1
|
Li W, Qu X, Kang X, Zhang H, Zhang X, Hu H, Yao L, Zhang L, Zheng J, Zheng Y, Zhang J, Xu Y. Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. Eur J Pharmacol 2022; 929:175153. [PMID: 35839932 DOI: 10.1016/j.ejphar.2022.175153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Growing evidence indicates that silibinin (SLB), a main component extracted from Chinese herb Silybum marianum, can effectively antagonize doxorubicin (DOX) induced myocardial injury (DIMI), but the specific molecular mechanism is still unelucidated. Herein, DOX induced human AC16 cardiomyocyte injury model and Network Pharmacology are used to predict and verify the potential mechanism. The analysis results of the core PPI network of SLB against DIMI show that JAK/STAT signaling pathway and autophagy are significantly enriched. Molecular docking results indicate that SLB has stronger binding ability to signaling key proteins IL6ST, JAK2 and STAT3 (affinity ≤ -7.0 kcal/mol). The detection results of pathway activation and autophagy level demonstrate that SLB significantly alleviates DOX induced IL6ST/JAK2/STAT3 signaling pathway inhibition and autophagy inhibition, reduces the death rate of cardiomyocytes. This protective effect of SLB is eliminated when key pathway proteins (IL6ST, JAK2, STAT3) are knocked down or autophagy is inhibited (3-MA or Beclin1 knockdown). These results suggest that the regulation of IL6ST/JAK2/STAT3 signaling pathway and autophagy may be important mechanism for SLB's protective effect on DOX injured cardiomyocytes. Further experimental results prove that knockdown of IL6ST, JAK2 and STAT3 eliminate the mitochondrial ROS scavenging effect and autophagy promoting effect of SLB. In sum, SLB can decrease the mitochondrial ROS and restore autophagy to antagonize DOX-induced cardiomyocyte injury by activating IL6ST/JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wenbiao Li
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinni Qu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiangping Kang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyin Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xueli Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haiyan Hu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lingai Yao
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lina Zhang
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zheng
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuejuan Zheng
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghong Zhang
- Department of Radiation Biology, Institute of Radiation Medicine, Fudan University, Shanghai, 200032, China.
| | - Yanwu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Role of CBL Mutations in Cancer and Non-Malignant Phenotype. Cancers (Basel) 2022; 14:cancers14030839. [PMID: 35159106 PMCID: PMC8833995 DOI: 10.3390/cancers14030839] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary CBL mutations are progressively being described as involved in different clinical manifestations. Somatic CBL mutations can be found in different type of cancer. The clinical spectrum of germline mutations configures the so-called CBL syndrome, a cancer-predisposing condition that includes multisystemic involvement characterized by variable phenotypic expression and expressivity. In this review we provide an up-to-date review of the clinical manifestation of CBL mutations and of the molecular mechanisms in which CBL exerts its pathogenic role. Abstract CBL plays a key role in different cell pathways, mainly related to cancer onset and progression, hematopoietic development and T cell receptor regulation. Somatic CBL mutations have been reported in a variety of malignancies, ranging from acute myeloid leukemia to lung cancer. Growing evidence have defined the clinical spectrum of germline CBL mutations configuring the so-called CBL syndrome; a cancer-predisposing condition that also includes multisystemic involvement characterized by variable phenotypic expression and expressivity. This review provides a comprehensive overview of the molecular mechanisms in which CBL exerts its function and describes the clinical manifestation of CBL mutations in humans.
