1
|
Tsang HF, Pei XM, Wong YKE, Wong SCC. Plasma Circulating mRNA Profile for the Non-Invasive Diagnosis of Colorectal Cancer Using NanoString Technologies. Int J Mol Sci 2024; 25:3012. [PMID: 38474258 DOI: 10.3390/ijms25053012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer deaths in developed countries. Early CRC may have no symptoms and symptoms usually appear with more advanced diseases. Regular screening can identify people who are at increased risk of CRC in order to offer earlier treatment. A cost-effective non-invasive platform for the screening and monitoring of CRC patients allows early detection and appropriate treatment of the disease, and the timely application of adjuvant therapy after surgical operation is needed. In this study, a cohort of 71 plasma samples that include 48 colonoscopy- and histopathology-confirmed CRC patients with TNM stages I to IV were recruited between 2017 and 2019. Plasma mRNA profiling was performed in CRC patients using NanoString nCounter. Normalized data were analyzed using a Mann-Whitney U test to determine statistically significant differences between samples from CRC patients and healthy subjects. A multiple-group comparison of clinical phenotypes was performed using the Kruskal-Wallis H test for statistically significant differences between multiple groups. Among the 27 selected circulating mRNA markers, all of them were found to be overexpressed (gene expression fold change > 2) in the plasma of patients from two or more CRC stages. In conclusion, NanoString-based targeted plasma CRC-associated mRNAs circulating the marker panel that can significantly distinguish CRC patients from a healthy population were developed for the non-invasive diagnosis of CRC using peripheral blood samples.
Collapse
Affiliation(s)
- Hin Fung Tsang
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong SAR, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yin Kwan Evelyn Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
2
|
Dunne R, Reguant R, Ramarao-Milne P, Szul P, Sng LM, Lundberg M, Twine NA, Bauer DC. Thresholding Gini variable importance with a single-trained random forest: An empirical Bayes approach. Comput Struct Biotechnol J 2023; 21:4354-4360. [PMID: 37711185 PMCID: PMC10497997 DOI: 10.1016/j.csbj.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Random forests (RFs) are a widely used modelling tool capable of feature selection via a variable importance measure (VIM), however, a threshold is needed to control for false positives. In the absence of a good understanding of the characteristics of VIMs, many current approaches attempt to select features associated to the response by training multiple RFs to generate statistical power via a permutation null, by employing recursive feature elimination, or through a combination of both. However, for high-dimensional datasets these approaches become computationally infeasible. In this paper, we present RFlocalfdr, a statistical approach, built on the empirical Bayes argument of Efron, for thresholding mean decrease in impurity (MDI) importances. It identifies features significantly associated with the response while controlling the false positive rate. Using synthetic data and real-world data in health, we demonstrate that RFlocalfdr has equivalent accuracy to currently published approaches, while being orders of magnitude faster. We show that RFlocalfdr can successfully threshold a dataset of 106 datapoints, establishing its usability for large-scale datasets, like genomics. Furthermore, RFlocalfdr is compatible with any RF implementation that returns a VIM and counts, making it a versatile feature selection tool that reduces false discoveries.
Collapse
Affiliation(s)
- Robert Dunne
- Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia
| | - Roc Reguant
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
| | - Priya Ramarao-Milne
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
| | - Piotr Szul
- Data61, Commonwealth Scientific and Industrial Research Organisation, Dutton Park, Australia
| | - Letitia M.F. Sng
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
| | - Mischa Lundberg
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
- Diamantina Institute, The University of Queensland, St Lucia, Australia
| | - Natalie A. Twine
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
- Macquarie University, Applied BioSciences, Faculty of Science and Engineering, Macquarie Park, Australia
| | - Denis C. Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Westmead, Australia
- Macquarie University, Applied BioSciences, Faculty of Science and Engineering, Macquarie Park, Australia
- Macquarie University, Department of Biomedical Sciences, Faculty of Medicine and Health Science, Macquarie Park, Australia
| |
Collapse
|
3
|
Spataro S, Guerra C, Cavalli A, Sgrignani J, Sleeman J, Poulain L, Boland A, Scapozza L, Moll S, Prunotto M. CEMIP (HYBID, KIAA1199): structure, function and expression in health and disease. FEBS J 2023; 290:3946-3962. [PMID: 35997767 DOI: 10.1111/febs.16600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
CEMIP (cell migration-inducing protein), also known as KIAA1199 or HYBID, is a protein involved in the depolymerisation of hyaluronic acid (HA), a major glycosaminoglycan component of the extracellular matrix. CEMIP was originally described in patients affected by nonsyndromic hearing loss and has subsequently been shown to play a key role in tumour initiation and progression, as well as arthritis, atherosclerosis and idiopathic pulmonary fibrosis. Despite the vast literature associating CEMIP with these diseases, its biology remains elusive. The present review article summarises all the major scientific evidence regarding its structure, function, role and expression, and attempts to cast light on a protein that modulates EMT, fibrosis and tissue inflammation, an unmet key aspect in several inflammatory disease conditions.
Collapse
Affiliation(s)
- Sofia Spataro
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Jonathan Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS - BIP), Karlsruhe Institute for Technology (KIT), Germany
| | - Lina Poulain
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Andreas Boland
- Department of Molecular Biology, University of Geneva, Switzerland
| | - Leonardo Scapozza
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, University Hospital of Geneva, Switzerland
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland
| |
Collapse
|
4
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Liu X, Li N, Zhang C, Wu X, Zhang S, Dong G, Liu G. Identification of metastasis-associated exoDEPs in colorectal cancer using label-free proteomics. Transl Oncol 2022; 19:101389. [PMID: 35303583 PMCID: PMC8927999 DOI: 10.1016/j.tranon.2022.101389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/20/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Exosomes play essential role in the metastasis of colorectal cancer from TME aspect. Finding out the prominent regulating exoDEPs by label-free proteomics in this research provided a lot of key information of CRC metastases. Metabolism, cytoskeleton-related pathways and immunosuppression are two key mechanisms by which exosomes regulate CRC malignant behavior. The discovery of the “all or none” exoDEPs was of great significance. The exoDEPs expressed only in SW620 cells can more clearly show their ability to promote the invasion and metastasis of CRC cells.
