1
|
Abstract
End-stage organ failure can result from various preexisting conditions and occurs in patients of all ages, and organ transplantation remains its only treatment. In recent years, extensive research has been done to explore the possibility of transplanting animal organs into humans, a process referred to as xenotransplantation. Due to their matching organ sizes and other anatomical and physiological similarities with humans, pigs are the preferred organ donor species. Organ rejection due to host immune response and possible interspecies infectious pathogen transmission have been the biggest hurdles to xenotransplantation's success. Use of genetically engineered pigs as tissue and organ donors for xenotransplantation has helped to address these hurdles. Although several preclinical trials have been conducted in nonhuman primates, some barriers still exist and demand further efforts. This review focuses on the recent advances and remaining challenges in organ and tissue xenotransplantation.
Collapse
Affiliation(s)
- Asghar Ali
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany; , ,
- Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, Munich, Germany
| |
Collapse
|
2
|
The neoepitope of the complement C5b-9 Membrane Attack Complex is formed by proximity of adjacent ancillary regions of C9. Commun Biol 2023; 6:42. [PMID: 36639734 PMCID: PMC9838529 DOI: 10.1038/s42003-023-04431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The Membrane Attack Complex (MAC) is responsible for forming large β-barrel channels in the membranes of pathogens, such as gram-negative bacteria. Off-target MAC assembly on endogenous tissue is associated with inflammatory diseases and cancer. Accordingly, a human C5b-9 specific antibody, aE11, has been developed that detects a neoepitope exposed in C9 when it is incorporated into the C5b-9 complex, but not present in the plasma native C9. For nearly four decades aE11 has been routinely used to study complement, MAC-related inflammation, and pathophysiology. However, the identity of C9 neoepitope remains unknown. Here, we determined the cryo-EM structure of aE11 in complex with polyC9 at 3.2 Å resolution. The aE11 binding site is formed by two separate surfaces of the oligomeric C9 periphery and is therefore a discontinuous quaternary epitope. These surfaces are contributed by portions of the adjacent TSP1, LDLRA, and MACPF domains of two neighbouring C9 protomers. By substituting key antibody interacting residues to the murine orthologue, we validated the unusual binding modality of aE11. Furthermore, aE11 can recognise a partial epitope in purified monomeric C9 in vitro, albeit weakly. Taken together, our results reveal the structural basis for MAC recognition by aE11.
Collapse
|
3
|
Petitpas K, Habibabady Z, Ritchie V, Connolly MR, Burdorf L, Qin W, Kan Y, Layer JV, Crabtree JN, Youd ME, Westlin WF, Magnani DM, Pierson RN, Azimzadeh AM. Genetic modifications designed for xenotransplantation attenuate sialoadhesin-dependent binding of human erythrocytes to porcine macrophages. Xenotransplantation 2022; 29:e12780. [PMID: 36125388 PMCID: PMC10152518 DOI: 10.1111/xen.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 01/15/2023]
Abstract
The phenomenon of diminishing hematocrit after in vivo liver and lung xenotransplantation and during ex vivo liver xenoperfusion has largely been attributed to action by resident liver porcine macrophages, which bind and destroy human erythrocytes. Porcine sialoadhesin (siglec-1) was implicated previously in this interaction. This study examines the effect of porcine genetic modifications, including knockout of the CMAH gene responsible for expression of Neu5Gc sialic acid, on the adhesion of human red blood cells (RBCs) to porcine macrophages. Wild-type (WT) porcine macrophages and macrophages from several strains of genetically engineered pigs, including CMAH gene knockout and several human transgenes (TKO+hTg), were incubated with human RBCs and "rosettes" (≥3 erythrocytes bound to one macrophage) were quantified by microscopy. Our results show that TKO+hTg genetic modifications significantly reduced rosette formation. The monoclonal antibody 1F1, which blocks porcine sialoadhesin, significantly reduced rosette formation by WT and TKO+hTg macrophages compared with an isotype control antibody. Further, desialation of human RBCs with neuraminidase before addition to WT or TKO+hTg macrophages resulted in near-complete abrogation of rosette formation, to a level not significantly different from porcine RBC rosette formation on porcine macrophages. These observations are consistent with rosette formation being mediated by binding of sialic acid on human RBCs to sialoadhesin on porcine macrophages. In conclusion, the data predict that TKO+hTg genetic modifications, coupled with targeting of porcine sialoadhesin by the 1F1 mAb, will attenuate erythrocyte sequestration and anemia during ex vivo xenoperfusion and following in vivo liver, lung, and potentially other organ xenotransplantation.
