1
|
Laidlaw KME, Bisinski DD, Shashkova S, Paine KM, Veillon MA, Leake MC, MacDonald C. A glucose-starvation response governs endocytic trafficking and eisosomal retention of surface cargoes in budding yeast. J Cell Sci 2021; 134:jcs257733. [PMID: 33443082 PMCID: PMC7860119 DOI: 10.1242/jcs.257733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Eukaryotic cells adapt their metabolism to the extracellular environment. Downregulation of surface cargo proteins in response to nutrient stress reduces the burden of anabolic processes whilst elevating catabolic production in the lysosome. We show that glucose starvation in yeast triggers a transcriptional response that increases internalisation from the plasma membrane. Nuclear export of the Mig1 transcriptional repressor in response to glucose starvation increases levels of the Yap1801 and Yap1802 clathrin adaptors, which is sufficient to increase cargo internalisation. Beyond this, we show that glucose starvation results in Mig1-independent transcriptional upregulation of various eisosomal factors. These factors serve to sequester a portion of nutrient transporters at existing eisosomes, through the presence of Ygr130c and biochemical and biophysical changes in Pil1, allowing cells to persist throughout the starvation period and maximise nutrient uptake upon return to replete conditions. This provides a physiological benefit for cells to rapidly recover from glucose starvation. Collectively, this remodelling of the surface protein landscape during glucose starvation calibrates metabolism to available nutrients.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kamilla M E Laidlaw
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Daniel D Bisinski
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Sviatlana Shashkova
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Katherine M Paine
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Malaury A Veillon
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| | - Mark C Leake
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology, University of York, York, UK
| |
Collapse
|
2
|
Simulation of Cellular Energy Restriction in Quiescence (ERiQ)-A Theoretical Model for Aging. BIOLOGY 2017; 6:biology6040044. [PMID: 29231906 PMCID: PMC5745449 DOI: 10.3390/biology6040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Cellular responses to energy stress involve activation of pro-survival signaling nodes, compensation in regulatory pathways and adaptations in organelle function. Specifically, energy restriction in quiescent cells (ERiQ) through energetic perturbations causes adaptive changes in response to reduced ATP, NAD+ and NADP levels in a regulatory network spanned by AKT, NF-κB, p53 and mTOR. Based on the experimental ERiQ platform, we have constructed a minimalistic theoretical model consisting of feedback motifs that enable investigation of stress-signaling pathways. The computer simulations reveal responses to acute energetic perturbations, promoting cellular survival and recovery to homeostasis. We speculated that the very same stress mechanisms are activated during aging in post-mitotic cells. To test this hypothesis, we modified the model to be deficient in protein damage clearance and demonstrate the formation of energy stress. Contrasting the network’s pro-survival role in acute energetic challenges, conflicting responses in aging disrupt mitochondrial maintenance and contribute to a lockstep progression of decline when chronically activated. The model was analyzed by a local sensitivity analysis with respect to lifespan and makes predictions consistent with inhibitory and gain-of-function experiments in aging.
Collapse
|
3
|
Arlia-Ciommo A, Leonov A, Piano A, Svistkova V, Titorenko VI. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. MICROBIAL CELL 2014; 1:163-178. [PMID: 28357241 PMCID: PMC5354559 DOI: 10.15698/mic2014.06.152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A body of evidence supports the view that the signaling pathways governing
cellular aging - as well as mechanisms of their modulation by
longevity-extending genetic, dietary and pharmacological interventions - are
conserved across species. The scope of this review is to critically analyze
recent advances in our understanding of cell-autonomous mechanisms of
chronological aging in the budding yeast Saccharomyces
cerevisiae. Based on our analysis, we propose a concept of a
biomolecular network underlying the chronology of cellular aging in yeast. The
concept posits that such network progresses through a series of lifespan
checkpoints. At each of these checkpoints, the intracellular concentrations of
some key intermediates and products of certain metabolic pathways - as well as
the rates of coordinated flow of such metabolites within an intricate network of
intercompartmental communications - are monitored by some checkpoint-specific
ʺmaster regulatorʺ proteins. The concept envisions that a synergistic action of
these master regulator proteins at certain early-life and late-life checkpoints
modulates the rates and efficiencies of progression of such processes as cell
metabolism, growth, proliferation, stress resistance, macromolecular
homeostasis, survival and death. The concept predicts that, by modulating these
vital cellular processes throughout lifespan (i.e., prior to an arrest of cell
growth and division, and following such arrest), the checkpoint-specific master
regulator proteins orchestrate the development and maintenance of a pro- or
anti-aging cellular pattern and, thus, define longevity of chronologically aging
yeast.