Collapse
|
3
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
4
|
Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, Miura O. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers (Basel) 2020; 12:cancers12020406. [PMID: 32050632 PMCID: PMC7072561 DOI: 10.3390/cancers12020406] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
JAK2-V617F plays a key role in the pathogenesis of myeloproliferative neoplasm. However, its inhibitor ruxolitinib has shown limited clinical efficacies because of the ruxolitinib-persistent proliferation of JAK2-V617F-positive cells. We here demonstrate that the USP9X inhibitor WP1130 or EOAI3402143 (G9) inhibited proliferation and induced apoptosis more efficiently in cells dependent on JAK2-V617F than on cytokine-activated JAK2. WP1130 preferentially downregulated activated and autophosphorylated JAK2-V617F by enhancing its K63-linked polyubiquitination and inducing its aggresomal translocation to block downstream signaling. Furthermore, JAK2-V617F associated physically with USP9X in leukemic HEL cells. Induction of apoptosis by inhibition of USP9X was mediated through the intrinsic mitochondria-mediated pathway, synergistically enhanced by BH3 mimetics, prevented by overexpression of Bcl-xL, and required oxidative stress to activate stress-related MAP kinases p38 and JNK as well as DNA damage responses in HEL cells. Although autophosphorylated JAK2-V617F was resistant to WP1130 in the ruxolitinib-persistent HEL-R cells, these cells expressed Bcl-2 and Bcl-xL at lower levels and showed an increased sensitivity to WP1130 as well as BH3 mimetics as compared with ruxolitinib-naive HEL cells. Thus, USP9X represents a promising target along with anti-apoptotic Bcl-2 family members for novel therapeutic strategies against JAK2-V617F-positive myeloproliferative neoplasms, particularly under the ruxolitinib persistence conditions.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Daisuke Watanabe
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Correspondence:
| |
Collapse
|
5
|
Ameliorating oxidative stress and inflammation by Hesperidin and vitamin E in doxorubicin induced cardiomyopathy. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/tjb-2018-0156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Background
Doxorubicin (DOX) is a common chemotherapeutic drug. However, it causes cardiomyopathy which reduces its clinical use in human cancer therapy.
Objective
The purpose of our study was to assess the cardioprotective effect of hesperidin (HSP) and vitamin E (VIT.E) against DOX-induced cardiomyopathy.
Material and methods
Seventy rats were allocated into seven groups: control, HSP (50 mg/kg, orally), VIT.E (100 mg/kg orally), DOX [4 mg/kg, intraperitoneally (i.p.)], DOX+HSP, DOX+VIT.E and DOX+HSP+VIT.E.
Results
Our findings showed that serum lactate dehydrogenase (LDH), creatine kinase (CK), myeloperoxidase (MPO), cardiac catalase and caspase activities as well as cardiac malondialdehyde (MDA) and serum nitric oxide (NO) concentrations were reduced DOX+HSP or DOX+VIT.E or DOX+VIT.E+HSP groups compared to DOX group. Whereas, cardiac reduced glutathione (GSH) level, serum arylesterase, and paraoxonase activities were higher in rats injected with DOX and administrated with HSP and VIT.E than that of rats injected with DOX only. Cardiac histopathology of DOX group showed some changes that were improved during administration with HSP and VIT.E.
Conclusion
HSP and VIT.E possess a protective effect against DOX-induced cardiomyopathy via inhibiting oxidative stress, inflammation, and apoptosis.
Collapse
|
6
|
Umezawa Y, Akiyama H, Okada K, Ishida S, Nogami A, Oshikawa G, Kurosu T, Miura O. Molecular mechanisms for enhancement of stromal cell-derived factor 1-induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). J Biol Chem 2017; 292:19639-19655. [PMID: 28974577 DOI: 10.1074/jbc.m117.779603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 09/26/2017] [Indexed: 01/16/2023] Open
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is a cell adhesion protein involved in the regulation of cell adhesion and migration. Interestingly, several PECAM-1-deficient hematopoietic cells exhibit impaired chemotactic responses to stromal cell-derived factor 1 (SDF-1), a chemokine essential for B lymphopoiesis and bone marrow myelopoiesis. However, whether PECAM-1 is involved in SDF-1-regulated chemotaxis is unknown. We report here that SDF-1 induces tyrosine phosphorylation of PECAM-1 at its immunoreceptor tyrosine-based inhibition motifs in several hematopoietic cell lines via the Src family kinase Lyn, Bruton's tyrosine kinase, and JAK2 and that inhibition of these kinases reduced chemotaxis. Overexpression and knockdown of PECAM-1 enhanced and down-regulated, respectively, SDF-1-induced Gαi-dependent activation of the PI3K/Akt/mTORC1 pathway and small GTPase Rap1 in hematopoietic 32Dcl3 cells, and these changes in activation correlated with chemotaxis. Furthermore, pharmacological or genetic inhibition of the PI3K/Akt/mTORC1 pathway or Rap1, respectively, revealed that these pathways are independently activated and required for SDF-1-induced chemotaxis. When coexpressed in 293T cells, PECAM-1 physically associated with the SDF-1 receptor CXCR4. Moreover, PECAM-1 overexpression and knockdown reduced and enhanced SDF-1-induced endocytosis of CXCR4, respectively. Furthermore, when expressed in 32Dcl3 cells, an endocytosis-defective CXCR4 mutant, CXCR4-S324A/S325A, could activate the PI3K/Akt/mTORC1 pathway as well as Rap1 and induce chemotaxis in a manner similar to PECAM-1 overexpression. These findings suggest that PECAM-1 enhances SDF-1-induced chemotaxis by augmenting and prolonging activation of the PI3K/Akt/mTORC1 pathway and Rap1 and that PECAM-1, at least partly, exerts its activity by inhibiting SDF-1-induced internalization of CXCR4.