Collapse
Affiliation(s)
- Kaitlyn Petitpas
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | - Zahra Habibabady
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | - Veronica Ritchie
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | | | - Lars Burdorf
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | - Wenning Qin
- eGenesis Inc., Cambridge, Massachusetts, USA
| | - Yinan Kan
- eGenesis Inc., Cambridge, Massachusetts, USA
| | | | | | | | | | | | - Richard N Pierson
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | - Agnes M Azimzadeh
- MGH, Center for Transplantation Sciences, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
5
|
Habibabady ZA, Sendil S, Ellett F, Pollok F, Elias GF, French BM, Sun W, Braileanu G, Burdorf L, Irimia D, Pierson RN, Azimzadeh AM. Human erythrocyte fragmentation during ex-vivo pig organ perfusion. Xenotransplantation 2022; 29:e12729. [PMID: 35112383 PMCID: PMC8995366 DOI: 10.1111/xen.12729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 01/25/2023]
Abstract
Platelet sequestration is a common process during organ reperfusion after transplantation. However, instead of lower platelet counts, when using traditional hemocytometers and light microscopy, we observed physiologically implausible platelet counts in the course of ex-vivo lung and liver xenograft organ perfusion studies. We employed conventional flow cytometry (FC) and imaging FC (AMINS ImageStream X) to investigate the findings and found platelet-sized fragments in the circulation that are mainly derived from red blood cell membranes. We speculate that this erythrocyte fragmentation contributes to anemia during in-vivo organ xenotransplant.
Collapse
Affiliation(s)
- Zahra A. Habibabady
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA
| | - Selin Sendil
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Felix Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard School of Medicine, and Shriners Burns Hospital, Boston, MA
| | - Franziska Pollok
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA,Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela F. Elias
- Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA
| | - Beth M. French
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Gheorghe Braileanu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Lars Burdorf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA
| | - Daniel Irimia
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard School of Medicine, and Shriners Burns Hospital, Boston, MA
| | - Richard N. Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA
| | - Agnes M. Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Center for Transplantation Sciences and Department of Surgery, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA
| |
Collapse
|
6
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Burcin Ekser,
| |
Collapse
|
7
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Connolly MR, Kuravi K, Burdorf L, Sorrells L, Morrill B, Cimeno A, Vaught T, Dandro A, Sendil S, Habibabady ZA, Monahan J, Li T, LaMattina J, Eyestone W, Ayares D, Phelps C, Azimzadeh AM, Pierson RN. Humanized von Willebrand factor reduces platelet sequestration in ex vivo and in vivo xenotransplant models. Xenotransplantation 2021; 28:e12712. [PMID: 34657336 PMCID: PMC10266522 DOI: 10.1111/xen.12712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
The transplantation of organs across species offers the potential to solve the shortage of human organs. While activation of human platelets by human von Willebrand factor (vWF) requires vWF activation by shear stress, contact between human platelets and porcine vWF (pvWF) leads to spontaneous platelet adhesion and activation. This non-physiologic interaction may contribute to the thrombocytopenia and coagulation pathway dysregulation often associated with xenotransplantation of pig organs in nonhuman primates. Pigs genetically modified to decrease antibody and complement-dependent rejection (GTKO.hCD46) were engineered to express humanized pvWF (h*pvWF) by replacing a pvWF gene region that encodes the glycoprotein Ib-binding site with human cDNA orthologs. This modification corrected for non-physiologic human platelet aggregation on exposure to pig plasma, while preserving in vitro platelet activation by collagen. Organs from pigs with h*pvWF demonstrated reduced platelet sequestration during lung (p ≤ .01) and liver (p ≤ .038 within 4 h) perfusion ex vivo with human blood and after pig-to-baboon lung transplantation (p ≤ .007). Residual platelet sequestration and activation were not prevented by the blockade of canonical platelet adhesion pathways. The h*pvWF modification prevents physiologically inappropriate activation of human or baboon platelets by porcine vWF, addressing one cause of the thrombocytopenia and platelet activation observed with xenotransplantation.