Exosomes are secreted nanovesicles consisting of biochemical molecules, including proteins, RNAs, lipids, and metabolites that play a prominent role in tumor progression. In this study, we performed a label-free proteomic analysis of exosomes from a pair of homologous human colorectal cancer cell line with different metastatic abilities. A total of 115 exoDEPs were identified, with 31 proteins upregulated and 84 proteins downregulated in SW620 exosome. We also detected 30 proteins expressed only in SW620 exosomes and 60 proteins expressed only in SW480 exosomes. Bioinformatics analysis enriched the components and pathways associated with the extracellular matrix, cytoskeleton-related pathways, and immune system changes of colorectal cancer (CRC). Cellular function experiments confirmed the role of SW620 exosomes in promoting the proliferation, migration, and invasion of SW480 cells. Further verifications were performed on six upregulated exoDEPs (FGFBP1, SIPA1, THBS1, TGFBI, COL6A1, and RPL10), three downregulated exoDEPs (SLC2A3, MYO1D, and RBP1), and three exoDEPs (SMOC2, GLG1, and CEMIP) expressed only in SW620 by WB and IHC. This study provides a complete and novel basis for exploring new drug targets to inhibit the invasion and metastasis of CRC.
Collapse
Affiliation(s)
- Xinlu Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian City, Liaoning Province, China
| | - Chi Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Xiaoyu Wu
- Operating Room, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Shoujia Zhang
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China
| | - Gang Dong
- Anorectal surgery, Central Hospital of Jinzhou City, No. 51, Section 2, Shanghai Road, Guta District, Jinzhou City, Liaoning Province, China
| | - Ge Liu
- 1st Department of general surgery, The First Affiliated Hospital of Dalian Medical University, No. 193 Union Road, Dalian City, Liaoning Province, China.
| |
Collapse
|
6
|
Bisht V, Nash K, Xu Y, Agarwal P, Bosch S, Gkoutos GV, Acharjee A. Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer. Int J Mol Sci 2021; 22:5763. [PMID: 34071236 PMCID: PMC8198673 DOI: 10.3390/ijms22115763] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrative multiomics data analysis provides a unique opportunity for the mechanistic understanding of colorectal cancer (CRC) in addition to the identification of potential novel therapeutic targets. In this study, we used public omics data sets to investigate potential associations between microbiome, metabolome, bulk transcriptomics and single cell RNA sequencing datasets. We identified multiple potential interactions, for example 5-aminovalerate interacting with Adlercreutzia; cholesteryl ester interacting with bacterial genera Staphylococcus, Blautia and Roseburia. Using public single cell and bulk RNA sequencing, we identified 17 overlapping genes involved in epithelial cell pathways, with particular significance of the oxidative phosphorylation pathway and the ACAT1 gene that indirectly regulates the esterification of cholesterol. These findings demonstrate that the integration of multiomics data sets from diverse populations can help us in untangling the colorectal cancer pathogenesis as well as postulate the disease pathology mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Vartika Bisht
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
| | - Katrina Nash
- College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Yuanwei Xu
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
| | - Prasoon Agarwal
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, 100 44 Stockholm, Sweden;
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, University Hospital Birmingham, Birmingham B15 2TT, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TH, UK; (V.B.); (Y.X.); (G.V.G.)
- MRC Health Data Research UK (HDR UK), Midlands B15 2TT, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK
| |
Collapse
|
7
|
Liu J, Yan W, Han P, Tian D. The emerging role of KIAA1199 in cancer development and therapy. Biomed Pharmacother 2021; 138:111507. [PMID: 33773462 DOI: 10.1016/j.biopha.2021.111507] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
KIAA1199, also known as CEMIP or HYBID, is an important member of the Human Unidentified Gene-Encoded (HUGE) database. Accumulated evidence has revealed that KIAA1199 is associated with tumor progression and metastasis in numerous malignancies, including colorectal, liver, gastric, pancreatic, breast, lung, prostate, ovarian and papillary thyroid cancers. As an oncogene, it plays crucial role in the proliferation, apoptosis, invasion and migration of various tumor cells. In addition, KIAA1199 is also involved in the regulation of multiple signal pathways such as epithelial-mesenchymal transition (EMT), Wnt/ β-catenin, MEK/ERK and PI3K/Akt. In this review, we summarized up to date advancement on the role of KIAA1199 in human cancer development, progression, and metastasis. We also addressed KIAA1199 as a potential therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
8
|
Huang M, Liao F, Song Y, Zuo G, Tan G, Chu L, Wang T. Overexpression of KIAA1199 is an independent prognostic marker in laryngeal squamous cell carcinoma. PeerJ 2020; 8:e9637. [PMID: 33194340 PMCID: PMC7482636 DOI: 10.7717/peerj.9637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background KIAA1199 is a recently identified novel gene that is upregulated in various human cancers with poor survival, but its role and the underlying mechanisms in laryngeal squamous cell carcinoma (LSCC) remain unknown. Here, we collected tissues from 105 cases of LSCC to investigate the relationships between KIAA1199 protein expression and clinical factors. Methods Western blotting and real-time quantitative PCR (RT-PCR) were used for detect the protein and mRNA expression of KIAA1199 in LSCC tissue. Immunohistochemistry (IHC) staining was used to detect the expression of KIAA1199. Patient clinical information, for instance sex, age, pathological differentiation, clinical region, T stage, N stage, clinical stage, operation type, neck lymph dissection, smoking status, and drinking status were recorded. Kaplan–Meier survival analysis and Cox analysis were applied to identify the relationship between KIAA1199 and LSCC. Results Western blotting results showed KIAA1199 protein was significantly higher in tumor tissues vs. adjacent non-cancerous tissues (0.9385 ± 0.1363 vs. 1.838 ± 0.3209, P = 0.04). The KIAA1199 mRNA expression was considerably higher in tumor tissues (P < 0.001) than in adjacent non-cancerous tissues by RT-PCR. IHC results showed up-regulated KIAA1199 expression was related with some severe clinicopathological parameters: pathologic differentiation (P = 0.002), T stage (P < 0.001), N stage (P < 0.001), clinical stage (P < 0.001), survival time (P = 0.008) and survival status (P < 0.001). Kaplan–Meier survival analysis showed that patients with high KIAA1199 protein expression had poor overall survival (OS) (P < 0.05). Cox analysis suggested that the KIAA1199 protein expression constituted an independent prognostic marker for LSCC patients (P < 0.001). Conclusion Our findings revealed that KIAA1199 protein expression may be used to predict LSCC patient outcome.
