1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Sillapachaiyaporn C, Wongwan C, Mongkolpobsin K, Nilkhet S, Isidoro C, Chuchawankul S, Tencomnao T. Ergosterol promotes neurite outgrowth, inhibits amyloid-beta synthesis, and extends longevity: In vitro neuroblastoma and in vivo Caenorhabditis elegans evidence. Life Sci 2024; 345:122606. [PMID: 38574884 DOI: 10.1016/j.lfs.2024.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
AIMS Alzheimer's disease (AD), the most common neurodegenerative disorder associated with aging, is characterized by amyloid-β (Aβ) plaques in the hippocampus. Ergosterol, a mushroom sterol, exhibits neuroprotective activities; however, the underlying mechanisms of ergosterol in promoting neurite outgrowth and preventing Aβ-associated aging have never been investigated. We aim to determine the beneficial activities of ergosterol in neuronal cells and Caenorhabditis elegans (C. elegans). MATERIALS AND METHODS The neuritogenesis and molecular mechanisms of ergosterol were investigated in wild-type and Aβ precursor protein (APP)-overexpressing Neuro2a cells. The anti-amyloidosis properties of ergosterol were determined by evaluating in vitro Aβ production and the potential inhibition of Aβ-producing enzymes. Additionally, AD-associated transgenic C. elegans was utilized to investigate the in vivo attenuating effects of ergosterol. KEY FINDINGS Ergosterol promoted neurite outgrowth in Neuro2a cells through the upregulation of the transmembrane protein Teneurin-4 (Ten-4) mRNA and protein expressions, phosphorylation of the extracellular signal-regulated kinases (ERKs), activity of cAMP response element (CRE), and growth-associated protein-43 (GAP-43). Furthermore, ergosterol enhanced neurite outgrowth in transgenic Neuro2A cells overexpressing either the wild-type APP (Neuro2a-APPwt) or the Swedish mutant APP (Neuro2a-APPswe) through the Ten-4/ERK/CREB/GAP-43 signaling pathway. Interestingly, ergosterol inhibited Aβ synthesis in Neuro2a-APPwt cells. In silico analysis indicated that ergosterol can interact with the catalytic sites of β- and γ-secretases. In Aβ-overexpressing C. elegans, ergosterol decreased Aβ accumulation, increased chemotaxis behavior, and prolonged lifespan. SIGNIFICANCE Ergosterol is a potential candidate compound that might benefit AD patients by promoting neurite outgrowth, inhibiting Aβ synthesis, and enhancing longevity.
Collapse
Affiliation(s)
- Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chamaiphorn Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ciro Isidoro
- Department of Health Sciences, University of Eastern Piedmont 'Amedeo Avogadro', Novara 28100, Italy
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Terayama R, Tsuji K, Furugen H, Minh DNP, Nakatani A, Uchibe K. Effects of Peripheral Nerve Injury on the Induction of c-Fos and Phosphorylated ERK in the Brainstem Trigeminal Sensory Nuclear Complex. Ann Neurosci 2023; 30:177-187. [PMID: 37779546 PMCID: PMC10540764 DOI: 10.1177/09727531231156505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/26/2022] [Indexed: 10/03/2023] Open
Abstract
Background Sequential changes in brainstem and spinal cord neurons after traumatic injury to peripheral nerves are related to neuropathic pain symptoms. Purpose This study was conducted to elucidate the influence of nerve insult on stimulus-induced c-Fos expression and ERK phosphorylation by brainstem neurons. Methods The brainstem trigeminal sensory nuclear complex (BTSNC) was examined for neuronal profiles immunolabeled with c-Fos and phosphorylated ERK (p-ERK) antibodies elicited by stimulation of the tongue with capsaicin after lingual or inferior alveolar nerve (IAN) injury. Results Abundant neuronal profiles immunolabeled for c-Fos and p-ERK elicited by capsaicin were distributed in the spinal trigeminal nucleus caudalis (Vc) without nerve injury. The spinal trigeminal nucleus oralis (Vo) contained limited numbers of these neuronal profiles after stimulation of the tongue. A significant reduction of these neuronal profiles in the ipsilateral Vc was detected after lingual nerve injury. After IAN injury, an increased number of neuronal profiles immunolabeled for c-Fos elicited by capsaicin was noted, while that of p-ERK was left unchanged in the ipsilateral Vc. On the both sides of the Vo, an increased number of capsaicin-induced neuronal profiles immunolabeled for c-Fos and p-ERK was detected after lingual or IAN injury. Conclusion Differential effects of lingual or IAN injury on stimulus-induced c-Fos expression and ERK phosphorylation by Vo and Vc neurons may be involved in the complex nature of symptoms of trigeminal neuralgia.
Collapse
Affiliation(s)
- Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenta Tsuji
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hironori Furugen
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Duong Nguyen Phat Minh
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kenta Uchibe
- Department of Maxillofacial Anatomy and Neuroscience, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
4
|
Abe T, Sato T, Murotomi K. Sudachitin and Nobiletin Stimulate Lipolysis via Activation of the cAMP/PKA/HSL Pathway in 3T3-L1 Adipocytes. Foods 2023; 12:foods12101947. [PMID: 37238764 DOI: 10.3390/foods12101947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Polymethoxyflavones are flavonoids that are abundant in citrus fruit peels and have beneficial effects on human health. Previous studies have demonstrated that the polymethoxyflavones, namely sudachitin and nobiletin, ameliorate obesity and diabetes in humans and rodents. Although nobiletin induces lipolysis in adipocytes, lipolytic pathway activation by sudachitin has not been clarified in adipocytes. In this study, the effect of sudachitin on lipolysis was elucidated in murine 3T3-L1 adipocytes. Glycerol release into the medium and activation of the cyclic AMP (cAMP)/protein kinase A (PKA)/hormone-sensitive lipase (HSL) pathway was evaluated in 3T3-L1-differentiated adipocytes. Treatment with sudachitin and nobiletin for 24 and 48 h did not induce cytotoxicity at concentrations of up to 50 μM. Sudachitin and nobiletin at concentrations of 30 and 50 μM increased intracellular cAMP and medium glycerol levels in 3T3-L1 adipocytes. Western blotting revealed that sudachitin and nobiletin dose-dependently increased protein levels of phosphorylated PKA substrates and phosphorylated HSL. Sudachitin- and nobiletin-induced glycerol release, phosphorylation of PKA substrates, and HSL phosphorylation were suppressed by pharmacological inhibition of adenylate cyclase and PKA. These findings indicated that sudachitin, similar to nobiletin, exerts anti-obesogenic effects, at least in part through the induction of lipolysis in adipocytes.