Collapse
Affiliation(s)
- Margaret R Connolly
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
| | | | - Lars Burdorf
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Arielle Cimeno
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Selin Sendil
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zahra A Habibabady
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Tiezheng Li
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John LaMattina
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Agnes M Azimzadeh
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard N Pierson
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, Massachusetts, USA
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
|
10
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.
AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research.
METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.
RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.
CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
11
|
|
12
|
Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress. Transplantation 2018; 102:1050-1058. [PMID: 29538262 PMCID: PMC7228622 DOI: 10.1097/tp.0000000000002171] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023]
Abstract
There has recently been considerable progress in the results of pig organ transplantation in nonhuman primates, largely associated with the availability of (i) pigs genetically engineered to overcome coagulation dysregulation, and (ii) novel immunosuppressive agents. The barriers of thrombotic microangiopathy and/or consumptive coagulation were believed to be associated with (i) activation of the graft vascular endothelial cells by a low level of antipig antibody binding and/or complement deposition and/or innate immune cell activity, and (ii) molecular incompatibilities between the nonhuman primate and pig coagulation-anticoagulation systems. The introduction of a human coagulation-regulatory transgene, for example, thrombomodulin, endothelial protein C receptor, into the pig vascular endothelial cells has contributed to preventing a procoagulant state from developing, resulting in a considerable increase in graft survival. In the heterotopic (non-life-supporting) heart transplant model, graft survival has increased from a maximum of 179 days in 2005 to 945 days. After life-supporting kidney transplantation, survival has been extended from 90 days in 2004 to 499 days. In view of the more complex coagulation dysfunction seen after pig liver and, particularly, lung transplantation, progress has been less dramatic, but the maximum survival of a pig liver has been increased from 7 days in 2010 to 29 days, and of a pig lung from 4 days in 2007 to 9 days. There is a realistic prospect that the transplantation of a kidney or heart, in combination with a conventional immunosuppressive regimen, will enable long-term recipient survival.
Collapse
Affiliation(s)
- Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| |
Collapse
|
13
|
Zhang Z, Li X, Zhang H, Zhang X, Chen H, Pan D, Ji H, Zhou L, Ling J, Zhou J, Yue S, Wang D, Yang Z, Tao K, Dou K. Cytokine profiles in Tibetan macaques following α-1,3-galactosyltransferase-knockout pig liver xenotransplantation. Xenotransplantation 2017; 24. [PMID: 28714241 DOI: 10.1111/xen.12321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/08/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pig-to-nonhuman primate orthotopic liver xenotransplantation is often accompanied by thrombocytopenia and coagulation disorders. Furthermore, the release of cytokines can trigger cascade reactions of coagulation and immune attacks within transplant recipients. To better elucidate the process of inflammation in liver xenograft recipients, we utilized a modified heterotopic auxiliary liver xenotransplantation model for xeno-immunological research. We studied the cytokine profiles and the relationship between cytokine levels and xenograft function after liver xenotransplantation. METHODS Appropriate donor and recipient matches were screened using complement-dependent cytotoxicity assays. Donor liver grafts from α1,3-galactosyltransferase gene-knockout (GTKO) pigs or GTKO pigs additionally transgenic for human CD47 (GTKO/CD47) were transplanted into Tibetan macaques via two different heterotrophic auxiliary liver xenotransplantation procedures. The cytokine profiles, hepatic function, and coagulation parameters were monitored during the clinical course of xenotransplantation. RESULTS Xenograft blood flow was stable in recipients after heterotopic auxiliary transplantation. A Doppler examination indicated that the blood flow speed was faster in the hepatic artery (HA) and hepatic vein (HV) of xenografts subjected to the modified Sur II (HA-abdominal aorta+HV-inferior vena cava) procedure than in those subjected to our previously reported Sur I (HA-splenic artery+HV-left renal vein) procedure. Tibetan macaques receiving liver xenografts did not exhibit severe coagulation disorders or immune rejection. Although the recipients did suffer from a rapid loss of platelets, this loss was mild. In blood samples dynamically collected after xenotransplantation (post-Tx), dramatic increases in the levels of monocyte chemoattractant protein 1, interleukin (IL)-8, granulocyte-macrophage colony-stimulating factor, IL-6, and interferon gamma-induced protein 10 were observed at 1 hour post-Tx, even under immunosuppression. We further confirmed that the elevation in individual cytokine levels was correlated with the onset of graft damage. Finally, the release of cytokines might contribute to leukocyte infiltration in the xenografts. CONCLUSION Here, we established a modified auxiliary liver xenotransplantation model resulting in near-normal hepatic function. Inflammatory cytokines might contribute to early damage in liver xenografts. Controlling the systemic inflammatory response of recipients might prevent early post-Tx graft dysfunction.