Collapse
Affiliation(s)
- Meixiang Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feifei Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Yexun Song
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Zuo
- Ministry of Education (Central South University), Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Lei L, Zhao X, Liu S, Cao Q, Yan B, Yang J. MicroRNA-3607 inhibits the tumorigenesis of colorectal cancer by targeting DDI2 and regulating the DNA damage repair pathway. Apoptosis 2020; 24:662-672. [PMID: 31134446 DOI: 10.1007/s10495-019-01549-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the DNA damage repair (DDR) pathway are frequently detected in colorectal cancer (CRC). The dysregulation of miRNAs, such as oncogenes or tumor suppressors, participates in CRC tumorigenesis. A previous study showed that low miR-3607 expression correlated with poor survival in prostate cancer patients, but its role in CRC remains unclear. In this study, we analyzed miR-3607 expression Pan-Cancer data from the NCI's Genomic Data Commons (GDC) and found that miR-3607 was downregulated in lymphatic invasion patients and in recurrent cancer and correlated with Pan-Cancer patient survival. Functional studies indicated that the overexpression of miR-3607 decreased CRC cell proliferation, migration and invasion. Additionally, we used gene set enrichment analysis (GSEA), Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and a protein-protein interaction network to demonstrate that miR-3607 affects the DDR pathway. Luciferase reporter and apoptosis assays confirmed that DNA damage inducible 1 homolog 2 (DDI2) is the functional target of miR-3607. Therefore, miR-3607 inhibits the tumorigenesis of CRC probably by suppressing the oncogene DDI2, and it might serve as a novel target for CRC prediction and therapy.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.,Institute of Preventive Genomic Medicine, Xi'an, 710069, China
| | - Xiaojuan Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.,Institute of Preventive Genomic Medicine, Xi'an, 710069, China
| | - Shuzhen Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.,Institute of Preventive Genomic Medicine, Xi'an, 710069, China
| | - Qing Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.,Institute of Preventive Genomic Medicine, Xi'an, 710069, China
| | - Bianbian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China.,Institute of Preventive Genomic Medicine, Xi'an, 710069, China
| | - Jin Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Taibai North Road 229, Xi'an, 710069, Shaanxi, China. .,Institute of Preventive Genomic Medicine, Xi'an, 710069, China.
| |
Collapse
|
10
|
Wu J, Wu M, Wu Q. Identification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomics. J Clin Lab Anal 2020; 34:e23333. [PMID: 32281150 PMCID: PMC7439421 DOI: 10.1002/jcla.23333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Background To determine the metabolic characteristics of patients with colon cancer (CC) and rectal cancer (RC) using gas chromatography‐mass spectrometry (GC‐MS)‐based metabolomics. Methods In this study, serum samples were collected from 22 CC patients and 23 RC patients preoperatively and postoperatively and 45 healthy volunteers (HVs), and subjected to metabolomics analysis by GC‐MS. Differential metabolites in the preoperative RC and CC samples and HVs were identified as potential biomarkers and evaluated for their utilities by receiver operating characteristic analyses. Results The different metabolic markers between CC and RC patients were identified, which may assist in distinguishing the two types of cancers. The area under the curve (AUC) was 0.805 for combination of d‐glucose and d‐mannose for CC diagnosis, and 0.889 for combination of 2‐aminobutanoic acid, 3‐hydroxypyridine, d‐glucose, d‐mannose, isoleucine, l‐tryptophan, urea, and uric acid for RC diagnosis. The combinations of metabolite markers showed a better predictability than CEA and CA199 two commonly used protein markers for CRC diagnosis in clinical practice. Combining the metabolite markers with these two protein markers effectively improved the diagnostic accuracy with the AUC reaching 0.936 and 0.937 for CC and RC diagnosis, respectively. Conclusions Metabolic profiles are different in the blood samples between CC and RC patients. The study has established a panel of metabolic markers as a predictive and multiplexing signature for CC and RC diagnosis.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Minyi Wu
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qianxia Wu
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Jiang Z, Zhai X, Shi B, Luo D, Jin B. KIAA1199 overexpression is associated with abnormal expression of EMT markers and is a novel independent prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther 2018; 11:8341-8348. [PMID: 30538502 PMCID: PMC6260188 DOI: 10.2147/ott.s187389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To determined KIAA1199 expression and investigate its correlation with the clinicopathologic data and prognosis of hepatocellular carcinoma (HCC), as well as markers of epithelial-mesenchymal transition (EMT); N-cadherin, E-cadherin and vimentin. Materials and methods Western blot, quantitative real-time PCR, and immunohistochemical staining were used to measure KIAA1199 expression in human HCC specimens. Subsequently, the correlation between KIAA1199 expression and the pathological characteristics of HCC patients was analyzed. Univariate and multivariate analyses were used to explore the risk factors associated with disease-free survival (DFS) and overall survival (OS). Results KIAA1199 expression was remarkably increased in hepatocellular carcinoma tissues compared to paracarcinomatous tissues. This phenomenon was accompanied by aberrant expression of EMT-associated markers. In addition, high KIAA1199 expression was associated with severe pathological symptoms, low DFS, and low OS. Results of the multivariate analysis showed that KIAA1199 expression may be an independent predictor of low disease-free survival and OS of HCC patients. Conclusion KIAA1199 overexpression in HCC patients is associated with aberrant expression of EMT-associated markers and severe clinicopathological symptoms, and thus may function as a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Xiangyu Zhai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Binyao Shi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Dan Luo
- School of Basic Medical Science, Shandong University, Jinnan, China
| | - Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| |
Collapse
|
12
|
Knockdown of KIAA1199 attenuates growth and metastasis of hepatocellular carcinoma. Cell Death Discov 2018; 4:102. [PMID: 30455988 PMCID: PMC6232158 DOI: 10.1038/s41420-018-0099-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/31/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence indicates that KIAA1199 plays a vital role in tumor progression. However, the role of KIAA1199 in hepatocellular carcinoma (HCC) still remains unknown. In this study, we found that KIAA1199 was upregulated in human HCC tissues and in highly metastatic HCC cell lines. Furthermore, the expression of KIAA1199 was significantly correlated with tumor size and metastasis in HCC. Knockdown of KIAA1199 inhibited cell proliferation and migration in vitro, and suppressed tumorigenicity and lung metastasis in vivo. In addition, silencing of KIAA1199 induced G1 phase arrest by reducing cyclinD1 expression. Moreover, KIAA1199 knockdown induced apoptosis by activating endoplasmic reticulum (ER) stress, which was based on the upregulation of ER stress markers, activating transcription factor 4 (ATF4) and CAAT/enhancer-binding protein homologous protein (CHOP). In conclusion, our data demonstrated that KIAA1199 knockdown inhibited the growth and metastasis of HCC.
