1
|
Vasconcelos AA, Estrada JC, David V, Wermelinger LS, Almeida FCL, Zingali RB. Structure-Function Relationship of the Disintegrin Family: Sequence Signature and Integrin Interaction. Front Mol Biosci 2021; 8:783301. [PMID: 34926583 PMCID: PMC8678471 DOI: 10.3389/fmolb.2021.783301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Disintegrins are small cysteine-rich proteins found in a variety of snake venom. These proteins selectively modulate integrin function, heterodimeric receptors involved in cell-cell and cell-matrix interaction that are widely studied as therapeutic targets. Snake venom disintegrins emerged from the snake venom metalloproteinase and are classified according to the sequence size and number of disulfide bonds. Evolutive structure and function diversification of disintegrin family involves a stepwise decrease in the polypeptide chain, loss of cysteine residues, and selectivity. Since the structure elucidation of echistatin, the description of the structural properties of disintegrins has allowed the investigation of the mechanisms involved in integrin-cell-extracellular matrix interaction. This review provides an analysis of the structures of all family groups enabling the description of an expanded classification of the disintegrin family in seven groups. Each group presents a particular disulfide pattern and sequence signatures, facilitating the identification of new disintegrins. The classification was based on the disintegrin-like domain of the human metalloproteinase (ADAM-10). We also present the sequence and structural signatures important for disintegrin-integrin interaction, unveiling the relationship between the structure and function of these proteins.
Collapse
Affiliation(s)
- Ariana A Vasconcelos
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge C Estrada
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S Wermelinger
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Centro Nacional de Ressonância Magnética Nuclear, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Ressonância Magnética Nuclear (CNRMN), Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica (IBqM) Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Structural Insight into Integrin Recognition and Anticancer Activity of Echistatin. Toxins (Basel) 2020; 12:toxins12110709. [PMID: 33182321 PMCID: PMC7695343 DOI: 10.3390/toxins12110709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/01/2020] [Accepted: 11/06/2020] [Indexed: 01/13/2023] Open
Abstract
Echistatin (Ech) is a short disintegrin with a long 42NPHKGPAT C-terminal tail. We determined the 3-D structure of Ech by X-ray crystallography. Superimposition of the structures of chains A and B showed conformational differences in their RGD loops and C-termini. The chain A structure is consistent with our NMR analysis that the GPAT residues of the C-terminus cannot be observed due to high flexibility. The hydrogen bond patterns of the RGD loop and between the RGD loop and C-terminus in Ech were the same as those of the corresponding residues in medium disintegrins. The mutant with C-terminal HKGPAT truncation caused 6.4-, 7.0-, 11.7-, and 18.6-fold decreases in inhibiting integrins αvβ3, αIIbβ3, αvβ5, and α5β1. Mutagenesis of the C-terminus showed that the H44A mutant caused 2.5- and 4.4-fold increases in inhibiting αIIbβ3 and α5β1, and the K45A mutant caused a 2.6-fold decrease in inhibiting αIIbβ3. We found that Ech inhibited VEGF-induced HUVEC proliferation with an IC50 value of 103.2 nM and inhibited the migration of A375, U373MG, and Panc-1 tumor cells with IC50 values of 1.5, 5.7, and 154.5 nM. These findings suggest that Ech is a potential anticancer agent, and its C-terminal region can be optimized to improve its anticancer activity.
Collapse
|
3
|
David V, Succar BB, de Moraes JA, Saldanha-Gama RFG, Barja-Fidalgo C, Zingali RB. Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins (Basel) 2018; 10:E321. [PMID: 30087285 PMCID: PMC6116119 DOI: 10.3390/toxins10080321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023] Open
Abstract
Disintegrins are a family of small cysteine-rich peptides, found in a wide variety of snake venoms of different phylogenetic origin. These peptides selectively bind to integrins, which are heterodimeric adhesion receptors that play a fundamental role in the regulation of many physiological and pathological processes, such as hemostasis and tumor metastasis. Most disintegrins interact with integrins through the RGD (Arg-Gly-Asp) sequence loop, resulting in an active site that modulates the integrin activity. Some variations in the tripeptide sequence and the variability in its neighborhood result in a different specificity or affinity toward integrin receptors from platelets, tumor cells or neutrophils. Recombinant forms of these proteins are obtained mainly through Escherichia coli, which is the most common host used for heterologous expression. Advances in the study of the structure-activity relationship and importance of some regions of the molecule, especially the hairpin loop and the C-terminus, rely on approaches such as site-directed mutagenesis and the design and expression of chimeric peptides. This review provides highlights of the biological relevance and contribution of recombinant disintegrins to the understanding of their binding specificity, biological activities and therapeutic potential. The biological and pharmacological relevance on the newest discoveries about this family of integrin-binding proteins are discussed.
