1
|
Esposito L, Donnarumma F, Ruggiero A, Leone S, Vitagliano L, Picone D. Structure, stability and aggregation propensity of a Ribonuclease A-Onconase chimera. Int J Biol Macromol 2019; 133:1125-1133. [PMID: 31026530 DOI: 10.1016/j.ijbiomac.2019.04.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/10/2019] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
Structural roles of loop regions are frequently overlooked in proteins. Nevertheless, they may be key players in the definition of protein topology and in the self-assembly processes occurring through domain swapping. We here investigate the effects on structure and stability of replacing the loop connecting the last two β-strands of RNase A with the corresponding region of the more thermostable Onconase. The crystal structure of this chimeric variant (RNaseA-ONC) shows that its terminal loop size better adheres to the topological rules for the design of stabilized proteins, proposed by Baker and coworkers [43]. Indeed, RNaseA-ONC displays a thermal stability close to that of RNase A, despite the lack of Pro at position 114, which, due to its propensity to favor a cis peptide bond, has been identified as an important stabilizing factor of the native protein. Accordingly, RNaseA-ONC is significantly more stable than RNase A variants lacking Pro114; RNaseA-ONC also displays a higher propensity to form oligomers in native conditions when compared to either RNase A or Onconase. This finding demonstrates that modifications of terminal loops should to be carefully controlled in terms of size and sequence to avoid unwanted and/or potentially harmful aggregation processes.
Collapse
Affiliation(s)
- Luciana Esposito
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Federica Donnarumma
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Alessia Ruggiero
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | - Luigi Vitagliano
- CNR Istituto di Biostrutture e Bioimmagini, Via Mezzocannone 16, I-80134 Napoli, Italy.
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy.
| |
Collapse
|
2
|
Spadaccini R, Leone S, Rega MF, Richter C, Picone D. Influence of pH on the structure and stability of the sweet protein MNEI. FEBS Lett 2016; 590:3681-3689. [DOI: 10.1002/1873-3468.12437] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Roberta Spadaccini
- Dipartimento di Scienze e Tecnologie; Università del Sannio; Benevento Italy
| | - Serena Leone
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Naples Italy
| | | | | | - Delia Picone
- Dipartimento di Scienze Chimiche; Università di Napoli Federico II; Naples Italy
| |
Collapse
|
3
|
Tuppo L, Spadaccini R, Alessandri C, Wienk H, Boelens R, Giangrieco I, Tamburrini M, Mari A, Picone D, Ciardiello MA. Structure, stability, and IgE binding of the peach allergen Peamaclein (Pru p 7). Biopolymers 2016; 102:416-25. [PMID: 25130872 DOI: 10.1002/bip.22530] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/06/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022]
Abstract
Knowledge of the structural properties of allergenic proteins is a necessary prerequisite to better understand the molecular bases of their action, and also to design targeted structural/functional modifications. Peamaclein is a recently identified 7 kDa peach allergen that has been associated with severe allergic reactions in sensitive subjects. This protein represents the first component of a new allergen family, which has no 3D structure available yet. Here, we report the first experimental data on the 3D-structure of Peamaclein. Almost 75% of the backbone resonances, including two helical stretches in the N-terminal region, and four out of six cysteine pairs have been assigned by 2D-NMR using a natural protein sample. Simulated gastrointestinal digestion experiments have highlighted that Peamaclein is even more resistant to digestion than the peach major allergen Pru p 3. Only the heat-denatured protein becomes sensitive to intestinal proteases. Similar to Pru p 3, Peamaclein keeps its native 3D-structure up to 90°C, but it becomes unfolded at temperatures of 100-120°C. Heat denaturation affects the immunological properties of both peach allergens, which lose at least partially their IgE-binding epitopes. In conclusion, the data collected in this study provide a first set of information on the molecular properties of Peamaclein. Future studies could lead to the possible use of the denatured form of this protein as a vaccine, and of the inclusion of cooked peach in the diet of subjects allergic to Peamaclein.