Collapse
Affiliation(s)
- Tomoki Abe
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Tomoyuki Sato
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Molecular Neurophysiology Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| |
Collapse
|
5
|
Bernardes CP, Santos NAG, Costa TR, Menaldo DL, Sisti FM, Amstalden MK, Ribeiro DL, Antunes LMG, Sampaio SV, Santos AC. Effects of C-Terminal-Ethyl-Esterification in a Snake-Venom-Based Peptide Against the Neurotoxicity of Acrolein in PC12 Cells. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Xie D, Deng T, Zhai Z, Sun T, Xu Y. The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci 2023; 15:1016559. [PMID: 36683856 PMCID: PMC9846650 DOI: 10.3389/fnmol.2022.1016559] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease characterized by progressive cognitive decline and irreversible memory impairment. Currently, several studies have failed to fully elucidate AD's cellular and molecular mechanisms. For this purpose, research on related cellular models may propose potential predictive models for the drug development of AD. Therefore, many cells characterized by neuronal properties are widely used to mimic the pathological process of AD, such as PC12, SH-SY5Y, and N2a, especially the PC12 pheochromocytoma cell line. Thus, this review covers the most systematic essay that used PC12 cells to study AD. We depict the cellular source, culture condition, differentiation methods, transfection methods, drugs inducing AD, general approaches (evaluation methods and metrics), and in vitro cellular models used in parallel with PC12 cells.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Zuo Z, Li L, Yan X, Zhang L. Glucose Starvation Causes ptau S409 Increase in N2a Cells Through ATF3/PKAcα Signaling Pathway. Neurochem Res 2022; 47:3298-3308. [PMID: 35857208 DOI: 10.1007/s11064-022-03686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/19/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
In this work, we report that glucose starvation (GS) causes ptauS409 increase, which may participate in GS-induced neurites retraction in neuro-2a (N2a) cells. Upon GS treatment, PKAcα was stimulated at mRNA and protein levels. Luciferase reporter gene assays indicated that GS regulated PKAcα expression through a core promoter (-345 to -95 bp upstream the transcription starting site) consisting of a cis-acting element of Activating Transcription Factor 3 (ATF3). Knockdown and over-expression experiments demonstrate that ATF3 transcriptionally regulated PKAcα expression. Moreover, GS stimulated ATF3 expression in a time-dependent manner. These findings reveal that glucose starvation induces ptauS409 increase in N2a cells through an ATF3- PKAcα axis, which shed some light on the relationship between brain glucose metabolism and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zifan Zuo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Xuli Yan
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China. .,Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Rangsinth P, Duangjan C, Sillapachaiyaporn C, Isidoro C, Prasansuklab A, Tencomnao T. Caesalpinia mimosoides Leaf Extract Promotes Neurite Outgrowth and Inhibits BACE1 Activity in Mutant APP-Overexpressing Neuronal Neuro2a Cells. Pharmaceuticals (Basel) 2021; 14:ph14090901. [PMID: 34577601 PMCID: PMC8469274 DOI: 10.3390/ph14090901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is implicated in the imbalance of several proteins, including Amyloid-β (Aβ), amyloid precursor protein (APP), and BACE1. APP overexpression interferes with neurite outgrowth, while BACE1 plays a role in Aβ generation. Medicinal herbs with effects on neurite outgrowth stimulation and BACE1 inhibition may benefit AD. This study aimed to investigate the neurite outgrowth stimulatory effect, along with BACE1 inhibition of Caesalpinia mimosoides (CM), using wild-type (Neuro2a) and APP (Swedish mutant)-overexpressing (Neuro2a/APPSwe) neurons. The methanol extract of CM leaves stimulated neurite outgrowth in wild-type and APP-overexpressing cells. After exposure to the extract, the mRNA expression of the neurite outgrowth activation genes growth-associated protein-43 (GAP-43) and teneurin-4 (Ten-4) was increased in both Neuro2a and Neuro2a/APPSwe cells, while the mRNA expression of neurite outgrowth negative regulators Nogo receptor (NgR) and Lingo-1 was reduced. Additionally, the extract suppressed BACE1 activity in the APP-overexpressing neurons. Virtual screening demonstrated that quercetin-3′-glucuronide, quercetin-3-O-glucoside, clausarinol, and theogallin were possible inhibitors of BACE1. ADMET was analyzed to predict drug-likeness properties of CM-constituents. These results suggest that CM extract promotes neurite outgrowth and inhibits BACE1 activity in APP-overexpressing neurons. Thus, CM may serve as a source of drugs for AD treatment. Additional studies for full identification of bioactive constituents and to confirm the neuritogenesis in vivo are needed for translation into clinic of the present findings.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chatrawee Duangjan
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (P.R.); (C.D.); (C.S.)
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (A.P.); (T.T.); Tel.: +66-2218-8048 (A.P.); +66-2218-1533 (T.T.)
| |
Collapse
|
9
|
Matsuzaki K, Ohizumi Y. Beneficial Effects of Citrus-Derived Polymethoxylated Flavones for Central Nervous System Disorders. Nutrients 2021; 13:E145. [PMID: 33406641 PMCID: PMC7824236 DOI: 10.3390/nu13010145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
The number of patients with central nervous system disorders is increasing. Despite diligent laboratory and clinical research over the past 30 years, most pharmacologic options for the prevention and long-term treatment of central nervous system disorders and neurodegenerative disorders have been unsuccessful. Therefore, the development of drugs and/or functional foods to prevent the onset of neurodegenerative disorders is highly expected. Several reports have shown that polymethoxylated flavones (PMFs) derived from citrus fruit, such as nobiletin, tangeretin, and 3,3',4',5,6,7,8-heptamethoxyflavone, are promising molecules for the prevention of neurodegenerative and neurological disorders. In various animal models, PMFs have been shown to have a neuroprotective effect and improve cognitive dysfunction with regard to neurological disorders by exerting favorable effects against their pathological features, including oxidative stress, neuroinflammation, neurodegeneration, and synaptic dysfunction as well as its related mechanisms. In this review, we describe the profitable and ameliorating effects of citrus-derived PMFs on cognitive impairment and neural dysfunction in various rat and murine models or in several models of central nervous system disorders and identify their mechanisms of action.
Collapse
Affiliation(s)
- Kentaro Matsuzaki
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Yasushi Ohizumi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimigaoka, Aoba-ku, Sendai 989-3201, Japan
| |
Collapse
|
10
|
Kusakabe M, Hasegawa Y. Nimodipine promotes neurite outgrowth and protects against neurotoxicity in PC12 cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:51-57. [PMID: 33643570 PMCID: PMC7894639 DOI: 10.22038/ijbms.2020.48567.11152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Nimodipine is an L-type voltage-dependent calcium channel (VDCC) antagonist. However, the actions of nimodipine except calcium blocking are poorly understood. This study aimed to investigate the effect of nimodipine on neurite outgrowth and neuroprotection in vitro. MATERIALS AND METHODS After PC12 cells were treated with different concentrations of nimodipine, neurite outgrowth was estimated using the ImageJ software. Neuroprotective effects of nimodipine against H2O2 and calcium ionophore-induced neurotoxicity were investigated using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, the activation of extracellular signal-regulated kinase (ERK) and cyclic AMP-response element-binding protein (CREB) pathway was investigated for clarifying the action mechanism of nimodipine. RESULTS Nimodipine treatment at doses of higher than 10 µM induced neurite outgrowth in the cells. Additionally, VDCC knockdown by siRNA significantly suppressed the nimodipine-induced neurite outgrowth in PC12 cells, suggesting that the drug promotes neurite outgrowth by binding to VDCC. H2O2 and calcium ionophore induce oxidative and calcium stress in PC12 cells. Nimodipine exhibited neuroprotective effects against H2O2- and calcium ionophore-induced neurotoxicity by increasing the mRNA expression levels of neurotrophic factors, calcium-binding proteins, and antioxidants that are transcribed by CREB activation. CONCLUSION This is the first report that nimodipine induces neurite outgrowth and exerts its neuroprotective activity through the ERK/CREB signaling pathway in PC12 cells.