Collapse
Affiliation(s)
- Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - João Alfredo de Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Roberta Ferreira Gomes Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| |
Collapse
|
4
|
Kuo YJ, Chen YR, Hsu CC, Peng HC, Huang TF. An α IIb β 3 antagonist prevents thrombosis without causing Fc receptor γ-chain IIa-mediated thrombocytopenia. J Thromb Haemost 2017; 15:2230-2244. [PMID: 28815933 DOI: 10.1111/jth.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Essentials FcγRIIa-mediated thrombocytopenia is associated with drug-dependent antibodies (DDAbs). We investigated the correlation between αIIb β3 binding epitopes and induction of DDAbs. An FcγRIIa-transgenic mouse model was used to evaluate thrombocytopenia among anti-thrombotics. An antithrombotic with binding motif toward αIIb β-propeller domain has less bleeding tendency. SUMMARY Background Thrombocytopenia, a common side effect of Arg-Gly-Asp-mimetic antiplatelet drugs, is associated with drug-dependent antibodies (DDAbs) that recognize conformation-altered integrin αIIb β3 . Objective To explore the correlation between αIIb β3 binding epitopes and induction of DDAb binding to conformation-altered αIIb β3 , we examined whether two purified disintegrins, TMV-2 and TMV-7, with distinct binding motifs have different effects on induction of αIIb β3 conformational change and platelet aggregation in the presence of AP2, an IgG1 inhibitory mAb raised against αIIb β3 . Methods We investigated the possible mechanisms of intrinsic platelet activation of TMV-2 and TMV-7 in the presence of AP2 by examining the signal cascade, tail bleeding time and immune thrombocytopenia in Fc receptor γ-chain IIa (FcγRIIa) transgenic mice. Results TMV-7 has a binding motif that recognizes the αIIb β-propeller domain of αIIb β3 , unlike that of TMV-2. TMV-7 neither primed the platelets to bind ligand, nor caused a conformational change of αIIb β3 as identified with the ligand-induced binding site mAb AP5. In contrast to eptifibatide and TMV-2, cotreatment of TMV-7 with AP2 did not induce FcγRIIa-mediated platelet aggregation and the downstream activation cascade. Both TMV-2 and TMV-7 efficaciously prevented occlusive thrombosis in vivo. Notably, both eptifibatide and TMV-2 caused severe thrombocytopenia mediated by FcγRIIa, prolonged tail bleeding time in vivo, and repressed human whole blood coagulation indexes, whereas TMV-7 did not impair hemostatic capacity. Conclusions TMV-7 shows antiplatelet and antithrombotic activities resulting from a mechanism different from that of all other tested αIIb β3 antagonists, and may offer advantages as a therapeutic agent with a better safety profile.
Collapse
Affiliation(s)
- Y-J Kuo
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-R Chen
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-C Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-C Peng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - T-F Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Oyama E, Takahashi H, Ishii K. Effect of amino acids near the RGD sequence on binding activities between αIIbβ3 integrin and fibrinogen in the presence of RGD-containing synthetic peptides from elegantin and angustatin. Peptides 2017; 96:31-37. [PMID: 28887046 DOI: 10.1016/j.peptides.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
Elegantin and angustatin, which were isolated from the snake venoms of Protobothrops elegans and Dendroaspis angusticeps, markedly inhibit binding between platelet integrins and fibrinogen via the Arg-Gly-Asp (RGD) sequence. Angustatin, which is a three-finger toxin containing the RGD sequence, inhibits platelet aggregation almost ten times more strongly than disintegrin isolated from the venoms of Viperidae and Crotalidae. The RGD sequences of both polypeptides are located at the top of hairpin loops, and the composition of the RGD loop is very important for binding to integrin. We investigated the effects of synthetic RGD loop peptides from angustatin and elegantin on ADP- or collagen-induced platelet aggregation and αIIbβ3-fibrinogen binding. Synthetic angustatin (PRGDMP)-type peptides inhibited platelet aggregation more strongly than elegantin (ARGDDX)-type peptides. In particular, the cyclic angustatin peptide (CPRGDMPC) inhibited ADP- and collagen-induced platelet aggregation at least 10-50 times more strongly than the other peptides. The cyclic angustatin peptide (CPRGDMPC) was also the strongest inhibitor of binding between αIIbβ3 and fibrinogen, the IC50 of this peptide was approximately 2.58μM. Regarding the inhibition of binding between αIIbβ3 and fibrinogen, CPRGDMPC demonstrated a stronger inhibitory and more stable effect in the presence of Mg2+ than in the presence of Ca2+.