Collapse
Affiliation(s)
- Lisa Tuppo
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, I-80131, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Picone D, Donnarumma F, Ferraro G, Russo Krauss I, Fagagnini A, Gotte G, Merlino A. Platinated oligomers of bovine pancreatic ribonuclease: Structure and stability. J Inorg Biochem 2015; 146:37-43. [PMID: 25756333 DOI: 10.1016/j.jinorgbio.2015.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/29/2022]
Abstract
The reaction between cis-diamminedichloroplatinum(II) (CDDP), cisplatin, a common anticancer drug, and bovine pancreatic ribonuclease (RNase A), induces extensive protein aggregation, leading to the formation of one dimer, one trimer and higher oligomers whose yields depend on cisplatin/protein ratio. Structural and functional properties of the purified platinated species, together with their spontaneous dissociation and thermally induced denaturation, have been characterized. Platinated species preserve a significant, although reduced, ribonuclease activity. The high resistance of the dimers against dissociation and the different thermal unfolding profiles suggest a quaternary structure different from those of the well-known swapped dimers of RNase A.
Collapse
Affiliation(s)
- Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.
| | - Federica Donnarumma
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Andrea Fagagnini
- Department of Life and Reproduction Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Giovanni Gotte
- Department of Life and Reproduction Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, Via Mezzocannone 16, I-80134 Naples, Italy.
| |
Collapse
|
5
|
Spadaccini R, Ercole C, Graziano G, Wechselberger R, Boelens R, Picone D. Mechanism of 3D domain swapping in bovine seminal ribonuclease. FEBS J 2014; 281:842-50. [PMID: 24616921 PMCID: PMC7164040 DOI: 10.1111/febs.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
3D domain swapping (3D‐DS) is a complex protein aggregation process for which no unique mechanism exists. We report an analysis of 3D‐DS in bovine seminal ribonuclease, a homodimeric protein whose subunits are linked by two disulfide bridges, based on NMR and biochemical studies. The presence of the covalent bonds between the subunits stabilizes the unswapped dimer, and allows distinct evaluation of the structural and dynamic effects of the swapping with respect to the dimerization process. In comparison with the monomeric subunit, which, in solution has a compact structure without any propensity for local unfolding, both swapped and unswapped dimers show increased flexibility. NMR analysis, together with urea denaturation and hydrogen–deuterium exchange data, indicates that the two dimers have increased conformational fluctuations. Furthermore, we found that the rate‐limiting step of both the swapping and unswapping pathways is the detachment of the N‐terminal helices from the monomers. These results suggest a new general mechanism in which a dimeric intermediate could facilitate 3D‐DS in globular proteins. Structured digital abstract http://www.uniprot.org/uniprot/P00669 and http://www.uniprot.org/uniprot/P00669 http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0407 by http://www.ebi.ac.uk/ontology-lookup/?termId=MI:0077 (http://www.ebi.ac.uk/intact/interaction/EBI-8870415)
Collapse
|
6
|
Fiorini C, Gotte G, Donnarumma F, Picone D, Donadelli M. Bovine seminal ribonuclease triggers Beclin1-mediated autophagic cell death in pancreatic cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:976-84. [PMID: 24487065 DOI: 10.1016/j.bbamcr.2014.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 01/24/2023]
Abstract
Among the large number of variants belonging to the pancreatic-type secretory ribonuclease (RNase) superfamily, bovine pancreatic ribonuclease (RNase A) is the proto-type and bovine seminal RNase (BS-RNase) represents the unique natively dimeric member. In the present manuscript, we evaluate the anti-tumoral property of these RNases in pancreatic adenocarcinoma cell lines and in nontumorigenic cells as normal control. We demonstrate that BS-RNase stimulates a strong anti-proliferative and pro-apoptotic effect in cancer cells, while RNase A is largely ineffective. Notably, we reveal for the first time that BS-RNase triggers Beclin1-mediated autophagic cancer cell death, providing evidences that high proliferation rate of cancer cells may render them more susceptible to autophagy by BS-RNase treatment. Notably, to improve the autophagic response of cancer cells to BS-RNase we used two different strategies: the more basic (as compared to WT enzyme) G38K mutant of BS-RNase, known to interact more strongly than wt with the acidic membrane of cancer cells, or BS-RNase oligomerization (tetramerization or formation of larger oligomers). Both mutant BS-RNase and BS-RNase oligomers potentiated autophagic cell death as compared to WT native dimer of BS-RNase, while the various RNase A oligomers remained completely ineffective. Altogether, our results shed more light on the mechanisms lying at the basis of BS-RNase antiproliferative effect in cancer cells, and support its potential use to develop new anti-cancer strategies.