Collapse
Affiliation(s)
- Yoshihiro Umezawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Hiroki Akiyama
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Keigo Okada
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Shinya Ishida
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Ayako Nogami
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Gaku Oshikawa
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Tetsuya Kurosu
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- From the Department of Hematology, Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| |
Collapse
|
7
|
Teicher BA, Silvers T, Selby M, Delosh R, Laudeman J, Ogle C, Reinhart R, Parchment R, Krushkal J, Sonkin D, Rubinstein L, Morris J, Evans D. Small cell lung carcinoma cell line screen of etoposide/carboplatin plus a third agent. Cancer Med 2017; 6:1952-1964. [PMID: 28766886 PMCID: PMC5548882 DOI: 10.1002/cam4.1131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022] Open
Abstract
The SCLC combination screen examined a 9-point concentration response of 180 third agents, alone and in combination with etoposide/carboplatin. The predominant effect of adding a third agent to etoposide/carboplatin was additivity. Less than additive effects occurred frequently in SCLC lines sensitive to etoposide/carboplatin. In SCLC lines with little or no response to etoposide/carboplatin, greater than additive SCLC killing occurred over the entire spectrum of SCLC lines but never occurred in all SCLC lines. Exposing SCLC lines to tubulin-targeted agents (paclitaxel or vinorelbine) simultaneously with etoposide/carboplatin resulted primarily in less than additive cell killing. As single agents, nuclear kinase inhibitors including Aurora kinase inhibitors, Kinesin Spindle Protein/EG5 inhibitors, and Polo-like kinase-1 inhibitors were potent cytotoxic agents in SCLC lines; however, simultaneous exposure of the SCLC lines to these agents along with etoposide/carboplatin, generally, resulted in less than additive cell killing. Several classes of agents enhanced the cytotoxicity of etoposide/carboplatin toward the SCLC lines. Exposure of the SCLC lines to the MDM2 inhibitor JNJ-27291199 produced enhanced killing in 80% of the SCLC lines. Chk-1 inhibitors such as rabusertib increased the cytotoxicity of etoposide/carboplatin to the SCLC lines in an additive to greater than additive manner. The combination of GSK-3β inhibitor LY-2090314 with etoposide/carboplatin increased killing in approximately 40% of the SCLC lines. Exposure to the BET bromodomain inhibitor MK-8628 increased the SCLC cell killing by etoposide/carboplatin in 20-25% of the SCLC lines. Only 10-15% of the SCLC lines had an increased response to etoposide/carboplatin when simultaneously exposed to the PARP inhibitor talazoparib.