Collapse
Affiliation(s)
- Etsuko Oyama
- Department of Hyginic chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan.
| | - Hidenobu Takahashi
- Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| | - Kazuyuki Ishii
- Department of Hyginic chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| |
Collapse
|
6
|
Chang YT, Shiu JH, Huang CH, Chen YC, Chen CY, Chang YS, Chuang WJ. Effects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition. PLoS One 2017; 12:e0175321. [PMID: 28399159 PMCID: PMC5388508 DOI: 10.1371/journal.pone.0175321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Rhodostomin (Rho) is a medium disintegrin containing a 48PRGDMP motif. We here showed that Rho proteins with P48A, M52W, and P53N mutations can selectively inhibit integrin αIIbβ3. To study the roles of the RGD loop and C-terminal region in disintegrins, we expressed Rho 48PRGDMP and 48ARGDWN mutants in Pichia pastoris containing 65P, 65PR, 65PRYH, 65PRNGLYG, and 65PRNPWNG C-terminal sequences. The effect of C-terminal region on their integrin binding affinities was αIIbβ3 > αvβ3 ≥ α5β1, and the 48ARGDWN-65PRNPWNG protein was the most selective integrin αIIbβ3 mutant. The 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants had similar activities in inhibiting platelet aggregation and the binding of fibrinogen to platelet. In contrast, 48ARGDWN-65PRYH and 48ARGDWN-65PRNGLYG exhibited 2.9- and 3.0-fold decreases in inhibiting cell adhesion in comparison with that of 48ARGDWN-65PRNPWNG. Based on the results of cell adhesion, platelet aggregation and the binding of fibrinogen to platelet inhibited by ARGDWN mutants, integrin αIIbβ3 bound differently to immobilized and soluble fibrinogen. NMR structural analyses of 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants demonstrated that their C-terminal regions interacted with the RGD loop. In particular, the W52 sidechain of 48ARGDWN interacted with H68 of 65PRYH, L69 of 65PRNGLYG, and N70 of 65PRNPWNG, respectively. The docking of the 48ARGDWN-65PRNPWNG mutant into integrin αIIbβ3 showed that the N70 residue formed hydrogen bonds with the αIIb D159 residue, and the W69 residue formed cation-π interaction with the β3 K125 residue. These results provide the first structural evidence that the interactions between the RGD loop and C-terminus of medium disintegrins depend on their amino acid sequences, resulting in their functional differences in the binding and selectivity of integrins.
Collapse
Affiliation(s)
- Yao-Tsung Chang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Jia-Hau Shiu
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chun-Hao Huang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yi-Chun Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chiu-Yueh Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yung-Sheng Chang
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Woei-Jer Chuang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Zhu Y, Lin Y, Liu A, Shui M, Li R, Liu X, Hu W, Wang Y. Structure-guided creation of AcAP5-derived and platelet targeted factor Xa inhibitors. Biochem Pharmacol 2015; 95:253-62. [DOI: 10.1016/j.bcp.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
|
8
|
Cho CF, Behnam Azad B, Luyt LG, Lewis JD. High-throughput screening of one-bead-one-compound peptide libraries using intact cells. ACS COMBINATORIAL SCIENCE 2013; 15:393-400. [PMID: 23819541 DOI: 10.1021/co4000584] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Screening approaches based on one-bead-one-compound (OBOC) combinatorial libraries have facilitated the discovery of novel peptide ligands for cellular targeting in cancer and other diseases. Recognition of cell surface proteins is optimally achieved using live cells, yet screening intact cell populations is time-consuming and inefficient. Here, we evaluate the Complex Object Parametric Analyzer and Sorter (COPAS) large particle biosorter for high-throughput sorting of bead-bound human cell populations. When a library of RGD-containing peptides was screened against human cancer cells that express αvβ3 integrin, it was found that bead-associated cells are rapidly dissociated when sorted through the COPAS instrument. When the bound cells were reversibly cross-linked onto the beads, however, we demonstrated that cell/bead mixtures can be sorted quickly and accurately. This reversible cross-linking approach is compatible with matrix-assisted laser desorption ionization time-of-flight mass spectrometry-based peptide sequence deconvolution. This approach should allow one to rapidly screen an OBOC library and identify novel peptide ligands against cell surface targets in their native conformation.