Collapse
Affiliation(s)
- Miduki Kusakabe
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan
| |
Collapse
|
11
|
Lin C, Tu C, Ma Y, Ye P, Shao X, Yang Z, Fang Y. Nobiletin inhibits cell growth through restraining aerobic glycolysis via PKA-CREB pathway in oral squamous cell carcinoma. Food Sci Nutr 2020; 8:3515-3524. [PMID: 32724614 PMCID: PMC7382131 DOI: 10.1002/fsn3.1634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Nobiletin is a polymethoxylated flavone enriched in Citrus and is used as an important drug in traditional Chinese medicine for various kinds of diseases. Among its multiple functions, it has shown that nobiletin inhibits proliferation of various cancer cells. However, it is unclear whether nobiletin inhibits the growth of oral squamous cell carcinoma (OSCC) cells. MATERIALS AND METHODS We explored the antitumor effects of nobiletin in TCA-8113 and CAL-27 oral squamous cells. The Cell Counting Kit-8 (CCK8) assay was used to measure cell vitality. Flow cytometry was performed to measure the number of cells in the various phases of the cell cycle. PCR and Western blot were applied to determine mRNA and protein expression, respectively. RESULTS Nobiletin inhibited proliferation of TCA-8113 and CAL-27 cells via inducing cell cycle arrest at the G1 phase. In addition, the levels of phosphorylated-PKA and phosphorylated-CREB were reduced in nobiletin-treated TCA-8113 and CAL-27 cells. Importantly, our results showed that nobiletin treatment resulted in impaired mitochondrial function and altered glucose consumption, and pyruvate and lactate production. Lastly, nobiletin was found to inhibit the generation of xenografts in vivo. Interestingly, administration of 50 μmol/L Sp-cAMP, a potent PKA activator, rescued all phenotypes caused by nobiletin. CONCLUSIONS Nobiletin inhibits OSCC cell proliferation in a mitochondria-dependent manner, indicating that it may have a promising role in cancer treatment and attenuation of drug resistance.
Collapse
Affiliation(s)
- Chong‐Xiang Lin
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Cheng‐Wei Tu
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ke Ma
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Peng‐Cheng Ye
- School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xia Shao
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Zhao‐An Yang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi‐Ming Fang
- Department of StomatologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
12
|
Zheng Q, Liu L, Liu H, Zheng H, Sun H, Ji J, Sun Y, Yang T, Zhao H, Qi F, Li K, Li J, Zhang N, Fan Y, Wang L. The Bu Shen Yi Sui Formula Promotes Axonal Regeneration via Regulating the Neurotrophic Factor BDNF/TrkB and the Downstream PI3K/Akt Signaling Pathway. Front Pharmacol 2019; 10:796. [PMID: 31379571 PMCID: PMC6650751 DOI: 10.3389/fphar.2019.00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Axonal damage is recognized as an important pathological feature in the chronic progressive neurological disorder multiple sclerosis (MS). Promoting axonal regeneration is a critical strategy for the treatment of MS. Our clinical and experimental studies have shown that the Bu Shen Yi Sui formula (BSYS) promotes axonal regeneration in MS and experimental autoimmune encephalomyelitis (EAE), an animal model of MS, but the exact mechanism has not been thoroughly elucidated to date. In this study, we investigated the effects of BSYS and its two decomposed formulas-the Bu Shen formula (BS) and the Hua Tan Huo Xue formula (HTHX)-on brain-derived neurotrophic factor (BDNF)/TrkB and related signaling pathways to explore the mechanism by which axonal regeneration is promoted in vitro and in vivo. Damaged SH-SY5Y cells incubated with low serum were treated with BSYS-, BS-, and HTHX-containing serum, and EAE mice induced by the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide were treated with BSYS. The results showed that the BSYS-containing serum markedly increased cell viability and increased the levels of growth associated protein (GAP)-43, phosphorylated (p)-cAMP-response element binding protein (CREB), BDNF, TrkB, and p-PI3K. The BS and HTHX treatments also induced the protein expression of GAP-43 and p-extracellular signal-regulated kinase (ERK) in the cells. Furthermore, the effects of BSYS on cell viability, GAP-43, p-CREB, and neurite outgrowth were clearly inhibited by LY294002, a specific antagonist of the PI3K signaling pathways. The addition of U0126 and U73122, antagonists of the ERK and PLCγ pathway, respectively, significantly inhibited cell viability and GAP-43 protein expression. Moreover, BSYS treatment significantly increased the expression of the 68-, 160-, and 200-kDa neurofilaments (NFs) of proteins and the BDNF, TrkB, PI3K, and Akt mRNA and proteins in the brain or spinal cord of mice at different stages. These results indicated that BSYS promotes nerve regeneration, and its mechanism is mainly related to the upregulation of the BDNF/TrkB and PI3K/Akt signaling pathways. BS and HTHX also promoted nerve regeneration, and this effect involved the ERK pathway.
Collapse
Affiliation(s)
- Qi Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Oncology Department, Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China.,Physical Examination Department, The Chinese Medicine Hospital of Sanmenxia City, Henan, China
| | - Haolong Liu
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hong Zheng
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Hao Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yaqin Sun
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Tao Yang
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Fang Qi
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Kangning Li
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Junling Li
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Nan Zhang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Beijing Key Lab of TCM Collateral Disease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Lu X, Huang Q. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions: role of fatty acid complexation and heat treatment. Food Funct 2019; 10:5969-5980. [DOI: 10.1039/c9fo01541h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Digestion of Pickering emulsions stabilized by starch-fatty acid complexes.
Collapse
Affiliation(s)
- Xuanxuan Lu
- Department of Food Science
- Rutgers
- The State University of New Jersey
- New Brunswick
- USA
| | - Qingrong Huang
- Department of Food Science
- Rutgers
- The State University of New Jersey
- New Brunswick
- USA
| |
Collapse
|
14
|
Tabata M, Terayama R, Maruhama K, Iida S, Sugimoto T. Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury. Int J Neurosci 2017; 128:208-218. [PMID: 28918684 DOI: 10.1080/00207454.2017.1381697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE In this study, we compared induction of c-Fos and phosphorylated extracellular signal-regulated kinase (p-ERK) in the spinal dorsal horn after peripheral nerve injury. MATERIALS AND METHODS We examined the spinal dorsal horn for noxious heat-induced c-Fos and p-ERK protein-like immunoreactive (c-Fos- and p-ERK-IR) neuron profiles after tibial nerve injury. The effect of administration of a MEK 1/2 inhibitor (PD98059) on noxious heat-induced c-Fos expression was also examined after tibial nerve injury. RESULTS A large number of c-Fos- and p-ERK-IR neuron profiles were induced by noxious heat stimulation to the hindpaw in sham-operated animals. A marked reduction in the number of c-Fos- and p-ERK-IR neuron profiles was observed in the medial 1/3 (tibial territory) of the dorsal horn at 3 and 7 days after nerve injury. Although c-Fos-IR neuron profiles had reappeared by 14 days after injury, the number of p-ERK-IR neuron profiles remained decreased in the tibial territory of the superficial dorsal horn. Double immunofluorescence labeling for c-Fos and p-ERK induced by noxious heat stimulation to the hindpaw at different time points revealed that a large number of c-Fos-IR, but not p-ERK-IR, neuron profiles were distributed in the tibial territory after injury. Although administration of a MEK 1/2 inhibitor to the spinal cord suppressed noxious heat-induced c-Fos expression in the peroneal territory, this treatment did not alter c-Fos induction in the tibial territory after nerve injury. CONCLUSIONS ERK phosphorylation may be involved in c-Fos induction in normal nociceptive responses, but not in exaggerated c-Fos induction after nerve injury.