Collapse
Affiliation(s)
- Beverly A. Teicher
- Developmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland20892
| | - Thomas Silvers
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Michael Selby
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Rene Delosh
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Julie Laudeman
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Chad Ogle
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Russell Reinhart
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Ralph Parchment
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| | - Julia Krushkal
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Dmitriy Sonkin
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Larry Rubinstein
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisBethesdaMaryland20892
| | - Joel Morris
- Developmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteBethesdaMaryland20892
| | - David Evans
- Molecular Pharmacology GroupLeidos Biomedical Research, Inc.Frederick National Laboratory for Cancer ResearchFrederickMaryland21702
| |
Collapse
|
8
|
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev 2017; 31:1007-1023. [PMID: 28611190 PMCID: PMC5495118 DOI: 10.1101/gad.297135.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Here, Lv et al. report that the CBL family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. Their results reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily A Todd
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Grace R Jeschke
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suresh Kumar
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Elizabeth O Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Nogami A, Oshikawa G, Okada K, Fukutake S, Umezawa Y, Nagao T, Kurosu T, Miura O. FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia. Oncotarget 2016; 6:9189-205. [PMID: 25826077 PMCID: PMC4496211 DOI: 10.18632/oncotarget.3279] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/07/2015] [Indexed: 01/10/2023] Open
Abstract
FLT3-ITD and FLT3-TKD are the most frequent tyrosine kinase mutations in acute myeloid leukemia (AML), with the former associated with poor prognosis. Here, we show that the PI3K inhibitor GDC-0941 or the Akt inhibitor MK-2206 induced apoptosis through the mitochondria-mediated intrinsic pathway more efficiently in hematopoietic 32D cells driven by FLT3-TKD (32D/TKD) than FLT3-ITD (32D/ITD), which robustly activated STAT5. The resistance to GDC-0941 and MK-2206 was gained by expression of the constitutively activated STAT5 mutant STAT5A1*6 in 32D/TKD cells, while it was abrogated by the STAT5 inhibitor pimozide in 32D/ITD cells or FLT3-ITD-expressing human leukemic MV4-11 cells. GDC-0941 or MK-2206 induced dephosphorylation of 4EBP1 more conspicuously in 32D/TKD than in 32D/ITD, which was prevented or augmented by STAT5A1*6 or pimozide, respectively, and correlated with downregulation of the eIF4E/eIF4G complex formation and Mcl-1 expression. Furthermore, exogenous expression of Mcl-1 endowed resistance to GDC-0941 and MK-2206 on 32D/TKD cells. Finally, it was confirmed in primary AML cells with FLT3-ITD that pimozide enhanced 4EBP1 dephosphorylation and Mcl-1 downregulation to augment cytotoxicity of GDC-0941. These data suggest that the robust STAT5 activation by FLT3-ITD protects cells treated with the PI3K/Akt pathway inhibitors from apoptosis by maintaining Mcl-1 expression through the mTORC1/4EBP1/eIF4E pathway.
Collapse
Affiliation(s)
- Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shusaku Fukutake
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Putri H, Nagadi S, Larasati YA, Wulandari N, Hermawan A, Nugroho AE. Cardioprotective and hepatoprotective effects of Citrus hystrix peels extract on rats model. Asian Pac J Trop Biomed 2015; 3:371-5. [PMID: 23646300 DOI: 10.1016/s2221-1691(13)60079-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To observe the combination effect of doxorubicin and Citrus hystrix (kaffir lime's) peel ethanolic extract (ChEE) on blood serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity and cardio-hepato-histopathology of female Sprague Dawley rats. METHODS Doxorubicin and ChEE (5 rats per group) were administered in five groups of 3 rats each for 11 d. Group I: doxorubicin (dox) 4.67 mg/kg body weight; Group II: dox+ChEE 500 mg/kg body weight; Group III: dox+ChEE 1 000 mg/kg body weight; Group IV: ChEE 1 000 mg/kg body weight; Group V: untreated (control). RESULTS ChEE repaired cardiohistopathology profile of doxorubicin induced cardiotoxicity and hepatotoxicity rats, but did not repair neither hepatohistopathology profile nor reduce serum activity of ALT and AST. CONCLUSION ChEE has potency to be developed as cardioprotector agent in chemotherapy.