Collapse
|
13
|
Lee HS, Jang CY, Kim SA, Park SB, Jung DE, Kim BO, Kim HY, Chung MJ, Park JY, Bang S, Park SW, Song SY. Combined use of CEMIP and CA 19-9 enhances diagnostic accuracy for pancreatic cancer. Sci Rep 2018; 8:3383. [PMID: 29467409 PMCID: PMC5821821 DOI: 10.1038/s41598-018-21823-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
Carbohydrate antigen (CA) 19-9 is the only diagnostic marker used in pancreatic cancer despite its limitations. Here, we aimed to identify the diagnostic role of CEMIP (also called KIAA1199) combined with CA 19-9 in patients with pancreatic cancer. A retrospective analysis of prospectively collected patient samples was performed to determine the benefit of diagnostic markers in the diagnosis of pancreatic cancer. We investigated CEMIP and CA 19-9 levels in 324 patients with pancreatic cancer and 49 normal controls using serum enzyme-linked immunosorbent assay. Median CA 19-9 and CEMIP levels were 410.5 U/ml (40.8-3342.5) and 0.67 ng/ml (0.40-1.08), respectively, in patients with pancreatic cancer. The AUROC for CA 19-9 and CEMIP were 0.847 (95% confidence interval [CI]: 0.806-0.888) and 0.760 (95% CI: 0.689-0.831), respectively. Combination of CA 19-9 with CEMIP showed markedly improved AUROC over CA 19-9 alone in pancreatic cancer diagnosis (0.94 vs. 0.89; P < 0.0001). CEMIP showed a diagnostic yield of 86.1% (68/79) in CA 19-9 negative pancreatic cancer. Combined use with CEMIP showed significantly improved diagnostic value compared with CA 19-9 alone in pancreatic cancer. Especially, CEMIP may be a complementary marker in pancreatic cancer patients with normal CA 19-9 levels.
Collapse
Affiliation(s)
- Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Young Jang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sun A Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Ok Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Yan Kim
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
14
|
Yang Q, Feng M, Ma X, Li H, Xie W. Gene expression profile comparison between colorectal cancer and adjacent normal tissues. Oncol Lett 2017; 14:6071-6078. [PMID: 29113248 DOI: 10.3892/ol.2017.6915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/13/2016] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to compare gene expression profiles between colorectal cancer and adjacent normal tissues, and to perform a preliminarily analysis of the key genes and underlying molecular mechanisms implicated in colorectal cancer development. Gene expression microarray chips were used to screen genes that were differently expressed between colorectal cancer and adjacent normal tissues. Approximately 1,183 genes were differentially expressed in cancer tissues compared with adjacent normal tissues (P≤0.05; fold difference, >2.0), of which 570 genes were upregulated and 613 genes were downregulated. In total, 6 upregulated genes, including keratin 23, collagen type X α1, collagen type XI α1, cell migration-inducing hyaluronan-binding protein, transforming growth factor-β1 and V-Myc avian myelocytomatosis viral oncogene homolog, and 2 downregulated genes, including channel α subunit 7 and EPH receptor A7, were selected and validated using reverse transcription-quantitative polymerase chain reaction, which exhibited results that were consistent with the microarray analysis. These 1,183 differentially expressed genes were further classified into 71 groups based on their functions using gene ontology and pathway analyses. Kyoto Encyclopedia of Genes and Genomes analysis of these upregulated or downregulated genes suggested that 23 signaling pathways were involved. The present study preliminarily screened for and identified key genes and signaling pathways that may be closely associated with colorectal cancer development. However, subsequent gene function studies are required to verify these findings.
Collapse
Affiliation(s)
- Qian Yang
- Department of Ultrasound, Hubei Cancer Hospital, Wuhan, Hubei 430071, P.R. China
| | - Maohui Feng
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xiang Ma
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huachi Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Xie
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Identification of KIAA1199 as a Biomarker for Pancreatic Intraepithelial Neoplasia. Sci Rep 2016; 6:38273. [PMID: 27922049 PMCID: PMC5138641 DOI: 10.1038/srep38273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/06/2016] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers and has an extremely poor prognosis. Despite recent progress in both basic and clinical research, most pancreatic cancers are detected at an incurable stage owing to the absence of disease-specific symptoms. Thus, developing novel approaches for detecting pancreatic cancer at an early stage is imperative. Our in silico and immunohistochemical analyses showed that KIAA1199 is specifically expressed in human pancreatic cancer cells and pancreatic intraepithelial neoplasia, the early lesion of pancreatic cancer, in a genetically engineered mouse model and in human patient samples. We also detected secreted KIAA1199 protein in blood samples obtained from pancreatic cancer mouse models, but not in normal mice. Furthermore, we found that assessing KIAA1199 autoantibody increased the sensitivity of detecting pancreatic cancer. These results indicate the potential benefits of using KIAA1199 as a biomarker for early-stage pancreatic cancer.
Collapse
|
16
|
Ashktorab H, Hermann P, Nouraie M, Shokrani B, Lee E, Haidary T, Brim H, Stein U. Increased MACC1 levels in tissues and blood identify colon adenoma patients at high risk. J Transl Med 2016; 14:215. [PMID: 27439755 PMCID: PMC4955242 DOI: 10.1186/s12967-016-0971-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background Colorectal cancer is a preventable disease if caught at early stages. This disease is highly aggressive and has a higher incidence in African Americans. Several biomarkers and mutations of aggressive tumor behavior have been defined such as metastasis-associated in colon cancer 1 (MACC1) that was associated with metastasis in colorectal cancer patients. Here, we aim to assess colon tissue MACC1 protein and circulating MACC1 transcripts in colon preneoplastic and neoplastic African American patients. Methods Patients’ tissue samples (n = 143) have been arranged on three tissue microarrays for normal (n = 26), adenoma (n = 68) and cancer (n = 49) samples. Immunohistochemistry was used to detect MACC1 expression. Blood samples (n = 93) from normal (n = 45), hyperplastic (n = 15) and tubular adenoma (n = 33) patients were used to assess MACC1 transcripts using qRT-PCR. Distribution of continuous variables was tested between different diagnoses with Kruskal–Wallis test. Categorical variables were tested by Chi square test. We assessed the prognostic ability of IHC staining by calculating area under receiver operating characteristics curve (ROC) for adenoma and cancer separately. Differences between groups in terms of MACC1 transcript levels in plasma were calculated by using non-parametric (exact) Wilcoxon-Mann–Whitney tests. We performed all calculations with SPSS, version 21. Results In patient tissues, there was a statistically significant difference in MACC1 expression in normal vs. adenoma samples (p = 0.004) and normal vs. cancer samples (p < 0.001). There was however no major difference in MACC1 expression between adenoma vs. cancer cases or tubular adenomas vs tubulovillous adenomas. The area under the curve for both normal vs. adenoma and normal vs. cancer cases were 70 and 67 %, respectively. MACC1 expression was not correlated to age, gender or anatomical sample location. In patient plasma, MACC1 transcripts in adenoma patients were significantly higher than in plasma from normal patients (p = 0.014). However, the difference between normal and hyperplastic plasma MACC1 transcripts was not statistically significant. Conclusion Metastasis-associated in colon cancer 1 is expressed at early stages of colorectal oncogenesis within the affected colonic tissue in this patient cohort. The plasma transcripts can be used to stratify African American patients at risk for potential malignant colonic lesions.