Collapse
Affiliation(s)
| | - Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Veronika Svistkova
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
4
|
Yucel EB, Eraslan S, Ulgen KO. The impact of medium acidity on the chronological life span ofSaccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions. FEBS J 2014; 281:1281-303. [DOI: 10.1111/febs.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Esra B. Yucel
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| |
Collapse
|
5
|
Csermely P, Korcsmáros T, Kiss HJM, London G, Nussinov R. Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review. Pharmacol Ther 2013; 138:333-408. [PMID: 23384594 PMCID: PMC3647006 DOI: 10.1016/j.pharmthera.2013.01.016] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 02/02/2023]
Abstract
Despite considerable progress in genome- and proteome-based high-throughput screening methods and in rational drug design, the increase in approved drugs in the past decade did not match the increase of drug development costs. Network description and analysis not only give a systems-level understanding of drug action and disease complexity, but can also help to improve the efficiency of drug design. We give a comprehensive assessment of the analytical tools of network topology and dynamics. The state-of-the-art use of chemical similarity, protein structure, protein-protein interaction, signaling, genetic interaction and metabolic networks in the discovery of drug targets is summarized. We propose that network targeting follows two basic strategies. The "central hit strategy" selectively targets central nodes/edges of the flexible networks of infectious agents or cancer cells to kill them. The "network influence strategy" works against other diseases, where an efficient reconfiguration of rigid networks needs to be achieved by targeting the neighbors of central nodes/edges. It is shown how network techniques can help in the identification of single-target, edgetic, multi-target and allo-network drug target candidates. We review the recent boom in network methods helping hit identification, lead selection optimizing drug efficacy, as well as minimizing side-effects and drug toxicity. Successful network-based drug development strategies are shown through the examples of infections, cancer, metabolic diseases, neurodegenerative diseases and aging. Summarizing >1200 references we suggest an optimized protocol of network-aided drug development, and provide a list of systems-level hallmarks of drug quality. Finally, we highlight network-related drug development trends helping to achieve these hallmarks by a cohesive, global approach.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary.
| | | | | | | | | |
Collapse
|
6
|
Ohtsuka H, Ogawa S, Kawamura H, Sakai E, Ichinose K, Murakami H, Aiba H. Screening for long-lived genes identifies Oga1, a guanine-quadruplex associated protein that affects the chronological lifespan of the fission yeast Schizosaccharomyces pombe. Mol Genet Genomics 2013; 288:285-95. [DOI: 10.1007/s00438-013-0748-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/19/2013] [Indexed: 12/31/2022]
|
7
|
Kriete A. Robustness and aging--a systems-level perspective. Biosystems 2013; 112:37-48. [PMID: 23562399 DOI: 10.1016/j.biosystems.2013.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/24/2022]
Abstract
The theory of robustness describes a system level property of evolutionary systems, which predicts tradeoffs of great interest for the systems biology of aging, such as accumulation of non-heritable damage, occurrence of fragilities and limitations in performance, optimized allocation of restricted resources and confined redundancies. According to the robustness paradigm cells and organisms evolved into a state of highly optimized tolerance (HOT), which provides robustness to common perturbations, but causes tradeoffs generally characterized as "robust yet fragile". This raises the question whether the ultimate cause of aging is more than a lack of adaptation, but an inherent fragility of complex evolutionary systems. Since robustness connects to evolutionary designs, consideration of this theory provides a deeper connection between evolutionary aspects of aging, mathematical models and experimental data. In this review several mechanisms influential for aging are re-evaluated in support of robustness tradeoffs. This includes asymmetric cell division improving performance and specialization with limited capacities to prevent and repair age-related damage, as well as feedback control mechanisms optimized to respond to acute stressors, but unable to halt nor revert aging. Improvement in robustness by increasing efficiencies through cellular redundancies in larger organisms alleviates some of the damaging effects of cellular specialization, which can be expressed in allometric relationships. The introduction of the robustness paradigm offers unique insights for aging research and provides novel opportunities for systems biology endeavors.
Collapse
Affiliation(s)
- Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone Research Center, 3141 Chestnut St., Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VI. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle 2012; 11:3443-62. [PMID: 22894934 DOI: 10.4161/cc.21754] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence. Here, we investigate how LCA influences longevity and several longevity-defining cellular processes in chronologically aging yeast if added to growth medium at different periods of the lifespan. We found that LCA can extend longevity of yeast under CR (caloric restriction) conditions only if added at either of two lifespan periods. One of them includes logarithmic and diauxic growth phases, whereas the other period exists in early stationary phase. Our findings suggest a mechanism linking the ability of LCA to increase the lifespan of CR yeast only if added at either of the two periods to its differential effects on various longevity-defining processes. In this mechanism, LCA controls these processes at three checkpoints that exist in logarithmic/diauxic, post-diauxic and early stationary phases. We therefore hypothesize that a biomolecular longevity network progresses through a series of checkpoints, at each of which (1) genetic, dietary and pharmacological anti-aging interventions modulate a distinct set of longevity-defining processes comprising the network; and (2) checkpoint-specific master regulators monitor and govern the functional states of these processes.
Collapse
|