Collapse
Affiliation(s)
- Claudia Fiorini
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy
| | - Giovanni Gotte
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| | - Federica Donnarumma
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Massimo Donadelli
- Department of Life and Reproduction Sciences, Biochemistry Section, University of Verona, Verona, Italy.
| |
Collapse
|
7
|
Bernini A, Henrici De Angelis L, Morandi E, Spiga O, Santucci A, Assfalg M, Molinari H, Pillozzi S, Arcangeli A, Niccolai N. Searching for protein binding sites from Molecular Dynamics simulations and paramagnetic fragment-based NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:561-6. [PMID: 24373878 DOI: 10.1016/j.bbapap.2013.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 11/30/2022]
Abstract
Hotspot delineation on protein surfaces represents a fundamental step for targeting protein-protein interfaces. Disruptors of protein-protein interactions can be designed provided that the sterical features of binding pockets, including the transient ones, can be defined. Molecular Dynamics, MD, simulations have been used as a reliable framework for identifying transient pocket openings on the protein surface. Accessible surface area and intramolecular H-bond involvement of protein backbone amides are proposed as descriptors for characterizing binding pocket occurrence and evolution along MD trajectories. TEMPOL induced paramagnetic perturbations on (1)H-(15)N HSQC signals of protein backbone amides have been analyzed as a fragment-based search for surface hotspots, in order to validate MD predicted pockets. This procedure has been applied to CXCL12, a small chemokine responsible for tumor progression and proliferation. From combined analysis of MD data and paramagnetic profiles, two CXCL12 sites suitable for the binding of small molecules were identified. One of these sites is the already well characterized CXCL12 region involved in the binding to CXCR4 receptor. The other one is a transient pocket predicted by Molecular Dynamics simulations, which could not be observed from static analysis of CXCL12 PDB structures. The present results indicate how TEMPOL, instrumental in identifying this transient pocket, can be a powerful tool to delineate minor conformations which can be highly relevant in dynamic discovery of antitumoral drugs.
Collapse
Affiliation(s)
- Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | | - Edoardo Morandi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; SienaBioGrafiX Srl, 53100 Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | | | - Serena Pillozzi
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50134 Florence, Italy
| | - Annarosa Arcangeli
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50134 Florence, Italy
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy; SienaBioGrafiX Srl, 53100 Siena, Italy.
| |
Collapse
|
8
|
The multiple forms of bovine seminal ribonuclease: structure and stability of a C-terminal swapped dimer. FEBS Lett 2013; 587:3755-62. [PMID: 24140346 DOI: 10.1016/j.febslet.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/07/2013] [Indexed: 11/20/2022]
Abstract
Bovine seminal ribonuclease (BS-RNase) acquires an interesting anti-tumor activity associated with the swapping on the N-terminal. The first direct experimental evidence on the formation of a C-terminal swapped dimer (C-dimer) obtained from the monomeric derivative of BS-RNase, although under non-native conditions, is here reported. The X-ray model of this dimer reveals a quaternary structure different from that of the C-dimer of RNase A, due to the presence of three mutations in the hinge peptide 111-116. The mutations increase the hinge peptide flexibility and decrease the stability of the C-dimer against dissociation. The biological implications of the structural data are also discussed.