Collapse
Affiliation(s)
- Zhuochao Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Chen
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dengke Pan
- Institute of Animal Science of Chinese Agriculture Sciences Academy, Beijing, China
| | - Hongchen Ji
- Department of Hepatobiliary Surgery, The Chinese PLA General Hospital, Beijing, China
| | - Liang Zhou
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Ling
- Laboratory Animal Institute, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingshi Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuqiang Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Desheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
15
|
Iwase H, Hara H, Ezzelarab M, Li T, Zhang Z, Gao B, Liu H, Long C, Wang Y, Cassano A, Klein E, Phelps C, Ayares D, Humar A, Wijkstrom M, Cooper DKC. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 2017; 24:10.1111/xen.12293. [PMID: 28303661 PMCID: PMC5397334 DOI: 10.1111/xen.12293] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/22/2016] [Accepted: 01/26/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetically engineered pigs could provide a source of kidneys for clinical transplantation. The two longest kidney graft survivals reported to date have been 136 and 310 days, but graft survival >30 days has been unusual until recently. METHODS Donor pigs (n=4) were on an α1,3-galactosyltransferase gene-knockout (GTKO)/human complement regulatory protein (CD46) background (GTKO/CD46). In addition, the pigs were transgenic for at least one human coagulation regulatory protein. Two baboons received a kidney from a six-gene pig (GroupA) and two from a three-gene pig (GroupB). Immunosuppressive therapy was identical in all four cases and consisted of anti-thymoglobulin (ATG)+anti-CD20mAb (induction) and anti-CD40mAb+rapamycin+corticosteroids (maintenance). Anti-TNF-α and anti-IL-6R mAbs were administered to reduce the inflammatory response. Baboons were followed by clinical/laboratory monitoring of immune/coagulation/inflammatory/physiological parameters. At biopsy or euthanasia, the grafts were examined by microscopy. RESULTS The two GroupA baboons remained healthy with normal renal function >7 and >8 months, respectively, but then developed infectious complications. However, no features of a consumptive coagulopathy, eg, thrombocytopenia and reduction of fibrinogen, or of a protein-losing nephropathy were observed. There was no evidence of an elicited anti-pig antibody response, and histology of biopsies taken at approximately 4, 6, and 7 months and at necropsy showed no significant abnormalities. In contrast, both GroupB baboons developed features of a consumptive coagulopathy and required euthanasia on day 12. CONCLUSIONS The combination of (i) a graft from a specific six-gene genetically modified pig, (ii) an effective immunosuppressive regimen, and (iii) anti-inflammatory therapy prevented immune injury, a protein-losing nephropathy, and coagulation dysfunction for >7 months. Although the number of experiments is very limited, our impression is that expression of human endothelial protein C receptor (±CD55) in the graft is important if coagulation dysregulation is to be avoided.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tao Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Zhongqiang Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, Second Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Bingsi Gao
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Amy Cassano
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Meier RPH, Navarro-Alvarez N, Morel P, Schuurman HJ, Strom S, Bühler LH. Current status of hepatocyte xenotransplantation. Int J Surg 2015; 23:273-279. [PMID: 26361861 DOI: 10.1016/j.ijsu.2015.08.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 07/29/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
The treatment of acute liver failure, a condition with high mortality, comprises optimal clinical care, and in severe cases liver transplantation. However, there are limitations in availability of organ donors. Hepatocyte transplantation is a promising alternative that could fill the medical need, in particular as the bridge to liver transplantation. Encapsulated porcine hepatocytes represent an unlimited source that could function as a bioreactor requiring minimal immunosuppression. Besides patients with acute liver failure, patients with alcoholic hepatitis who are unresponsive to a short course of corticosteroids are a target for hepatocyte transplantation. In this review we present an overview of the innate immune barriers in hepatocyte xenotransplantation, including the role of complement and natural antibodies; the role of phagocytic cells and ligands like CD47 in the regulation of phagocytic cells; and the role of Natural Killer cells. We present also some illustrations of physiological species incompatibilities in hepatocyte xenotransplantation, such as incompatibilities in the coagulation system. An overview of the methodology for cell microencapsulation is presented, followed by proof-of-concept studies in rodent and nonhuman primate models of fulminant liver failure: these studies document the efficacy of microencapsulated porcine hepatocytes which warrants progress towards clinical application. Lastly, we present an outline of a provisional clinical trial, that upon completion of preclinical work could start within the upcoming 2-3 years.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland.