Collapse
Affiliation(s)
- Mitsuyasu Tabata
- a Department of Oral Function and Anatomy , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan.,b Department of Oral and Maxillofacial Reconstructive Surgery , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Ryuji Terayama
- a Department of Oral Function and Anatomy , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan.,c Advanced Research Center For Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan
| | - Kotaro Maruhama
- a Department of Oral Function and Anatomy , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan.,c Advanced Research Center For Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan
| | - Seiji Iida
- b Department of Oral and Maxillofacial Reconstructive Surgery , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan.,c Advanced Research Center For Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan
| | - Tomosada Sugimoto
- a Department of Oral Function and Anatomy , Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences , Okayama , Japan.,c Advanced Research Center For Oral and Craniofacial Sciences , Okayama University Dental School , Okayama , Japan
| |
Collapse
|
15
|
Moosavi F, Hosseini R, Rajaian H, Silva T, Magalhães E Silva D, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Derivatives of caffeic acid, a natural antioxidant, as the basis for the discovery of novel nonpeptidic neurotrophic agents. Bioorg Med Chem 2017; 25:3235-3246. [PMID: 28495385 DOI: 10.1016/j.bmc.2017.04.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/09/2017] [Indexed: 01/01/2023]
Abstract
Neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, threaten the lives of millions of people and the number of affected patients is constantly growing with the increase of the aging population. Small molecule neurotrophic agents represent promising therapeutics for the pharmacological management of neurodegenerative diseases. In this study, a series of caffeic acid amide analogues with variable alkyl chain lengths, including ACAF3 (C3), ACAF4 (C4), ACAF6 (C6), ACAF8 (C8) and ACAF12 (C12) were synthesized and their neurotrophic activity was examined by different methods in PC12 neuronal cells. We found that all caffeic acid amide derivatives significantly increased survival in PC12 neuronal cells in serum-deprived conditions at 25μM, as measured by the MTT assay. ACAF4, ACAF6 and ACAF8 at 5µM also significantly enhanced the effect of nerve growth factor (NGF) in inducing neurite outgrowth, a sign of neuronal differentiation. The neurotrophic effects of amide derivatives did not seem to be mediated by direct activation of tropomyosin receptor kinase A (TrkA) receptor, since K252a, a potent TrkA antagonist, did not block the neuronal survival enhancement effect. Similarly, the active compounds did not activate TrkA as measured by immunoblotting with anti-phosphoTrkA antibody. We also examined the effect of amide derivatives on signaling pathways involved in survival and differentiation by immunoblotting. ACAF4 and ACAF12 induced ERK1/2 phosphorylation in PC12 cells at 5 and 25µM, while ACAF12 was also able to significantly increase AKT phosphorylation at 5 and 25µM. Molecular docking studies indicated that compared to the parental compound caffeic acid, ACAF12 exhibited higher binding energy with phosphoinositide 3-kinase (PI3K) as a putative molecular target. Based on Lipinski's rule of five, all of the compounds obeyed three molecular descriptors (HBD, HBA and MM) in drug-likeness test. Taken together, these findings show for the first time that caffeic amides possess strong neurotrophic effects exerted via modulation of ERK1/2 and AKT signaling pathways presumably by activation of PI3K and thus represent promising agents for the discovery of neurotrophic compounds for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hamid Rajaian
- Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Diogo Magalhães E Silva
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Lai SM, Gu ZT, Zhao MM, Li XX, Ma YX, Luo L, Liu J. Toxic effect of acrylamide on the development of hippocampal neurons of weaning rats. Neural Regen Res 2017; 12:1648-1654. [PMID: 29171430 PMCID: PMC5696846 DOI: 10.4103/1673-5374.217345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although numerous studies have examined the neurotoxicity of acrylamide in adult animals, the effects on neuronal development in the embryonic and lactational periods are largely unknown. Thus, we examined the toxicity of acrylamide on neuronal development in the hippocampus of fetal rats during pregnancy. Sprague-Dawley rats were mated with male rats at a 1:1 ratio. Rats were administered 0, 5, 10 or 20 mg/kg acrylamide intragastrically from embryonic days 6–21. The gait scores were examined in pregnant rats in each group to analyze maternal toxicity. Eight weaning rats from each group were also euthanized on postnatal day 21 for follow-up studies. Nissl staining was used to observe histological change in the hippocampus. Immunohistochemistry was conducted to observe the condition of neurites, including dendrites and axons. Western blot assay was used to measure the expression levels of the specific nerve axon membrane protein, growth associated protein 43, and the presynaptic vesicle membrane specific protein, synaptophysin. The gait scores of gravid rats significantly increased, suggesting that acrylamide induced maternal motor dysfunction. The number of neurons, as well as expression of growth associated protein 43 and synaptophysin, was reduced with increasing acrylamide dose in postnatal day 21 weaning rats. These data suggest that acrylamide exerts dose-dependent toxic effects on the growth and development of hippocampal neurons of weaning rats.
Collapse
Affiliation(s)
- Sheng-Min Lai
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Zi-Ting Gu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Meng-Meng Zhao
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xi-Xia Li
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yu-Xin Ma
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Li Luo
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Jing Liu
- Department of Human Anatomy and Histoembryology, School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Sharikadze N, Jojua N, Sepashvili M, Zhuravliova E, Mikeladze DG. Mitochondrial Target of Nobiletin's Action. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nobiletin is an O-methylated flavonoid found in citrus peels that have anticancer, antiviral, neuroprotective, anti-inflammatory activities and depending on the cell types exhibits both pro- or anti-apoptotic properties. We have found that nobiletin decreases oxygen consumption by bovine brain isolated mitochondria in the presence of glutamate and malate and increases in the presence of succinate. In parallel, nobiletin increases NADH oxidation, a-ketoglutarate dehydrogenase activities and through matrix substrate-level phosphorylation elevates the a-ketoglutarate-dependent production of ATP. In addition, nobiletin reduces the production of peroxides in the presence of complex I substrates and slightly enhances succinate-driven H2O2 formation. Besides, nobiletin induces transient elevation of membrane potential followed by mild depolarization. Affinity purified nobiletin binding proteins revealed one major anti-NDUFV1 positive protein with 52kD and NADH: ubiquinone oxidoreductase activity. This fraction can produce peroxide that is inhibited by nobiletin. We propose that nobiletin may act as a mild “uncoupler”, which through activation of a-ketoglutarate dehydrogenase (a-KGDH)-complex and acceleration of matrix substrate-level phosphorylation maintains membrane potential at an abnormal level. This switch in mitochondrial metabolism could elevate succinate-driven oxygen consumption that may underlay in both pro- and anti-apoptotic effects of nobiletin.