Collapse
Affiliation(s)
- Choi-Fong Cho
- Translational Prostate Cancer
Research Group, University of Alberta,
5-142C Katz Group Building, 114th Street and 87th Avenue, Edmonton,
AB, T6G 2E1 Canada
| | - Babak Behnam Azad
- Departments
of Chemistry, Oncology,
and Medical Imaging, Western University, London, ON, N6A 5C1 Canada
| | - Leonard G. Luyt
- Departments
of Chemistry, Oncology,
and Medical Imaging, Western University, London, ON, N6A 5C1 Canada
| | - John D. Lewis
- Translational Prostate Cancer
Research Group, University of Alberta,
5-142C Katz Group Building, 114th Street and 87th Avenue, Edmonton,
AB, T6G 2E1 Canada
| |
Collapse
|
9
|
Cheng CH, Chen YC, Shiu JH, Chang YT, Chang YS, Huang CH, Chen CY, Chuang WJ. Dynamics and functional differences between dendroaspin and rhodostomin: insights into protein scaffolds in integrin recognition. Protein Sci 2012; 21:1872-84. [PMID: 23033223 DOI: 10.1002/pro.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 09/19/2012] [Indexed: 12/21/2022]
Abstract
Dendroaspin (Den) and rhodostomin (Rho) are snake venom proteins containing a PRGDMP motif. Although Den and Rho have different 3D structures, they are highly potent integrin inhibitors. To study their structure, function, and dynamics relationships, we expressed Den and Rho in Pichia pastoris. The recombinant Den and Rho inhibited platelet aggregation with the K(I) values of 149.8 and 83.2 nM. Cell adhesion analysis showed that Den was 3.7 times less active than Rho when inhibiting the integrin αIIbβ3 and 2.5 times less active when inhibiting the integrin αvβ3. In contrast, Den and Rho were similarly active when inhibiting the integrin α5β1 with the IC₅₀ values of 239.8 and 256.8 nM. NMR analysis showed that recombinant Den and Rho have different 3D conformations for their arginyl-glycyl-aspartic acid (RGD) motif. However, the comparison with Rho showed that the docking of Den into integrin αvβ3 resulted in a similar number of contacts. Analysis of the dynamic properties of the RGD loop in Den and Rho showed that they also had different dynamic properties. These results demonstrate that protein scaffolds affect the function, structure, and dynamics of their RGD motif.
Collapse
Affiliation(s)
- Chun-Ho Cheng
- Department of Biochemistry and Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen YC, Cheng CH, Shiu JH, Chang YT, Chang YS, Huang CH, Lee JC, Chuang WJ. Expression in Pichia pastoris and characterization of echistatin, an RGD-containing short disintegrin. Toxicon 2012; 60:1342-8. [PMID: 22982571 DOI: 10.1016/j.toxicon.2012.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
Abstract
Echistatin (Ech) is a potent inhibitor of integrins and was isolated from snake Echis carinatus. To facilitate the study on the molecular determinants of integrin-ligand interactions, we expressed recombinant Ech and its mutants in the Pichia pastoris (P. pastoris) expression system and purified them to homogeneity with the yields of 2-7 mg/L. Ech produced in P. pastoris inhibited platelet aggregation with the IC(50) value of 210.5 nM. The sequential assignment and structure analysis of recombinant Ech were obtained by 2D and 3D (15)N-edited NMR spectra. These data suggests that Ech produced in P. pastoris retained its function and native fold. The results presented here provide the evidences that four disulfide-bonded peptide inhibitor of integrin, Ech, can be expressed in P. pastoris with correct fold and high yield. Platelet aggregation analysis of Ech mutants showed that the length of C-terminus and the K45 residue of Ech are important for interacting with integrin αIIbβ3. We also found that recombinant Ech can inhibit the migration of human A375 melanoma cell. These findings may serve as the basis for understanding the activities of Ech.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Institute of Basic Medical Sciences and Department of Biochemistry, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|