Collapse
Affiliation(s)
- Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| | - Pia Hermann
- Experimental and Clinical Research Center, Charité University Medicine Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Mehdi Nouraie
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Babak Shokrani
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Edward Lee
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Tahmineh Haidary
- Department of Medicine and Cancer Center, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA
| | - Hassan Brim
- Department of Pathology, Howard University, 2041 Georgia Avenue NW, Washington, DC, 20059, USA.
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité University Medicine Berlin and Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125, Berlin, Germany. .,German Cancer Consortium, Im Neuenheimer Feld 280, 69121, Heidelberg, Germany.
| |
Collapse
|
17
|
Yang X, Qiu P, Chen B, Lin Y, Zhou Z, Ge R, Zou H, Wang J, Wang J. KIAA1199 as a potential diagnostic biomarker of rheumatoid arthritis related to angiogenesis. Arthritis Res Ther 2015; 17:140. [PMID: 26022278 PMCID: PMC4448531 DOI: 10.1186/s13075-015-0637-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/22/2015] [Indexed: 01/24/2023] Open
Abstract
Introduction Our previous proteomic study on fibroblast-like synoviocytes (FLSs) derived from the synovial tissues found that the expression of KIAA1199 was higher in rheumatoid arthritis (RA) patients than in healthy controls. The aim of this study was to examine the biological function of KIAA1199 and evaluate its clinical diagnosis value in RA. Methods The over-expression of KIAA1199 was verified by quantitative real-time polymerase chain reaction (qPCR), Immunohistochemistry, Immunofluorescence and enzyme linked immunosorbent assay (ELISA) in inactive and active RA patients and healthy controls. The effect of KIAA1199 expression on FLSs proliferation, angiogenesis and related pathway were analyzed by MTT, cell migration, tube formation, chorioallantoic membrane (CAM) assay, qPCR and western-blotting after KIAA1199 knockdown and over-expression. Results The verification results show the up-regulation of KIAA1199 in RA patients at mRNA and protein level as compared to that in healthy controls. ELISA and receiver operator characteristic (ROC) analysis shows that KIAA1199 concentration in serum, synovial fluid and synovial tissues could be used as dependable biomarkers for the diagnosis of active RA, provided an area under roc curve (AUC) of 0.83, 0.92 and 0.92. Sensitivity and specificity, which were determined by cut-off points, reached 72% 84% and 80% in sensitivity and 80%, 93.3%, 93.3% in specificity, respectively. Moreover, KIAA1199 also enhance the proliferation and angiogenesis of synovial membrane, and KIAA1199/ PLXNB3/ SEMA5A/CTGF axis may be a newly found pathway enhancing cell proliferation and angiogenesis. Conclusion KIAA1199 may be a potential diagnostic biomarker of RA related to angiogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0637-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Pengcheng Qiu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Bingbing Chen
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Yaoyao Lin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Zhonghao Zhou
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Renshan Ge
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Hai Zou
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Jianmin Wang
- Department of Rheumatology, Jiamusi Central Hospital, Jiamusi, China.
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
18
|
A two-gene blood test for methylated DNA sensitive for colorectal cancer. PLoS One 2015; 10:e0125041. [PMID: 25928810 PMCID: PMC4416022 DOI: 10.1371/journal.pone.0125041] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background Specific genes are methylated with high frequency in colorectal neoplasia, and may leak into blood. Detection of multiple methylated DNA biomarkers in blood may improve assay sensitivity for colorectal cancer (CRC) relative to a single marker. We undertook a case-control study evaluating the presence of two methylation DNA markers, BCAT1 and IKZF1, in circulation to determine if they were complementary for detection of CRC. Methods Methylation-specific PCR assays were developed to measure the level of methylated BCAT1 and IKZF1 in DNA extracted from plasma obtained from colonoscopy-confirmed 144 healthy controls and 74 CRC cases. Results DNA yields ranged from 2 to 730 ng/mL plasma (mean 18.6ng/mL; 95% CI 11-26 ng/mL) and did not correlate with gender, age or CRC status. Methylated BCAT1 and IKZF1 DNA were detected in respectively 48 (65%) and 50 (68%) of the 74 cancers. In contrast, only 5 (4%) and 7 (5%) controls were positive for BCAT1 and IKZF1 DNA methylation, respectively. A two-gene classifier model (“either or” rule) improved segregation of CRC from controls, with 57 of 74 cancers (77%) compared to only 11 of 144 (7.6%) controls being positive for BCAT1 and/or IKZF1 DNA methylation. Increasing levels of methylated DNA were observed as CRC stage progressed. Conclusions Detection of methylated BCAT1 and/or IKZF1 DNA in plasma may have clinical application as a novel blood test for CRC. Combining the results from the two methylation-specific PCR assays improved CRC detection with minimal change in specificity. Further validation of this two-gene blood test with a view to application in screening is now indicated.
Collapse
|
19
|
Lin PC, Lin JK, Lin CH, Lin HH, Yang SH, Jiang JK, Chen WS, Chou CC, Tsai SF, Chang SC. Clinical Relevance of Plasma DNA Methylation in Colorectal Cancer Patients Identified by Using a Genome-Wide High-Resolution Array. Ann Surg Oncol 2014; 22 Suppl 3:S1419-27. [PMID: 25472652 DOI: 10.1245/s10434-014-4277-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND DNA methylation is a potential tumor marker for several cancers, including colorectal cancer (CRC), because of its heritable and stable characteristics. METHODS Using a high-resolution, genome-wide approach, we epigenotyped >450,000 CpG sites in tumor and adjacent non-tumor tissues from 23 microsatellite instability (MSI)/microsatellite stability (MSS) CRC cases. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry, the methylation status of five frequently hypermethylated genes were confirmed in 75 independent CRC series and 353 CRC patients with available plasma. RESULTS Compared with non-tumor tissues, 13 MSI tumors had 34,836 (7 %) aberrant methylation sites, 87 % of which were hypermethylated. In contrast, only 9,806 (2 %) differentially methylated sites were identified in ten MSS cases (62 % hypermethylated). In both MSI and MSS, 228 promoter-associated CpG islands were hypermethylated, with AGBL4, ZNF625, MDFI, TWIST1, and FLI1 being most frequently hypermethylated. In an independent set of 35 MSI and 40 MSS cases, the methylation status of these five genes significantly differed between tumor and adjacent non-tumor tissues. Of 353 CRC patients, 230 (65.2 %), 232 (65.7 %), and 247 (70.0 %) had AGBL4, FLI1, and TWIST1 promoter hypermethylation in circulating cell-free DNA, respectively. In patients without metastasis, the sensitivity of any two or three hypermethylation markers was 52.8-57.8 and 27.9-38.9 %, respectively. The sensitivity of any two or three markers was significantly high in patients with stage IV disease (73.0 and 55.6 %, respectively). The prognostic value of these epimarkers was inconclusive. CONCLUSION DNA methylation patterns differed in CRC subtypes. The identified hypermethylation markers in CRC patients may have good sensitivity in different CRC stages.