Collapse
Affiliation(s)
- Nino Sharikadze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Natia Jojua
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Maia Sepashvili
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
| | - Elene Zhuravliova
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| | - David G Mikeladze
- Ilia State University, 3/5 Cholokashvili av., Tbilisi, 0162, Georgia
- I. Beritashvili Center of Experimental Biomedicine, 14 Gotua st, Tbilisi, 0160, Georgia
| |
Collapse
|
18
|
Hosseini R, Moosavi F, Rajaian H, Silva T, Magalhães e Silva D, Soares P, Saso L, Edraki N, Miri R, Borges F, Firuzi O. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016; 88:926-937. [DOI: 10.1111/cbdd.12829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
- Department of Pharmacology; School of Veterinary Medicine; Shiraz University; Shiraz Iran
| | - Hamid Rajaian
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Tiago Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Diogo Magalhães e Silva
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Pedro Soares
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”; Sapienza University of Rome; Rome Italy
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| | - Fernanda Borges
- CIQUP/Department of Chemistry and Biochemistry; Faculty of Sciences; University of Porto; Porto Portugal
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center; Shiraz University of Medical Sciences; Shiraz Iran
| |
Collapse
|
19
|
Moosavi F, Hosseini R, Saso L, Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 10:23-42. [PMID: 26730179 PMCID: PMC4694682 DOI: 10.2147/dddt.s96936] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and the concomitant modulations of signaling pathways is useful for designing more effective agents for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Razieh Hosseini
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Barnea E, Almogi-Hazan O, Or R, Mueller M, Ria F, Weiss L, Paidas M. Immune regulatory and neuroprotective properties of preimplantation factor: From newborn to adult. Pharmacol Ther 2015; 156:10-25. [DOI: 10.1016/j.pharmthera.2015.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Phan CW, David P, Wong KH, Naidu M, Sabaratnam V. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism. PLoS One 2015; 10:e0143004. [PMID: 26565787 PMCID: PMC4643974 DOI: 10.1371/journal.pone.0143004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1±0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80±0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.
Collapse
Affiliation(s)
- Chia-Wei Phan
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre of Excellence for Learning and Teaching, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
- * E-mail: (CWP); (VS)
| | - Pamela David
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kah-Hui Wong
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Murali Naidu
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Anatomy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (CWP); (VS)
| |
Collapse
|
22
|
Lai CS, Wu JC, Ho CT, Pan MH. Disease chemopreventive effects and molecular mechanisms of hydroxylated polymethoxyflavones. Biofactors 2015; 41:301-13. [PMID: 26453173 DOI: 10.1002/biof.1236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023]
Abstract
Recent increasing attention in research of polymethoxyflavones (PMFs) from Citrus genus because of their wide range of biological properties has been reported in various studies. Hydroxylated PMFs are unique flavones and recognized as the methoxy group of PMFs that is substituted for hydroxyl one. Hydroxylated PMFs are naturally existed in citrus peel and other plants as well as occurred as metabolites of their PMFs counterparts. Several in vitro and in vivo studies have documented the chemopreventive effects of hydroxylated PMFs including anti-cancer, anti-inflammation, anti-atherosclerosis, and neuroprotection. They function to regulate cell death, proliferation, differentiation, repair, and metabolism through acting on modulation of signaling cascade, gene transcription, and protein function and enzyme activity. The mechanisms of action of hydroxylated PMFs in disease chemoprevention depend on their structure, the number, and position of hydroxyl group. Although the efficacy of hydroxylated PMFs in chemoprevention and the oral bioavailability requires further investigation, they still provide great promise for improving human health. This review highlights the recent published data of hydroxylated PMFs with chemopreventive potential and the underlying mechanism involved.
Collapse
Affiliation(s)
- Ching-Shu Lai
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
23
|
Mueller M, Schoeberlein A, Zhou J, Joerger-Messerli M, Oppliger B, Reinhart U, Bordey A, Surbek D, Barnea ER, Huang Y, Paidas M. PreImplantation Factor bolsters neuroprotection via modulating Protein Kinase A and Protein Kinase C signaling. Cell Death Differ 2015; 22:2078-86. [PMID: 25976303 DOI: 10.1038/cdd.2015.55] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Collapse
Affiliation(s)
- M Mueller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland
| | - A Schoeberlein
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - J Zhou
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, PR China
| | | | - B Oppliger
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - U Reinhart
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - A Bordey
- Department of Neurosurgery, Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - D Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland.,Department of Clinical Research, University of Bern, Bern, Switzerland
| | - E R Barnea
- Society for the Investigation of Early Pregnancy, Cherry Hill, NJ, USA.,BioIncept LLC, Cherry Hill, NJ, USA
| | - Y Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - M Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.,Women and Children's Center for Blood Disorders, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Arsalandeh F, Ahmadian S, Foolad F, Khodagholi F, Farimani MM, Shaerzadeh F. Beneficial Effect of Flavone Derivatives on Aβ-Induced Memory Deficit Is Mediated by Peroxisome Proliferator-Activated Receptor γ Coactivator 1α: A Comparative Study. Int J Toxicol 2015; 34:274-83. [PMID: 25972379 DOI: 10.1177/1091581815584165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
In the present study, the neuroprotective effect of 5-hydroxy-6,7,4'-trimethoxyflavone (flavone 1), a natural flavone, was investigated in comparison with another flavone, 5,7,4'-trihydroxyflavone (flavone 2) on the hippocampus of amyloid beta (Aβ)-injected rats. Rats were treated with the 2 flavones (1 mg/kg/d) for 1 week before Aβ injection. Seven days after Aβ administration, memory function of rats was assessed in a passive avoidance test (PAT). Changes in the levels of mitochondrial transcription factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α), phospho-adenosine monophosphate (AMP)-activated protein kinase (pAMPK), AMPK, phospho-cAMP-responsive element-binding protein (CREB), CREB, and nuclear respiratory factor 1 (NRF-1) proteins were determined by Western blot analysis. Our results showed an improvement in memory in rats pretreated with flavonoids. At the molecular level, phosphorylation of CREB, known as the master modulator of memory processes, increased. On the other hand, the level of mitochondrial biogenesis factors, PGC-1α and its downstream molecules NRF-1 and TFAM significantly increased by dietary administration of 2 flavones. In addition, flavone 1 and flavone 2 prevented mitochondrial swelling and mitochondrial membrane potential reduction. Our results provided evidence that flavone 1 is more effective than flavone 2 presumably due to its O-methylated groups. In conclusion, it seems that in addition to classical antioxidant effect, flavones exert part of their protective effects through mitochondrial biogenesis.
Collapse
Affiliation(s)
- Farshad Arsalandeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Forough Foolad
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi M Farimani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Physiology, Faculty of Medicine, Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Yun YS, Fukaya H, Nakane T, Takano A, Takahashi S, Takahashi Y, Inoue H. A new bis-seco-abietane diterpenoid from Hyptis crenata Pohl ex Benth. Org Lett 2014; 16:6188-91. [PMID: 25412277 DOI: 10.1021/ol503086n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new, highly oxidized, bis-seco-abietane diterpenoid named hyptisolide A (1) was isolated from Hyptis crenata Pohl ex Benth. Its structure and stereochemistry were elucidated on the basis of data obtained by HRESIMS, NMR, and X-ray diffraction analyses, and its absolute configuration was determined with vibrational circular dichroism spectroscopy. By reporter gene assay, 1 was demonstrated to induce cAMP-responsive element-dependent transcription in Neuro2A cells.