Collapse
Affiliation(s)
- Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara II, Yogyakarta, Indonesia, 55281
| | | | | | | | | | | |
Collapse
|
11
|
Shintani T, Ohara-Waki F, Kitanaka A, Tanaka T, Kubota Y. Cbl negatively regulates erythropoietin-induced growth and survival signaling through the proteasomal degradation of Src kinase. Blood Cells Mol Dis 2014; 53:211-8. [PMID: 25084697 DOI: 10.1016/j.bcmd.2014.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
We examined the biological functions of the gene Cbl in erythropoietin (EPO) signaling using Cbl-deficient F-36P human erythroleukemia cells by the introduction of the Cbl siRNA expression vector. Knockdown of Cbl promoted EPO-dependent proliferation and survival of F-36P cells, especially at a low concentration of EPO (0.01U/mL), similar to serum concentrations of EPO in healthy volunteers (0.005-0.04U/mL). We found that Src was degraded mainly by the proteasomal pathway because the proteasome inhibitor MG-132 but not the lysosome inhibitor NH4Cl suppressed the EPO-induced degradation of Src in F-36P cells and that knockdown of Cbl inhibited EPO-induced ubiquitination and degradation of Src in F-36P cells. The experiments using the Src inhibitor PP1 and co-expression experiments further confirmed that Cbl and the kinase activity of Src are required for the EPO-induced ubiquitination of Src. In addition, the co-expression experiments and in vitro kinase assay demonstrated that the EPO-induced tyrosine phosphorylation and ubiquitination of Cbl were dependent on the kinase activity of Src but not Jak2. Thus, Cbl negatively regulates EPO signaling mainly through the proteasome-dependent degradation of Src, and the E3 ligase activity of Cbl and its tyrosine phosphorylation are regulated by Src but not Jak2.
Collapse
Affiliation(s)
- Takamichi Shintani
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Fusako Ohara-Waki
- Department of Internal Medicine, Takamatsu Red Cross Hospital, Kagawa 760-0017, Japan
| | - Akira Kitanaka
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Terukazu Tanaka
- Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Yoshitsugu Kubota
- Department of Community Medicine, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| |
Collapse
|
12
|
Nagao T, Kurosu T, Umezawa Y, Nogami A, Oshikawa G, Tohda S, Yamamoto M, Miura O. Proliferation and survival signaling from both Jak2-V617F and Lyn involving GSK3 and mTOR/p70S6K/4EBP1 in PVTL-1 cell line newly established from acute myeloid leukemia transformed from polycythemia vera. PLoS One 2014; 9:e84746. [PMID: 24404189 PMCID: PMC3880321 DOI: 10.1371/journal.pone.0084746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022] Open
Abstract
The gain of function mutation JAK2-V617F is very frequently found in myeloproliferative neoplasms (MPNs) and is strongly implicated in pathogenesis of these and other hematological malignancies. Here we report establishment of a new leukemia cell line, PVTL-1, homozygous for JAK2-V617F from a 73-year-old female patient with acute myeloid leukemia (AML) transformed from MPN. PVTL-1 is positive for CD7, CD13, CD33, CD34, CD117, HLA-DR, and MPO, and has complex karyotypic abnormalities, 44,XX,-5q,-7,-8,add(11)(p11.2),add(11)(q23),−16,+21,−22,+mar1. Sequence analysis of JAK2 revealed only the mutated allele coding for Jak2-V617F. Proliferation of PVTL-1 was inhibited and apoptosis was induced by the pan-Jak inhibitor Jak inhibitor-1 (JakI-1) or dasatinib, which inhibits the Src family kinases as well as BCR/ABL. Consistently, the Src family kinase Lyn was constitutively activated with phosphorylation of Y396 in the activation loop, which was inhibited by dasatinib but not by JakI-1. Further analyses with JakI-1 and dasatinib indicated that Jak2-V617F phosphorylated STAT5 and SHP2 while Lyn phosphorylated SHP1, SHP2, Gab-2, c-Cbl, and CrkL to induce the SHP2/Gab2 and c-Cbl/CrkL complex formation. In addition, JakI-1 and dasatinib inactivated the mTOR/p70S6K/4EBP1 pathway and reduced the inhibitory phosphorylation of GSK3 in PVTL-1 cells, which correlated with their effects on proliferation and survival of these cells. Furthermore, inhibition of GSK3 by its inhibitor SB216763 mitigated apoptosis induced by dasatinib but not by JakI-1. Together, these data suggest that apoptosis may be suppressed in PVTL-1 cells through inactivation of GSK3 by Lyn as well as Jak2-V617F and additionally through activation of STAT5 by Jak2-V617F. It is also speculated that activation of the mTOR/p70S6K/4EBP1 pathway may mediate proliferation signaling from Jak2-V617F and Lyn. PVTL-1 cells may provide a valuable model system to elucidate the molecular mechanisms involved in evolution of Jak2-V617F-expressing MPN to AML and to develop novel therapies against this intractable condition.