Collapse
Affiliation(s)
- Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsing Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Hung-Hsin Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chi Chou
- Department of Life Sciences and Genome Research Center and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan. .,Department of Life Sciences and Genome Research Center and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan.
| | - Shih-Ching Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
20
|
Molnár B, Tóth K, Barták BK, Tulassay Z. Plasma methylated septin 9: a colorectal cancer screening marker. Expert Rev Mol Diagn 2014; 15:171-84. [PMID: 25429690 DOI: 10.1586/14737159.2015.975212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a slow-developing cancer (10-15 years) with one of the highest frequencies in the world's population. Many countries have implemented various CRC screening programs, but have not achieved the desired compliance. Colonoscopy - considered the gold standard for CRC screening - has its limitations as well as the other techniques used, such as irrigoscopy, sigmoidoscopy, fecal blood and hemoglobin tests. The biomarker septin 9 has been found to be hypermethylated in nearly 100% of tissue neoplasia specimens and detected in circulating DNA fractions of CRC patients. A commercially available assay for septin 9 has been developed with moderate sensitivity (∼70%) and specificity (∼90%) and a second generation assay, Epi proColon 2.0 (Epigenomics AG), shows increased sensitivity (∼92%). The performance of the assay proved to be independent of tumor site and reaches a high sensitivity of 77%, even in early cancer stages (I and II). Furthermore, septin 9 was recently used in follow-up studies for detection of early recurrence of CRC. This article evaluates the opportunities, known limitations and future perspectives of the recently introduced Epi proColon(®) 2.0 test, which is based on the detection of aberrantly methylated DNA of the v2 region of the septin 9 gene in plasma.
Collapse
Affiliation(s)
- Béla Molnár
- Molecular Medicine Research Unit, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
21
|
Abstract
Colorectal cancer (CRC) is the third most common non-skin cancer diagnosed in men and women in the USA and worldwide. While it has been clearly established that screening for CRC, using a variety of methods, is cost effective and has a significant impact on overall survival, screening rates have proven to be sub-optimal. It has been long conjectured that a simple blood-based test, with a specimen drawn at a routine doctor's office visit, would encourage those individuals who have refused or ignored screening recommendations to undergo screening. This article reviews the currently available blood-based screening tests for CRC, including the ColonSentry™ messenger RNA (mRNA) expression panel and the SEPT9 methylated DNA test, and explores newer biomarkers that are near clinical implementation. Also discussed are additional applications for blood-based CRC testing, such as assessing prognosis, disease surveillance, and expansion of screening tests to high-risk populations, such as the estimated 1.4 million individuals in the USA with inflammatory bowel disease.
Collapse
Affiliation(s)
- Karen A Heichman
- Oncology Technology Development and Licensing, ARUP Laboratories Inc., 500 Chipeta Way, Mail stop #209, Salt Lake City, UT, 84108, USA,
| |
Collapse
|
22
|
Ni Y, Xie G, Jia W. Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res 2014; 13:3857-70. [PMID: 25105552 DOI: 10.1021/pr500443c] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world, having both high prevalence and mortality. It is usually diagnosed at advanced stages due to the limitations of current screening methods used in the clinic. There is an urgent need to develop new biomarkers and modalities to detect, diagnose, and monitor the disease. Metabonomics, an approach that involves the comprehensive profiling of the full complement of endogenous metabolites in a biological system, has demonstrated its great potential for use in the early diagnosis and personalized treatment of various cancers including CRC. By applying advanced analytical techniques and bioinformatics tools, the metabolome is mined for biomarkers that are associated with carcinogenesis and prognosis. This review provides an overview of the metabonomics workflow and studies, with a focus on recent advances and findings in biomarker discovery for the early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Yan Ni
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital , Shanghai 200233, China
| | | | | |
Collapse
|
23
|
Potter NT, Hurban P, White MN, Whitlock KD, Lofton-Day CE, Tetzner R, Koenig T, Quigley NB, Weiss G. Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clin Chem 2014; 60:1183-91. [PMID: 24938752 DOI: 10.1373/clinchem.2013.221044] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epi proColon® is a new blood-based colorectal cancer (CRC) screening test designed to determine the methylation status of a promoter region of the SEPT9 (septin 9) gene in cell-free DNA isolated from plasma. We describe the analytical and clinical performance of the test. METHODS Analytical performance at 4 testing laboratories included determination of limit of detection, precision, and reproducibility of the SEPT9 test. Clinical performance was evaluated in a prospective study by use of samples (n = 1544) from subjects enrolled in the PRESEPT clinical trial. Results were analyzed by comparison with colonoscopy, the reference standard. RESULTS The limit of detection for methylated SEPT9 DNA was 7.8 pg/mL (95% CI 6-11 pg/mL) corresponding to <2 genome copies of methylated SEPT9 per milliliter of plasma. In the prospective clinical trial, sensitivity for all stages of CRC was 68% (95% CI 53%-80%) and for stage I-III CRC, 64% (48%-77%). Adjusted specificity, on the basis of negative colonoscopy findings, was 80.0% (78%-82%). SIGNIFICANCE The Epi proColon test is a simple, real-time PCR-based assay for the detection of methylated SEPT9 DNA in blood that may provide a noninvasive CRC screening alternative for people noncompliant with current CRC screening guidelines.
Collapse
Affiliation(s)
| | | | - Mary N White
- Molecular Pathology Laboratory Network, Maryville TN
| | | | | | | | | | | | | |
Collapse
|
24
|
Pedersen SK, Mitchell SM, Graham LD, McEvoy A, Thomas ML, Baker RT, Ross JP, Xu ZZ, Ho T, LaPointe LC, Young GP, Molloy PL. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia. Epigenetics 2014; 9:1071-82. [PMID: 24799664 PMCID: PMC4164492 DOI: 10.4161/epi.29046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097–163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer. A quantitative methylation-specific PCR (qMSP) was used to characterize additional tissue samples. With a threshold of 5% methylation, the CAHM assay was positive in 2/26 normal colorectal tissues (8%), 17/21 adenomas (81%), and 56/79 CRC samples (71%). A reverse transcriptase-qPCR assay showed that CAHM RNA levels correlated negatively with CAHM % methylation, and therefore CAHM gene expression is typically decreased in CRC. The CAHM qMSP assay was applied to DNA isolated from plasma specimens from 220 colonoscopy-examined patients. Using a threshold of 3 pg methylated genomic DNA per mL plasma, methylated CAHM sequences were detected in the plasma DNA of 40/73 (55%) of CRC patients compared with 3/73 (4%) from subjects with adenomas and 5/74 (7%) from subjects without neoplasia. Both the frequency of detection and the amount of methylated CAHM DNA released into plasma increased with increasing cancer stage. Methylated CAHM DNA shows promise as a plasma biomarker for use in screening for CRC.