| | - Nalu Navarro-Alvarez
- Center for Transplantation Sciences (CTS), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Philippe Morel
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Henk-Jan Schuurman
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Stephen Strom
- Cell Transplantation and Regenerative Medicine, Department of Laboratory Medicine, Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Leo H Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
18
|
Ekser B, Markmann JF, Tector AJ. Current status of pig liver xenotransplantation. Int J Surg 2015; 23:240-246. [PMID: 26190837 DOI: 10.1016/j.ijsu.2015.06.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The shortage of organs from deceased human donors is a major problem limiting the number of organs transplanted each year and results in the death of thousands of patients on the waiting list. Pigs are currently the preferred species for clinical organ xenotransplantation. Progress in genetically-engineered (GE) pig liver xenotransplantation increased graft and recipient survival from hours with unmodified pig livers to up to 9 days with normal to near-normal liver function. Deletion of genes such as GGTA1 (Gal-knockout pigs) or adding genes such as human complement regulatory proteins (hCD55, hCD46 expressing pigs) enabled hyperacute rejection to be overcome. Although survival up to 9 days was recorded, extended pig graft survival was not achieved due to lethal thrombocytopenia. The current status of GE pig liver xenotransplantation with world experience, potential factors causing thrombocytopenia, new targets on pig endothelial cells, and novel GE pigs with more genes deletion to avoid remaining antibody response, such as beta1,4-N-acetyl galactosaminyl transferase 2 (β4GalNT2), are discussed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
19
|
Iwase H, Ekser B, Satyananda V, Bhama J, Hara H, Ezzelarab M, Klein E, Wagner R, Long C, Thacker J, Li J, Zhou H, Jiang M, Nagaraju S, Zhou H, Veroux M, Bajona P, Wijkstrom M, Wang Y, Phelps C, Klymiuk N, Wolf E, Ayares D, Cooper DKC. Pig-to-baboon heterotopic heart transplantation--exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation 2015; 22:211-20. [PMID: 25847282 PMCID: PMC4464944 DOI: 10.1111/xen.12167] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/27/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Three costimulation blockade-based regimens have been explored after transplantation of hearts from pigs of varying genetic backgrounds to determine whether CTLA4-Ig (abatacept) or anti-CD40mAb+CTLA4-Ig (belatacept) can successfully replace anti-CD154mAb. METHODS All pigs were on an α1,3-galactosyltransferase gene-knockout/CD46 transgenic (GTKO.CD46) background. Hearts transplanted into Group A baboons (n=4) expressed additional CD55, and those into Group B (n=3) expressed human thrombomodulin (TBM). Immunosuppression included anti-thymocyte globulin with anti-CD154mAb (Regimen 1: n=2) or abatacept (Regimen 2: n=2) or anti-CD40mAb+belatacept (Regimen 3: n=2). Regimens 1 and 2 included induction anti-CD20mAb and continuous heparin. One further baboon in Group B (B16311) received a modified Regimen 1. Baboons were followed by clinical/laboratory monitoring of immune/coagulation parameters. At biopsy, graft failure, or euthanasia, the graft was examined by microscopy. RESULTS Group A baboons survived 15 to 33 days, whereas Group B survived 52, 99, and 130 days, respectively. Thrombocytopenia and reduction in fibrinogen occurred within 21 days in Group A, suggesting thrombotic microangiopathy (TM), confirmed by histopathology. In Group B, with follow-up for >4 m, areas of myofiber degeneration and scarring were seen in two hearts at necropsy. A T-cell response was documented only in baboons receiving Regimen 2. CONCLUSIONS The combination of anti-CD40mAb+belatacept proved effective in preventing a T-cell response. The expression of TBM prevented thrombocytopenia and may possibly delay the development of TM and/or consumptive coagulopathy.