Collapse
|
9
|
Structural and functional relationships of natural and artificial dimeric bovine ribonucleases: new scaffolds for potential antitumor drugs. FEBS Lett 2013; 587:3601-8. [PMID: 24113657 DOI: 10.1016/j.febslet.2013.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 11/20/2022]
Abstract
Protein aggregation via 3D domain swapping is a complex mechanism which can lead to the acquisition of new biological, benign or also malignant functions, such as amyloid deposits. In this context, RNase A represents a fascinating model system, since by dislocating different polypeptide chain regions, it forms many diverse oligomers. No other protein displays such a large number of different quaternary structures. Here we report a comparative structural analysis between natural and artificial RNase A dimers and bovine seminal ribonuclease, a natively dimeric RNase with antitumor activity, with the aim to design RNase A derivatives with improved pharmacological potential.
Collapse
|
10
|
Gagné D, Doucet N. Structural and functional importance of local and global conformational fluctuations in the RNase A superfamily. FEBS J 2013; 280:5596-607. [PMID: 23763751 DOI: 10.1111/febs.12371] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between protein structure and flexibility is of utmost importance for deciphering the tremendous rates of reactions catalyzed by enzyme biocatalysts. It has been postulated that protein homologs have evolved similar dynamic fluctuations to promote catalytic function, a property that would presumably be encoded in their structural fold. Using one of the best-characterized enzyme systems of the past century, we explore this hypothesis by comparing the numerous and diverse flexibility reports available for a number of structural and functional homologs of the pancreatic-like RNase A superfamily. Using examples from the literature and from our own work, we cover recent and historical evidence pertaining to the highly dynamic nature of this important structural fold, as well as the presumed importance of local and global concerted motions on the ribonucleolytic function. This minireview does not pretend to cover the overwhelming RNase A literature in a comprehensive manner; rather, efforts have been made to focus on the characterization of multiple timescale motions observed in the free and/or ligand-bound structural homologs as they proceed along the reaction coordinates. Although each characterized enzyme of this architectural fold shows unique motional features on a local scale, accumulating evidence from X-ray crystallography, NMR spectroscopy and molecular dynamics simulations suggests that global dynamic fluctuations, such as the functionally relevant hinge-bending motion observed in the prototypical RNase A, are shared between homologs of the pancreatic-like RNase superfamily. These observations support the hypothesis that analogous dynamic residue clusters are evolutionarily conserved among structural and functional homologs catalyzing similar enzymatic reactions.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | | |
Collapse
|
11
|
Shirshikov FV, Cherepnev GV, Ilinskaya ON, Kalacheva NV. A hydrophobic segment of some cytotoxic ribonucleases. Med Hypotheses 2013; 81:328-34. [PMID: 23679997 DOI: 10.1016/j.mehy.2013.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/20/2022]
Abstract
The exact mechanism by which cytotoxic ribonucleases reach the cytosol of tumor cells remains unclear. The interaction of ribonucleases with a lipid bilayer is involved in the translocation of ribonucleases across the endosomal membrane. Here, we aimed to study the hydropathy character of toxic antitumor ribonucleases (bovine seminal ribonuclease and binase) and two non-toxic ribonucleases (bovine pancreatic ribonuclease and human pancreatic ribonuclease) by sliding-window hydrophobicity analysis. Comparative hydropathy plot analysis of the non-toxic pancreatic ribonucleases and their toxic variants was also performed. The data obtained indicate that some cytotoxic ribonucleases have a hydrophobic segment, which is sterically available for the hydrophobic interaction with a tumor cell membrane and endosomal membrane. After dissociation, subunits of dimeric ribonucleases are probably capable of thermodynamically favorable interaction with the interfacial region of a lipid bilayer. Remarkably the hydrophobic segment is not identified in the amino acid sequences of non-toxic ribonucleases. The paper describes the hydrophobic properties of toxic RNases that are essential for both the model of a lipid-protein interaction and the cytotoxicity mechanism unraveling.
Collapse
Affiliation(s)
- Fedor V Shirshikov
- Department of Microbiology, Kazan Volga Region Federal University, Kazan, Tatarstan, Russia.
| | | | | | | |
Collapse
|