2
|
Hadpech S, Nangola S, Chupradit K, Fanhchaksai K, Furnon W, Urvoas A, Valerio-Lepiniec M, Minard P, Boulanger P, Hong SS, Tayapiwatana C. Alpha-helicoidal HEAT-like Repeat Proteins (αRep) Selected as Interactors of HIV-1 Nucleocapsid Negatively Interfere with Viral Genome Packaging and Virus Maturation. Sci Rep 2017; 7:16335. [PMID: 29180782 PMCID: PMC5703948 DOI: 10.1038/s41598-017-16451-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
A new generation of artificial proteins, derived from alpha-helicoidal HEAT-like repeat protein scaffolds (αRep), was previously characterized as an effective source of intracellular interfering proteins. In this work, a phage-displayed library of αRep was screened on a region of HIV-1 Gag polyprotein encompassing the C-terminal domain of the capsid, the SP1 linker and the nucleocapsid. This region is known to be essential for the late steps of HIV-1 life cycle, Gag oligomerization, viral genome packaging and the last cleavage step of Gag, leading to mature, infectious virions. Two strong αRep binders were isolated from the screen, αRep4E3 (32 kDa; 7 internal repeats) and αRep9A8 (28 kDa; 6 internal repeats). Their antiviral activity against HIV-1 was evaluated in VLP-producer cells and in human SupT1 cells challenged with HIV-1. Both αRep4E3 and αRep9A8 showed a modest but significant antiviral effects in all bioassays and cell systems tested. They did not prevent the proviral integration reaction, but negatively interfered with late steps of the HIV-1 life cycle: αRep4E3 blocked the viral genome packaging, whereas αRep9A8 altered both virus maturation and genome packaging. Interestingly, SupT1 cells stably expressing αRep9A8 acquired long-term resistance to HIV-1, implying that αRep proteins can act as antiviral restriction-like factors.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Faculty of Pharmaceutical Science, Burapha University, Muang District, Chonburi Province, 20131, Thailand.,University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Sawitree Nangola
- Division of Clinical Immunology and Transfusion Sciences, School of Allied Health Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanda Fanhchaksai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wilhelm Furnon
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Agathe Urvoas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marie Valerio-Lepiniec
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Philippe Minard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Pierre Boulanger
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France
| | - Saw-See Hong
- University Lyon 1, UMR754-INRA-EPHE, Viral Infections and Comparative Pathology, 50, Avenue Tony Garnier, 69366, Lyon Cedex 07, France. .,Institut National de la Santé et de la Recherche Médicale, 101, rue de Tolbiac, 75654, Paris Cedex 13, France.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
3
|
Pandey D, Podder A, Pandit M, Latha N. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies. J Biomol Struct Dyn 2016; 35:2631-2644. [PMID: 27545652 DOI: 10.1080/07391102.2016.1227722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major causative agent for Acquired Immune Deficiency Syndrome (AIDS) is Human Immunodeficiency Virus-1 (HIV-1). HIV-1 is a predominant subtype of HIV which counts on human cellular mechanism virtually in every aspect of its life cycle. Binding of viral envelope glycoprotein-gp120 with human cell surface CD4 receptor triggers the early infection stage of HIV-1. This study focuses on the interaction interface between these two proteins that play a crucial role for viral infectivity. The CD4-gp120 interaction interface has been studied through a comprehensive protein-protein interaction network (PPIN) analysis and highlighted as a useful step towards identifying potential therapeutic drug targets against HIV-1 infection. We prioritized gp41, Nef and Tat proteins of HIV-1 as valuable drug targets at early stage of viral infection. Lack of crystal structure has made it difficult to understand the biological implication of these proteins during disease progression. Here, computational protein modeling techniques and molecular dynamics simulations were performed to generate three-dimensional models of these targets. Besides, molecular docking was initiated to determine the desirability of these target proteins for already available HIV-1 specific drugs which indicates the usefulness of these protein structures to identify an effective drug combination therapy against AIDS.
Collapse
Affiliation(s)
- Deeksha Pandey
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Avijit Podder
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Mansi Pandit
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| | - Narayanan Latha
- a Bioinformatics Infrastructure Facility , Sri Venkateswara College, University of Delhi , Benito Juarez Road, Dhaula Kuan, New Delhi 110021 , India
| |
Collapse
|
5
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
7
|
Yadav SS, Wilson SJ, Bieniasz PD. A facile quantitative assay for viral particle genesis reveals cooperativity in virion assembly and saturation of an antiviral protein. Virology 2012; 429:155-62. [PMID: 22575053 DOI: 10.1016/j.virol.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/19/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Conventional assays of viral particle assembly and release are time consuming and laborious. We have developed an enzymatic virus-like particle (VLP) genesis assay that rapid and quantitative and is also versatile and applicable to diverse viruses including HIV-1 and Ebola virus. Using this assay, which has a dynamic range of several orders of magnitude, we show that the efficiency of VLP assembly and release, i.e., the fraction of the expressed protein that is assembled into extracellular particles, is dependent on the absolute level of expression of either HIV-1 Gag or Ebola virus VP40. We also demonstrate that the activity of the antiviral factor tetherin is dependent on the level of HIV-1 Gag expression and the numbers of VLPs generated, and appears to become saturated as these parameters are increased.
Collapse
Affiliation(s)
- Shalini S Yadav
- Howard Hughes Medical Institute, Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
8
|
Nangola S, Urvoas A, Valerio-Lepiniec M, Khamaikawin W, Sakkhachornphop S, Hong SS, Boulanger P, Minard P, Tayapiwatana C. Antiviral activity of recombinant ankyrin targeted to the capsid domain of HIV-1 Gag polyprotein. Retrovirology 2012; 9:17. [PMID: 22348230 PMCID: PMC3308923 DOI: 10.1186/1742-4690-9-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 02/20/2012] [Indexed: 01/01/2023] Open
Abstract
Background Ankyrins are cellular mediators of a number of essential protein-protein interactions. Unlike intrabodies, ankyrins are composed of highly structured repeat modules characterized by disulfide bridge-independent folding. Artificial ankyrin molecules, designed to target viral components, might act as intracellular antiviral agents and contribute to the cellular immunity against viral pathogens such as HIV-1. Results A phage-displayed library of artificial ankyrins was constructed, and screened on a polyprotein made of the fused matrix and capsid domains (MA-CA) of the HIV-1 Gag precursor. An ankyrin with three modules named AnkGAG1D4 (16.5 kDa) was isolated. AnkGAG1D4 and MA-CA formed a protein complex with a stoichiometry of 1:1 and a dissociation constant of Kd ~ 1 μM, and the AnkGAG1D4 binding site was mapped to the N-terminal domain of the CA, within residues 1-110. HIV-1 production in SupT1 cells stably expressing AnkGAG1D4 in both N-myristoylated and non-N-myristoylated versions was significantly reduced compared to control cells. AnkGAG1D4 expression also reduced the production of MLV, a phylogenetically distant retrovirus. The AnkGAG1D4-mediated antiviral effect on HIV-1 was found to occur at post-integration steps, but did not involve the Gag precursor processing or cellular trafficking. Our data suggested that the lower HIV-1 progeny yields resulted from the negative interference of AnkGAG1D4-CA with the Gag assembly and budding pathway. Conclusions The resistance of AnkGAG1D4-expressing cells to HIV-1 suggested that the CA-targeted ankyrin AnkGAG1D4 could serve as a protein platform for the design of a novel class of intracellular inhibitors of HIV-1 assembly based on ankyrin-repeat modules.
Collapse
Affiliation(s)
- Sawitree Nangola
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|