Collapse
Affiliation(s)
- Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Vikas Satyananda
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Wagner
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jnanesh Thacker
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiang Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hao Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Maolin Jiang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Santosh Nagaraju
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Pietro Bajona
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | | | - Nikolai Klymiuk
- Gene Center, Ludwig Maximilians Universitat Munchen (LMU), Munich, Germany
| | - Eckhard Wolf
- Gene Center, Ludwig Maximilians Universitat Munchen (LMU), Munich, Germany
| | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Yeh H, Machaidze Z, Wamala I, Fraser JW, Navarro-Alvarez N, Kim K, Schuetz C, Shi S, Zhu A, Hertl M, Elias N, Farkash EA, Vagefi PA, Varma M, Smith RN, Robson SC, Van Cott EM, Sachs DH, Markmann JF. Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation 2014; 21:454-64. [PMID: 25130043 DOI: 10.1111/xen.12111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/19/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pig to baboon liver xenotransplantation typically results in severe thrombocytopenia and coagulation disturbances, culminating in death from hemorrhage within 9 days, in spite of continuous transfusions. We studied the contribution of anticoagulant production and clotting pathway deficiencies to fatal bleeding in baboon recipients of porcine livers. METHODS By transplanting liver xenografts from α1,3-galactosyltransferase gene-knockout (GalT-KO) miniature swine donors into baboons as auxiliary organs, leaving the native liver in place, we provided the full spectrum of primate clotting factors and allowed in vivo mixing of porcine and primate coagulation systems. RESULTS Recipients of auxiliary liver xenografts develop severe thrombocytopenia, comparable to recipients of conventional orthotopic liver xenografts and consistent with hepatic xenograft sequestration. However, baboons with both pig and native livers do not exhibit clinical signs of bleeding and maintain stable blood counts without transfusion for up to 8 consecutive days post-transplantation. Instead, recipients of auxiliary liver xenografts undergo graft failure or die of sepsis, associated with thrombotic microangiopathy in the xenograft, but not the native liver. CONCLUSION Our data indicate that massive hemorrhage in the setting of liver xenotransplantation might be avoided by supplementation with primate clotting components. However, coagulation competent hepatic xenograft recipients may be predisposed to graft loss related to small vessel thrombosis and ischemic necrosis.
Collapse
Affiliation(s)
- Heidi Yeh
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stewart JM, Tarantal AF, Hawthorne WJ, Salvaris EJ, O'Connell PJ, Nottle MB, d'Apice AJF, Cowan PJ, Kearns-Jonker M. Rhesus monkeys and baboons develop clotting factor VIII inhibitors in response to porcine endothelial cells or islets. Xenotransplantation 2014; 21:341-52. [PMID: 24806998 DOI: 10.1111/xen.12100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/14/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells. METHODS A recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level. RESULTS Antibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII. CONCLUSIONS The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because "normal" coagulation parameters after successful xenotransplantation are not fully understood.