Collapse
Affiliation(s)
| | - Susan M Mitchell
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| | - Lloyd D Graham
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| | - Aidan McEvoy
- Clinical Genomics Pty Ltd; North Ryde, NSW Australia
| | | | - Rohan T Baker
- Clinical Genomics Pty Ltd; North Ryde, NSW Australia
| | - Jason P Ross
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| | - Zheng-Zhou Xu
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| | - Thu Ho
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| | | | - Graeme P Young
- Flinders Centre for Innovation in Cancer; Flinders University (FMC); Adelaide, SA Australia
| | - Peter L Molloy
- CSIRO Preventative Health Flagship; Animal, Food & Health Sciences Division; North Ryde, NSW Australia
| |
Collapse
|
25
|
ZHANG YONGSHENG, JIA SHUQIN, JIANG WENG. KIAA1199 and its biological role in human cancer and cancer cells (Review). Oncol Rep 2014; 31:1503-8. [DOI: 10.3892/or.2014.3038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/24/2014] [Indexed: 11/05/2022] Open
|
26
|
Mitchell SM, Ross JP, Drew HR, Ho T, Brown GS, Saunders NFW, Duesing KR, Buckley MJ, Dunne R, Beetson I, Rand KN, McEvoy A, Thomas ML, Baker RT, Wattchow DA, Young GP, Lockett TJ, Pedersen SK, LaPointe LC, Molloy PL. A panel of genes methylated with high frequency in colorectal cancer. BMC Cancer 2014; 14:54. [PMID: 24485021 PMCID: PMC3924905 DOI: 10.1186/1471-2407-14-54] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/20/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The development of colorectal cancer (CRC) is accompanied by extensive epigenetic changes, including frequent regional hypermethylation particularly of gene promoter regions. Specific genes, including SEPT9, VIM1 and TMEFF2 become methylated in a high fraction of cancers and diagnostic assays for detection of cancer-derived methylated DNA sequences in blood and/or fecal samples are being developed. There is considerable potential for the development of new DNA methylation biomarkers or panels to improve the sensitivity and specificity of current cancer detection tests. METHODS Combined epigenomic methods - activation of gene expression in CRC cell lines following DNA demethylating treatment, and two novel methods of genome-wide methylation assessment - were used to identify candidate genes methylated in a high fraction of CRCs. Multiplexed amplicon sequencing of PCR products from bisulfite-treated DNA of matched CRC and non-neoplastic tissue as well as healthy donor peripheral blood was performed using Roche 454 sequencing. Levels of DNA methylation in colorectal tissues and blood were determined by quantitative methylation specific PCR (qMSP). RESULTS Combined analyses identified 42 candidate genes for evaluation as DNA methylation biomarkers. DNA methylation profiles of 24 of these genes were characterised by multiplexed bisulfite-sequencing in ten matched tumor/normal tissue samples; differential methylation in CRC was confirmed for 23 of these genes. qMSP assays were developed for 32 genes, including 15 of the sequenced genes, and used to quantify methylation in tumor, adenoma and non-neoplastic colorectal tissue and from healthy donor peripheral blood. 24 of the 32 genes were methylated in >50% of neoplastic samples, including 11 genes that were methylated in 80% or more CRCs and a similar fraction of adenomas. CONCLUSIONS This study has characterised a panel of 23 genes that show elevated DNA methylation in >50% of CRC tissue relative to non-neoplastic tissue. Six of these genes (SOX21, SLC6A15, NPY, GRASP, ST8SIA1 and ZSCAN18) show very low methylation in non-neoplastic colorectal tissue and are candidate biomarkers for stool-based assays, while 11 genes (BCAT1, COL4A2, DLX5, FGF5, FOXF1, FOXI2, GRASP, IKZF1, IRF4, SDC2 and SOX21) have very low methylation in peripheral blood DNA and are suitable for further evaluation as blood-based diagnostic markers.
Collapse
Affiliation(s)
- Susan M Mitchell
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Jason P Ross
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Horace R Drew
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Thu Ho
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Glenn S Brown
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Neil FW Saunders
- CSIRO Computational Informatics, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Konsta R Duesing
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Michael J Buckley
- CSIRO Computational Informatics, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Rob Dunne
- CSIRO Computational Informatics, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Iain Beetson
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | - Keith N Rand
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | - Aidan McEvoy
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | | | - Rohan T Baker
- Clinical Genomics Pty Ltd, North Ryde, NSW, Australia
| | - David A Wattchow
- Flinders Centre for Innovation in Cancer, Flinders University (FMC), Adelaide, SA, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University (FMC), Adelaide, SA, Australia
| | - Trevor J Lockett
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| | | | | | - Peter L Molloy
- CSIRO Animal, Food & Health Sciences, Preventative Health Flagship, North Ryde, NSW, Australia
| |
Collapse
|
27
|
Zheng X, Xie G, Jia W. Metabolomic profiling in colorectal cancer: opportunities for personalized medicine. Per Med 2013; 10:741-755. [PMID: 29768755 DOI: 10.2217/pme.13.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer in the world, with high prevalence and mortality. Understanding the alterations of cancer metabolism and identifying reliable biomarkers would facilitate the development of novel technologies of CRC screening and early diagnosis, as well as new approaches to providing personalized medicine. Metabolomics, as an emerging molecular phenotyping approach, provides a clinical platform technology with an unprecedented amount of metabolic readout information, which is ideal for theranostic biomarker discovery. Metabolic signatures can link the unique pathophysiological states of patients to personalized health monitoring and intervention strategies. This article presents an overview of the metabolomic studies of CRC with a focus on recent advances in the biomarker discovery in serum, urine, fecal water and tissue samples for cancer diagnosis. The development and application of metabolomics towards personalized medicine, including early diagnosis, cancer staging, treatment and drug discovery are also discussed.