Collapse
Affiliation(s)
- Young Sook Yun
- †School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Haruhiko Fukaya
- †School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takahisa Nakane
- ‡Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Akihito Takano
- ‡Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shigeru Takahashi
- †School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuji Takahashi
- †School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideshi Inoue
- †School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
26
|
Liu F, Zhang H, Zhang K, Wang X, Li S, Yin Y. Rapamycin promotes Schwann cell migration and nerve growth factor secretion. Neural Regen Res 2014; 9:602-9. [PMID: 25206862 PMCID: PMC4146242 DOI: 10.4103/1673-5374.130101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2014] [Indexed: 11/04/2022] Open
Abstract
Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not significantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.
Collapse
Affiliation(s)
- Fang Liu
- Department of Orthopedics, Second Hospital of Yueyang, Yueyang, Hunan Province, China
| | - Haiwei Zhang
- Department of Orthopedics, Second Hospital of Yueyang, Yueyang, Hunan Province, China
| | - Kaiming Zhang
- Department of Orthopedics, Second Hospital of Yueyang, Yueyang, Hunan Province, China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, Hunan Province, China
| | - Shipu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, Hunan Province, China
| | - Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and Biomedical Materials and Engineering Center, Wuhan University of Technology, Wuhan, Hunan Province, China
| |
Collapse
|
27
|
Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, Abd Malek SN, Sabaratnam V. Hericium erinaceus (Bull.: Fr) Pers. cultivated under tropical conditions: isolation of hericenones and demonstration of NGF-mediated neurite outgrowth in PC12 cells via MEK/ERK and PI3K-Akt signaling pathways. Food Funct 2014; 5:3160-9. [DOI: 10.1039/c4fo00452c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hericium erinaceus is an edible and medicinal mushroom used traditionally to improve memory.
Collapse
Affiliation(s)
- Chia-Wei Phan
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Guan-Serm Lee
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Sok-Lai Hong
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Yuin-Teng Wong
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Robert Brkljača
- School of Applied Sciences (Discipline of Chemistry)
- Health Innovations Research Institute (HIRi)
- RMIT University
- Melbourne, Australia
| | - Sylvia Urban
- School of Applied Sciences (Discipline of Chemistry)
- Health Innovations Research Institute (HIRi)
- RMIT University
- Melbourne, Australia
| | - Sri Nurestri Abd Malek
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| | - Vikineswary Sabaratnam
- Mushroom Research Centre
- University of Malaya
- 50603 Kuala Lumpur, Malaysia
- Institute of Biological Sciences
- Faculty of Science
| |
Collapse
|
28
|
Chen JH, Lee DC, Chiu IM. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells. Arch Toxicol 2013; 88:769-80. [PMID: 24318646 DOI: 10.1007/s00204-013-1174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022]
Abstract
Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35, Keyan Rd, Miaoli, 350, Taiwan
| | | | | |
Collapse
|
29
|
Chiu SP, Wu MJ, Chen PY, Ho YR, Tai MH, Ho CT, Yen JH. Neurotrophic action of 5-hydroxylated polymethoxyflavones: 5-demethylnobiletin and gardenin A stimulate neuritogenesis in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9453-9463. [PMID: 24003765 DOI: 10.1021/jf4024678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymethoxyflavones (PMFs) exhibit a broad spectrum of biological properties, including anticancer, antiatherogenic, and neuroprotective effects. The aim of this study is to investigate the neurotrophic effects of 5-demethylnobiletin, a hydroxylated PMF found in citrus plants, and gardenin A, a synthetic PMF analogue, on neurite outgrowth and neuronal differentiation in PC12 cells. The results of this study showed that 5-demethylnobiletin and gardenin A (10-20 μM) potently induce neurite outgrowth in PC12 cells, accompanied by the expression of neuronal differentiation and synapse formation marker proteins, growth-associated protein-43 (GAP-43), and synaptophysin. We observed that the addition of K252a, a TrKA antagonist, significantly inhibited NGF-induced neurite outgrowth in PC12 cells, but 5-demethylnobiletin- or gardenin A-induced neurite outgrowth was not affected. Treatment with 5-demethylnobiletin and gardenin A markedly induced the phosphorylation of both cyclic AMP response element-binding protein (CREB) and CRE-mediated transcription, which was suppressed through the administration of the inhibitor 2-naphthol AS-E phosphate (KG-501) or using CREB siRNA. Furthermore, our results showed that MAPK/ERK kinase 1/2 (MEK1/2), protein kinase A (PKA), and protein kinase C (PKC) inhibitors blocked the CRE transcription activity and neurite outgrowth induced through 5-demethylnobiletin or gardenin A. Consistently, increased ERK phosphorylation and PKA and PKC activities were observed in PC12 cells treated with 5-demethylnobiletin or gardenin A. These results reveal for the first time that 5-demethylnobiletin and gardenin A promote neuritogenesis through the activation of MAPK/ERK-, PKC-, and PKA-dependent, but not TrkA-dependent, CREB signaling pathways in PC12 cells.
Collapse
Affiliation(s)
- Szu-Ping Chiu
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Citrus flavonoid improves MK-801-induced locomotive hyperactivity: Possible relevance to schizophrenia. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
31
|
Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells. Int J Mol Sci 2013; 14:18657-69. [PMID: 24025424 PMCID: PMC3794801 DOI: 10.3390/ijms140918657] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 12/25/2022] Open
Abstract
Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.
Collapse
|
32
|
Ting Y, Li CC, Pan MH, Ho CT, Huang Q. Effect of a labile methyl donor on the transformation of 5-demethyltangeretin and the related implication on bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8090-8097. [PMID: 23915315 DOI: 10.1021/jf400562p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Polymethoxyflavones (PMFs) belong to a subgroup of flavonoids that particularly exist in the peels of citrus fruits. Despite their many health-beneficial biofunctionalities, the lipophilic nature of PMFs limits their water solubility and oral bioavailability. To investigate the effect of the delivery system on the improvement of PMF bioavailibility, a lecithin-based emulsion was formulated for the delivery of two PMF compounds, tangeretin and 5-demethyltangeretin. While the emulsion system improved the digestion kinetics and the total solubilized PMF concentrations in in vitro lipolysis studies, the concentration of 5-demethyltangeretin decreased due to chemical transformation to its permethoxylated counterpart, tangeretin. The emulsifier lecithin used in this emulsion formulation contained a choline headgroup as a labile methyl group donor. The presence of a methyl donor potentially caused the transformation of 5-demethyltangeretin and reduced its anti-cancer-cell-proliferation activities. Moreover, this is the first report in the literature of the transformation from 5-demethyltangeretin to tangeretin in a lecithin-based emulsion during lipolysis, and the mechanism underlying this phenomenon has also been proposed for the first time.
