scenarios. 1) Unlike 'misfolded proteins', which still retain the capacity to fold into well-defined structures but are misled to 'off-pathway' aggregation, unrefoldable and insoluble proteins completely lack this ability and will unavoidably aggregate in vivo with ~150 mM ions, thus designated as 'intrinsically insoluble proteins (IIPs)' here. IIPs may largely account for the 'wastefully synthesized' DRiPs identified in human cells. 2) The fact that IIPs including membrane proteins are all soluble in unsalted water, but get aggregated upon being exposed to ions, logically suggests that ions existing in the background play a central role in mediating protein aggregation, thus acting as 'dark mediators'. Our study with 14 salts confirms that IIPs lack the capacity to fold into any well-defined structures. We uncover that salts modulate protein dynamics and anions bind proteins with high selectivity and affinity, which is surprisingly masked by pre-existing ions. Accordingly, I modified my previous model. 3) Insoluble proteins interact with lipids to different degrees. Remarkably, an ALS-causing P56S mutation transforms the β-sandwich MSP domain into a helical integral membrane protein. Consequently, the number of membrane-interacting proteins might be much larger than currently recognized. To attack biological membranes may represent a common mechanism by which aggregated proteins initiate human diseases. 4) Our discovery also implies a solution to the 'chicken-and-egg paradox' for the origin of primitive membranes embedded with integral membrane proteins, if proteins originally emerged in unsalted prebiotic media.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Singapore ; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| |
Collapse
|
18
|
Qin H, Wang W, Song J. ALS-causing P56S mutation and splicing variation on the hVAPB MSP domain transform its β-sandwich fold into lipid-interacting helical conformations. Biochem Biophys Res Commun 2013; 431:398-403. [DOI: 10.1016/j.bbrc.2013.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
19
|
Miller MA, Chin-Sang ID. Eph receptor signaling in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2012. [PMID: 23197476 DOI: 10.1895/wormbook.1.151.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eph receptor protein-tyrosine kinases are among the oldest known animal receptors and have greatly expanded in number during vertebrate evolution. Their complex transduction mechanisms are capable of bidirectional and bimodal (multi-response) signaling. Eph receptors are expressed in almost every cell type in the human body, yet their roles in development, physiology, and disease are incompletely understood. Studies in C. elegans have helped identify biological functions of these receptors, as well as transduction mechanisms. Here we review advances in our understanding of Eph receptor signaling made using the C. elegans model system.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| | | |
Collapse
|
20
|
Goyal S, Gupta G, Qin H, Upadya MH, Tan YJ, Chow VTK, Song J. VAPC, an human endogenous inhibitor for hepatitis C virus (HCV) infection, is intrinsically unstructured but forms a "fuzzy complex" with HCV NS5B. PLoS One 2012; 7:e40341. [PMID: 22815741 PMCID: PMC3398895 DOI: 10.1371/journal.pone.0040341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/04/2012] [Indexed: 01/11/2023] Open
Abstract
Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic β-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a “fuzzy complex”. 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.
Collapse
Affiliation(s)
- Shaveta Goyal
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Gupta G, Qin H, Song J. Intrinsically unstructured domain 3 of hepatitis C Virus NS5A forms a "fuzzy complex" with VAPB-MSP domain which carries ALS-causing mutations. PLoS One 2012; 7:e39261. [PMID: 22720086 PMCID: PMC3374797 DOI: 10.1371/journal.pone.0039261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/22/2012] [Indexed: 01/26/2023] Open
Abstract
Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.
Collapse
Affiliation(s)
- Garvita Gupta
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
22
|
Qin H, Lim L, Song J. Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations. BMC BIOPHYSICS 2012; 5:2. [PMID: 22277260 PMCID: PMC3274464 DOI: 10.1186/2046-1682-5-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/25/2012] [Indexed: 12/21/2022]
Abstract
Background The role of dynamics in protein functions including signal transduction is just starting to be deciphered. Eph receptors with 16 members divided into A- and B- subclasses are respectively activated by 9 A- and B-ephrin ligands. EphA4 is the only receptor capable of binding to all 9 ephrins and small molecules with overlapped interfaces. Results We first determined the structures of the EphA4 ligand binding domain (LBD) in two crystals of P1 space group. Noticeably, 8 EphA4 molecules were found in one asymmetric unit and consequently from two crystals we obtained 16 structures, which show significant conformational variations over the functionally critical A-C, D-E, G-H and J-K loops. The 16 new structures, together with previous 9 ones, can be categorized into two groups: closed and open forms which resemble the uncomplexed and complexed structures of the EphA4 LBD respectively. To assess whether the conformational diversity over the loops primarily results from the intrinsic dynamics, we initiated 30-ns molecular dynamics (MD) simulations for both closed and open forms. The results indicate that the loops do have much higher intrinsic dynamics, which is further unravelled by NMR H/D exchange experiments. During simulations, the open form has the RMS deviations slightly larger than those of the closed one, suggesting the open form may be less stable in the absence of external contacts. Furthermore, no obvious exchange between two forms is observed within 30 ns, implying that they are dynamically separated. Conclusions Our study provides the first experimental and computational result revealing that the intrinsic dynamics are most likely underlying the conformational diversity observed for the EphA4 LBD loops mediating the binding affinity and specificity. Interestingly, the open conformation of the EphA4 LBD is slightly unstable in the absence of it natural ligand ephrins, implying that the conformational transition from the closed to open has to be driven by the high-affinity interaction with ephrins because the weak interaction with small molecule was found to be insufficient to trigger the transition. Our results therefore highlight the key role of protein dynamics in Eph-ephrin signalling and would benefit future design of agonists/antagonists targeting Eph receptors.
Collapse
Affiliation(s)
- Haina Qin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | | | | |
Collapse
|