Collapse
Affiliation(s)
- Xiaojiao Zheng
- Center for Translational Medicine & Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology & Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guoxiang Xie
- University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Wei Jia
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
28
|
Tiwari A, Schneider M, Fiorino A, Haider R, Okoniewski MJ, Roschitzki B, Uzozie A, Menigatti M, Jiricny J, Marra G. Early insights into the function of KIAA1199, a markedly overexpressed protein in human colorectal tumors. PLoS One 2013; 8:e69473. [PMID: 23936024 PMCID: PMC3720655 DOI: 10.1371/journal.pone.0069473] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/10/2013] [Indexed: 12/28/2022] Open
Abstract
We previously reported that the expression of KIAA1199 in human colorectal tumors (benign and malignant) is markedly higher than that in the normal colonic mucosa. In this study, we investigated the functions of the protein encoded by this gene, which are thus far unknown. Immunostaining studies were used to reveal its subcellular localization, and proteomic and gene expression experiments were conducted to identify proteins that might interact with KIAA1199 and molecular pathways in which it might play roles. Using colon cancer cell lines, we showed that both endogenous and ectopically expressed KIAA1199 is secreted into the extracellular environment. In the cells, it was found mainly in the perinuclear space (probably the ER) and cell membrane. Both cellular compartments were also over-represented in lists of proteins identified by mass spectrometry as putative KIAA1199 interactors and/or proteins encoded by genes whose transcription was significantly changed by KIAA1199 expression. These proteomic and transcriptomic datasets concordantly link KIAA1199 to several genes/proteins and molecular pathways, including ER processes like protein binding, transport, and folding; and Ca2+, G-protein, ephrin, and Wnt signaling. Immunoprecipitation experiments confirmed KIAA1199’s interaction with the cell-membrane receptor ephrin A2 and with the ER receptor ITPR3, a key player in Ca2+ signaling. By modulating Ca2+ signaling, KIAA1199 could affect different branches of the Wnt network. Our findings suggest it may negatively regulate the Wnt/CTNNB1 signaling, and its expression is associated with decreased cell proliferation and invasiveness.
Collapse
Affiliation(s)
- Amit Tiwari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mirjam Schneider
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Antonio Fiorino
- Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Ritva Haider
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Michal J. Okoniewski
- Functional Genomics Center of the ETH and University of Zurich, Zurich, Switzerland
| | - Bernd Roschitzki
- Functional Genomics Center of the ETH and University of Zurich, Zurich, Switzerland
| | - Anuli Uzozie
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Mirco Menigatti
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Bajo-Grañeras R, Crespo-Sanjuan J, García-Centeno RM, Garrote-Adrados JA, Gutierrez G, García-Tejeiro M, Aguirre-Gervás B, Calvo-Nieves MD, Bustamante R, Ganfornina MD, Sanchez D. Expression and potential role of apolipoprotein D on the death-survival balance of human colorectal cancer cells under oxidative stress conditions. Int J Colorectal Dis 2013; 28:751-66. [PMID: 23296401 DOI: 10.1007/s00384-012-1616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 02/04/2023]
Abstract
PURPOSE Inverse correlations of apolipoprotein D (ApoD) expression with tumor growth have been shown, therefore proposing ApoD as a good prognostic marker for diverse cancer types, including colorectal cancer (CRC). Besides, ApoD expression is boosted upon oxidative stress (OS) in many pathological situations. This study aims at understanding the role of ApoD in the progression of human CRC. METHODS Samples of CRC and distant normal tissue (n = 51) were assayed for levels of lipid peroxidation, expression profile of OS-dependent genes, and protein expression. Three single-nucleotide polymorphisms in the ApoD gene were analyzed (n = 139), with no significant associations found. Finally, we assayed the effect of ApoD in proliferation and apoptosis in the CRC HT-29 cell line. RESULTS In CRC, lipid peroxides increase while ApoD messenger RNA and protein decrease through tumor progression, with a prominent decrease in stage I. In normal mucosa, ApoD protein is present in lamina propia and enteroendocrine cells. In CRC, ApoD expression is heterogeneous, with low expression in stromal cells commonly associated with high expression in the dysplastic epithelium. ApoD promoter is basally methylated in HT-29 cells but retains the ability to respond to OS. Exogenous addition of ApoD to HT-29 cells does not modify proliferation or apoptosis levels in control conditions, but it promotes apoptosis upon paraquat-induced OS. CONCLUSION Our results show ApoD as a gene responding to OS in the tumor microenvironment. Besides using ApoD as marker of initial stages of tumor progression, it can become a therapeutic tool promoting death of proliferating tumor cells suffering OS.
Collapse
Affiliation(s)
- Raquel Bajo-Grañeras
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Loo LWM, Tiirikainen M, Cheng I, Lum-Jones A, Seifried A, Church JM, Gryfe R, Weisenberger DJ, Lindor NM, Gallinger S, Haile RW, Duggan DJ, Thibodeau SN, Casey G, Le Marchand L. Integrated analysis of genome-wide copy number alterations and gene expression in microsatellite stable, CpG island methylator phenotype-negative colon cancer. Genes Chromosomes Cancer 2013; 52:450-66. [PMID: 23341073 DOI: 10.1002/gcc.22043] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/04/2012] [Accepted: 12/16/2012] [Indexed: 12/11/2022] Open
Abstract
Microsatellite stable (MSS), CpG island methylator phenotype (CIMP)-negative colorectal tumors, the most prevalent molecular subtype of colorectal cancer, are associated with extensive copy number alteration (CNA) events and aneuploidy. We report on the identification of characteristic recurrent CNA (with frequency >25%) events and associated gene expression profiles for a total of 40 paired tumor and adjacent normal colon tissues using genome-wide microarrays. We observed recurrent CNAs, namely gains at 1q, 7p, 7q, 8p12-11, 8q, 12p13, 13q, 20p, 20q, Xp, and Xq and losses at 1p36, 1p31, 1p21, 4p15-12, 4q12-35, 5q21-22, 6q26, 8p, 14q, 15q11-12, 17p, 18p, 18q, 21q21-22, and 22q. Within these genomic regions we identified 356 genes with significant differential expression (P < 0.0001 and ±1.5-fold change) in the tumor compared to adjacent normal tissue. Gene ontology and pathway analyses indicated that many of these genes were involved in functional mechanisms that regulate cell cycle, cell death, and metabolism. An amplicon present in >70% of the tumor samples at 20q11-20q13 contained several cancer-related genes (AHCY, POFUT1, RPN2, TH1L, and PRPF6) that were upregulated and demonstrated a significant linear correlation (P < 0.05) for gene dosage and gene expression. Copy number loss at 8p, a CNA associated with adenocarcinoma and poor prognosis, was observed in >50% of the tumor samples and demonstrated a significant linear correlation for gene dosage and gene expression for two potential tumor suppressor genes, MTUS1 (8p22) and PPP2CB (8p12). The results from our integration analysis illustrate the complex relationship between genomic alterations and gene expression in colon cancer.
Collapse
Affiliation(s)
- Lenora W M Loo
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|