Collapse
Affiliation(s)
- Yuwen Ting
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
33
|
Hsu YY, Tseng YT, Lo YC. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol Appl Pharmacol 2013; 272:787-96. [PMID: 23954465 DOI: 10.1016/j.taap.2013.08.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/19/2022]
Abstract
Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H2O2 neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1-10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Department of Pharmacology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | | | | |
Collapse
|
34
|
Park SY, Park SJ, Park TG, Rajasekar S, Lee SJ, Choi YW. Schizandrin C exerts anti-neuroinflammatory effects by upregulating phase II detoxifying/antioxidant enzymes in microglia. Int Immunopharmacol 2013; 17:415-26. [PMID: 23859871 DOI: 10.1016/j.intimp.2013.06.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
We investigated the anti-neuroinflammatory properties of schizandrin C by focusing on its roles in the induction of phase II detoxifying/antioxidant enzymes and in the modulation of upstream signaling pathways. Schizandrin C induced expression of phase II detoxifying/antioxidant enzymes including heme oxygenase-1 (HO-1) and NADPH dehydrogenase quinone-1 (NQO-1). Activation of upstream signaling pathways, such as the cAMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB) and erythroid-specific nuclear factor-regulated factor 2 (Nrf-2) pathways, significantly increased following treatment with schizandrin C. In addition, expressions of schizandrin C-mediated phase II detoxifying/antioxidant enzymes were completely attenuated by adenylyl cyclase inhibitor (ddAdo) and protein kinase A (PKA) inhibitor (H-89). In microglia, schizandrin C significantly inhibited lipoteichoic acid (LTA)-stimulated pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO), and reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metallopeptidase-9 (MMP-9) protein expressions. Moreover, schizandrin C suppressed LTA-induced nuclear factor-kappa B (NF-κB), activator protein-1 (AP-1), janus-kinase/signal transducer and activator of transcription (JAK-STATs), and mitogen-activated protein kinase (MAPK) activation. Schizandrin C also effectively suppressed ROS generation and NO production, as well as iNOS promoter activity in LTA-stimulated microglia. This suppressive effect was reversed by transfection with Nrf-2 and HO-1 siRNA and co-treatment with inhibitors ddAdo and H-89. Our results indicate that schizandrin C isolated from Schisandra chinensis could be used as a natural anti-neuroinflammatory agent, inducing phase II detoxifying/antioxidant enzymes via cAMP/PKA/CREB and Nrf-2 signaling.
Collapse
|
35
|
García L, Castillo C, Carballo J, Rodríguez Y, Forsyth P, Medina R, Martínez JC, Longart M. ErbB receptors and PKC regulate PC12 neuronal-like differentiation and sodium current elicitation. Neuroscience 2013; 236:88-98. [PMID: 23380500 DOI: 10.1016/j.neuroscience.2013.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Excitability, neurite outgrowth and their specification are very important features in the establishment of neuronal differentiation. We have studied a conditioned medium (CM) from sciatic nerve which is able to induce a neuronal-like differentiation of PC12 cells. Previously, we have demonstrated that supplementing this CM with a generic inhibitor (k252a), which mainly inhibits tropomyosin-related kinase receptors (Trk receptors) and protein kinase C (PKC), caused neurite elongation, sodium current induction and axon development. In the present work, we are showing that the enhancement of neurite length and induction of sodium currents induced by CM+k252a were prevented by ErbB receptor inhibition. Additionally, we demonstrated that specific inhibition of PKC produced a similar effect to that exerted by k252a in CM-treated cells, specifically by increasing the percentage of differentiated cells with long neurites and inducing sodium currents. Moreover, CM changed the mRNA levels for ErbB2 and ErbB3 increasing them 6- and 36-folds respectively compared to their control. The inclusion of k252a with CM changed the ErbB1, ErbB2 and ErbB3 mRNA proportions increasing those eight-, seven- and fivefolds respectively. From this point, it is clear that appropriate ErbB receptor levels and PKC inhibition are necessary to enhance the effect of the CM in inducing the neuronal-like differentiation of PC12 cells. In summary, we demonstrated the involvement of ErbB receptors in the regulation of neurite elongation and sodium current induction in PC12 cells and propose that these processes could be initiated by ErbB receptors followed by a fine regulation of PKC signaling. These findings might implicate a novel interplay between ErbB receptors and PKC in the regulation of these molecular mechanisms.
Collapse
Affiliation(s)
- L García
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas 1015A, Venezuela
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Y, Liu G, Li H, Xu Y, Zhang H, Liu Z. Capsaicin-induced activation of ERK1/2 and its involvement in GAP-43 expression and CGRP depletion in organotypically cultured DRG neurons. Cell Mol Neurobiol 2013; 33:433-41. [PMID: 23430271 DOI: 10.1007/s10571-013-9909-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Abstract
Low concentrations of capsaicin (CAP) stimulate and high concentrations of CAP can be toxic to the primary sensory neurons of the dorsal root ganglion (DRG). CAP induces the phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in DRG neurons. The effect of the activation of ERK1/2 by different concentrations of CAP on growth-associated protein 43 (GAP-43) expression and calcitonin gene-related peptide (CGRP) depletion in DRG neurons remains unknown. In the present study, organotypic embryonic 15-day-old rat DRG explants were used to determine the effect of different concentrations of CAP on GAP-43 expression and CGRP depletion. The results showed that, compared to unstimulated control cultures, GAP-43 and pERK1/2 protein levels increased at a low concentration (2 μmol/L) of CAP and decreased at a higher concentration (10 μmol/L). The number of CGRP-immunoreactive (IR) migrating neurons also decreased in CAP-treated cultures. The increase in GAP-43 levels and CGRP depletion could be blocked by the administration of ERK1/2 inhibitor PD98059. The results of the present study imply that CAP at different concentrations has different effects on GAP-43 expression and CGRP depletion. These effects were involved in the activation of ERK1/2 in organotypically cultured DRG neurons stimulated with CAP. These data may provide new insights for further development potential therapeutic applications of CAP with moderate dose on neurogenic inflammation.
Collapse
Affiliation(s)
- Yunfeng Li
- Faculty of Clinical Medicine, Shandong University School of Medicine, Jinan, 250012, China.
| | | | | | | | | | | |
Collapse
|
37
|
Nobiletin Ameliorates the Deficits in Hippocampal BDNF, TrkB, and Synapsin I Induced by Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:359682. [PMID: 23573124 PMCID: PMC3613093 DOI: 10.1155/2013/359682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/11/2022]
Abstract
Background. Our previous study has demonstrated that nobiletin could reverse the behavioral alterations in stressed mice. However, the relation of its antidepressant-like action with neurotrophic molecular expression remains unknown. This study aimed to explore the antidepressant-like mechanism of nobiletin related to the neurotrophic system in rats exposed to chronic unpredictable mild stress (CUMS). Methods. Depressive-like anhedonia (assessed by sucrose preference) and serum corticosterone secretion were evaluated in the CUMS, followed by brain-derived neurotrophic factor (BDNF), its tropomyosin-related kinase receptor B (TrkB), and the downstream target synapsin I expressions in the hippocampus. Results. Anhedonia, which occurred within week 2, was rapidly ameliorated by nobiletin. While fluoxetine needed additional 2 weeks to improve the anhedonia. In addition, nobiletin administration for 5 weeks significantly ameliorated CUMS-induced increase in serum corticosterone levels. Furthermore, we also found that CUMS-induced deficits of hippocampal BDNF, TrkB, and synapsin I were ameliorated by nobiletin.
Conclusions. Taken together, these findings suggest that nobiletin produces rapidly acting antidepressant-like responses in the CUMS and imply that BDNF-TrkB pathway may play an important role in the antidepressant-like effect of nobiletin.