Collapse
Affiliation(s)
- Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Tohda
- Department of Laboratory Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahide Yamamoto
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Kurosu T, Nagao T, Wu N, Oshikawa G, Miura O. Inhibition of the PI3K/Akt/GSK3 pathway downstream of BCR/ABL, Jak2-V617F, or FLT3-ITD downregulates DNA damage-induced Chk1 activation as well as G2/M arrest and prominently enhances induction of apoptosis. PLoS One 2013; 8:e79478. [PMID: 24260231 PMCID: PMC3832535 DOI: 10.1371/journal.pone.0079478] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/24/2022] Open
Abstract
Constitutively-activated tyrosine kinase mutants, such as BCR/ABL, FLT3-ITD, and Jak2-V617F, play important roles in pathogenesis of hematopoietic malignancies and in acquisition of therapy resistance. We previously found that hematopoietic cytokines enhance activation of the checkpoint kinase Chk1 in DNA-damaged hematopoietic cells by inactivating GSK3 through the PI3K/Akt signaling pathway to inhibit apoptosis. Here we examine the possibility that the kinase mutants may also protect DNA-damaged cells by enhancing Chk1 activation. In cells expressing BCR/ABL, FLT3-ITD, or Jak2-V617F, etoposide induced a sustained activation of Chk1, thus leading to the G2/M arrest of cells. Inhibition of these kinases by their inhibitors, imatinib, sorafenib, or JakI-1, significantly abbreviated Chk1 activation, and drastically enhanced apoptosis induced by etoposide. The PI3K inhibitor GD-0941 or the Akt inhibitor MK-2206 showed similar effects with imatinib on etoposide-treated BCR/ABL-expressing cells, including those expressing the imatinib-resistant T315I mutant, while expression of the constitutively activated Akt1-myr mutant conferred resistance to the combined treatment of etoposide and imatinib. GSK3 inhibitors, including LiCl and SB216763, restored the sustained Chk1 activation and mitigated apoptosis in cells treated with etoposide and the inhibitors for aberrant kinases, PI3K, or Akt. These observations raise a possilibity that the aberrant kinases BCR/ABL, FLT3-ITD, and Jak2-V617F may prevent apoptosis induced by DNA-damaging chemotherapeutics, at least partly through enhancement of the Chk1-mediated G2/M checkpoint activation, by inactivating GSK3 through the PI3K/Akt signaling pathway. These results shed light on the molecular mechanisms for chemoresistance of hematological malignancies and provide a rationale for the combined treatment with chemotherapy and the tyrosine kinase or PI3K/Akt pathway inhibitors against these diseases.
Collapse
Affiliation(s)
- Tetsuya Kurosu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshikage Nagao
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nan Wu
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gaku Oshikawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
15
|
Javadi M, Richmond TD, Huang K, Barber DL. CBL linker region and RING finger mutations lead to enhanced granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling via elevated levels of JAK2 and LYN. J Biol Chem 2013; 288:19459-70. [PMID: 23696637 DOI: 10.1074/jbc.m113.475087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways.
Collapse
Affiliation(s)
- Mojib Javadi
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, Toronto, Ontario M5G 2M9, Canada
| | | | | | | |
Collapse
|