Collapse
|
38
|
Jia JJ, Zeng XS, Li Y, Ma S, Bai J. Ephedrine induced thioredoxin-1 expression through β-adrenergic receptor/cyclic AMP/protein kinase A/dopamine- and cyclic AMP-regulated phosphoprotein signaling pathway. Cell Signal 2013; 25:1194-201. [PMID: 23416460 DOI: 10.1016/j.cellsig.2013.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 01/04/2023]
Abstract
Ephedrine (Eph) is one of alkaloids that has been isolated from the ancient herb ephedra (ma huang) and is used as the treatment of asthma, hypotension and fatigue. However, its molecular mechanism remains unknown. Thioredoxin-1 (Trx-1) is a redox regulating protein, which has various biological activities, including regulating transcription factor DNA binding activity and neuroprotection. In this study, we found that Eph induced Trx-1 expression, which was inhibited by propranolol (β-adrenergic receptor inhibitor), but not by phenoxybenzamine (α-adrenergic receptor inhibitor) in rat pheochromocytoma PC12 cells. Moreover, the increase of Trx-1 expression was inhibited by SQ22536 (adenylyl cyclase inhibitor) and H-89 (protein kinase A inhibitor). Interestingly, the effect of Eph on dopamine- and cyclic AMP-regulated phosphoprotein (DARPP-32) was similar to Trx-1. Thus, the relationship between Trx-1 and DARPP-32 was further studied. The DARPP-32 siRNA significantly reduced Trx-1 expression, but Trx-1 siRNA did not exchange DARPP-32. These results suggested that Eph induced the Trx-1 expression through β-adrenergic receptor/cyclic AMP/PKA/DARPP-32 signaling pathway. Furthermore, Eph induced PKA-mediated cyclic AMP response element-binding protein (CREB) phosphorylation. Down-regulation of DARPP-32 expression decreased phosphorylated CREB. In addition, Eph had a significant effect on the viability of the rat pheochromocytoma PC12 cells through β-adrenergic receptors. Trx-1 may play an important role in the actions of Eph.
Collapse
Affiliation(s)
- Jin-Jing Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | | | | | | | | |
Collapse
|
39
|
Role of oxidative stress in refractory epilepsy: evidence in patients and experimental models. Int J Mol Sci 2013; 14:1455-76. [PMID: 23344052 PMCID: PMC3565330 DOI: 10.3390/ijms14011455] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/06/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress, a state of imbalance in the production of reactive oxygen species and nitrogen, is induced by a wide variety of factors. This biochemical state is associated with systemic diseases, and diseases affecting the central nervous system. Epilepsy is a chronic neurological disorder with refractoriness to drug therapy at about 30%. Currently, experimental evidence supports the involvement of oxidative stress in seizures, in the process of their generation, and in the mechanisms associated with refractoriness to drug therapy. Hence, the aim of this review is to present information in order to facilitate the handling of this evidence and determine the therapeutic impact of the biochemical status for this pathology.
Collapse
|
40
|
Carrier JL, Javadi P, Bourrier E, Camus C, Ségal-Bendirdjian E, Karniguian A. cFos mediates cAMP-dependent generation of ROS and rescue of maturation program in retinoid-resistant acute promyelocytic leukemia cell line NB4-LR1. PLoS One 2012; 7:e50408. [PMID: 23209736 PMCID: PMC3508928 DOI: 10.1371/journal.pone.0050408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
A determining role has been assigned to cAMP in the signaling pathways that relieve resistance to anti-leukemia differentiation therapy. However, the underlying mechanisms have not been elucidated yet. Here, we identify cFos as a critical cAMP effector, able to regulate the re-expression and splicing of epigenetically silenced genes associated with maturation (CD44) in retinoid-resistant NB4-LR1 leukemia cells. Furthermore, using RNA interference approach, we show that cFos mediates cAMP-induced ROS generation, a critical mediator of neutrophil maturation, and in fine differentiation. This study highlights some of the mechanisms by which cAMP acts to overcome resistance, and reveals a new alternative cFos-dependent pathway which, though nonexistent in retinoid-sensitive NB4 cells, is essential to rescue the maturation program of resistant cells.
Collapse
Affiliation(s)
- Jean-Luc Carrier
- INSERM UMR-S 1007, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pasha Javadi
- INSERM UMR-S 1007, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Emilie Bourrier
- INSERM UMR-S 1007, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Céline Camus
- INSERM UMR-S 1007, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Aïda Karniguian
- INSERM UMR-S 1007, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
41
|
Jones QRD, Warford J, Rupasinghe HPV, Robertson GS. Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 2012; 33:602-10. [PMID: 22980637 DOI: 10.1016/j.tips.2012.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 11/26/2022]
Abstract
Habitual consumption of dietary flavonoids known to improve mitochondrial bioenergetics and inhibit various secondary sources of reactive oxygen species (ROS) reduces the risk for neurodegenerative disorders such as Parkinson's disease (PD), stroke, and Alzheimer's disease (AD). Combining specific dietary flavonoids selected on the basis of oral bioavailability, brain penetration, and the inhibition of multiple processes responsible for excessive ROS production may be a viable approach for the prevention and treatment of neurodegenerative disorders. Inclusion of flavonoids that raise cAMP levels in the brain may be of additional benefit by reducing the production of proinflammatory mediators and stimulating the transcriptional machinery necessary for mitochondrial biosynthesis. Preclinical models suggest that flavonoids reduce hearing loss resulting from treatment with the chemotherapeutic drug cisplatin by opposing the excessive production of ROS and proinflammatory mediators implicated in PD, stroke, and AD. Flavonoid combinations optimized for efficacy in models of cisplatin-induced hearing loss (CIHL) may therefore have therapeutic utility for neurodegenerative disorders.
Collapse
Affiliation(s)
- Quinton R D Jones
- Department of Pharmacology, Faculty of Medicine, 1459 Oxford Street, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | | | | | | |
Collapse
|
42
|
Luteolin induces microRNA-132 expression and modulates neurite outgrowth in PC12 cells. PLoS One 2012; 7:e43304. [PMID: 22916239 PMCID: PMC3420912 DOI: 10.1371/journal.pone.0043304] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/18/2012] [Indexed: 01/08/2023] Open
Abstract
Luteolin (3′,4′,5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells.
Collapse
|
43
|
Furukawa Y, Watanabe S, Okuyama S, Nakajima M. Neurotrophic effect of citrus auraptene: neuritogenic activity in PC12 cells. Int J Mol Sci 2012; 13:5338-5347. [PMID: 22754300 PMCID: PMC3382769 DOI: 10.3390/ijms13055338] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 04/09/2012] [Accepted: 04/23/2012] [Indexed: 12/18/2022] Open
Abstract
The activation of extracellular signal-regulated kinases (ERK) leads to a number of cellular changes associated with the development of long-term memory. Using cultured cortical neurons, we previously showed that the n-hexane extract prepared from the peels of Citrus grandis (Kawachi bankan) induces the activation of ERK1/2 and that one of the compounds with this ability in the extract is 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF), a Citrus polymethoxyflavone. In fact, we found that HMF has the ability to rescue mice from drug-induced learning impairment. This hexane extract contains auraptene (AUR), a coumarin derivative with a monoterpene unit, together with HMF. The present study was designed to investigate the effect of AUR in vitro. Our results show that 1) AUR had the ability to induce the activation of ERK1/2 in not only cortical neurons but also the rat pheochromocytoma cell line (PC12 cells), which is a model system for studies on neuronal proliferation and differentiation; and 2) AUR had the ability to promote neurite outgrowth from PC12 cells.
Collapse
Affiliation(s)
- Yoshiko Furukawa
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-89-925-7111; Fax: +81-89-926-7162
| | | | | | | |
Collapse
|