Collapse
Affiliation(s)
- John M Stewart
- Division of Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stewart JM, Tarantal AF, Chen Y, Appleby NC, Fuentes TI, Lee CCI, Salvaris EJ, d'Apice AJF, Cowan PJ, Kearns-Jonker M. Anti-non-Gal-specific combination treatment with an anti-idiotypic Ab and an inhibitory small molecule mitigates the xenoantibody response. Xenotransplantation 2014; 21:254-66. [PMID: 24635144 DOI: 10.1111/xen.12096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/14/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND B-cell depletion significantly extends survival of α-1,3-galactosyltranferase knockout (GTKO) porcine organs in pig-to-primate models. Our previous work demonstrated that the anti-non-Gal xenoantibody response is structurally restricted. Selective inhibition of xenoantigen/xenoantibody interactions could prolong xenograft survival while preserving B-cell-mediated immune surveillance. METHODS The anti-idiotypic antibody, B4N190, was selected from a synthetic human phage display library after enrichment against a recombinant anti-non-Gal xenoantibody followed by functional testing in vitro. The inhibitory small molecule, JMS022, was selected from the NCI diversity set III using virtual screening based on predicted xenoantibody structure. Three rhesus monkeys were pre-treated with anti-non-Gal-specific single-chain anti-idiotypic antibody, B4N190. A total of five monkeys, including two untreated controls, were then immunized with GTKO porcine endothelial cells to initiate an anti-non-α-1,3-Gal (non-Gal) xenoantibody response. The efficacy of the inhibitory small molecule specific for anti-non-Gal xenoantibody, JMS022, was tested in vitro. RESULTS After the combination of in vivo anti-id and in vitro small molecule treatments, IgM xenoantibody binding to GTKO cells was reduced to pre-immunization levels in two-thirds of animals; however, some xenoantibodies remained in the third animal. Furthermore, when treated with anti-id alone, all three experimental animals displayed a lower anti-non-Gal IgG xenoantibody response compared with controls. Treatment with anti-idiotypic antibody alone reduced IgM xenoantibody response intensity in only one of three monkeys injected with GTKO pig endothelial cells. In the one experimental animal, which displayed reduced IgM and IgG responses, select B-cell subsets were also reduced by anti-id therapy alone. Furthermore, natural antibody responses, including anti-laminin, anti-ssDNA, and anti-thyroglobulin antibodies were intact despite targeted depletion of anti-non-Gal xenoantibodies in vivo indicating that selective reduction of xenoantibodies can be accomplished without total B-cell depletion. CONCLUSIONS This preliminary study demonstrates the strength of approaches designed to selectively inhibit anti-non-Gal xenoantibody. Both anti-non-Gal-specific anti-idiotypic antibody and small molecules can be used to selectively limit xenoantibody responses.
Collapse
Affiliation(s)
- John M Stewart
- Department of Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hata T, Uemoto S, Kobayashi E. Transplantable liver production plan: "Yamaton"--liver project, Japan. Organogenesis 2013; 9:235-8. [PMID: 23896578 DOI: 10.4161/org.25760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Organ grafts developed in the xenogeneic pig scaffold are expected to resolve most issues of donor safety and ethical concerns about living-donor liver transplantation in Japan. We have been working on so-called "Yamaton" projects to develop transplantable organs using genetically engineered pigs. Our goal is to produce chimeric livers with human parenchyma in such pigs. The Yamaton-Liver project demonstrated the proof of concept by showing that rat-mouse chimeric livers could develop in mice and be successfully transplanted into syngeneic or allogeneic rats. Under conventional immunosuppression, the transplanted livers showed long-term function and protection against rejection. Because chimeric liver grafts have xenogeneic components, additional strategies, such as humanization of pig genes, induction of hematopoietic chimeras in donors, and replacement of pig endothelial cells with human ones, might be required in clinical use. Our projects still need to overcome various hurdles but can bring huge benefits to patients in the future.
Collapse
Affiliation(s)
- Toshiyuki Hata
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery; Department of Surgery; Graduate School of Medicine; Kyoto University; Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery; Department of Surgery; Graduate School of Medicine; Kyoto University; Kyoto, Japan
| | - Eiji Kobayashi
- Center for Development of Advanced Medical Technology; Jichi Medical University; Tochigi, Japan
| |
Collapse
|
24
|
Lee KH, Lee WY, Kim JH, Yoon MJ, Kim NH, Kim JH, Uhm SJ, Kim DH, Chung HJ, Song H. Characterization of GFRα-1-Positive and GFRα-1-Negative Spermatogonia in Neonatal Pig Testis. Reprod Domest Anim 2013; 48:954-60. [DOI: 10.1111/rda.12193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Affiliation(s)
- KH Lee
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| | - WY Lee
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| | - JH Kim
- Major in Animal Biotechnology; College of Animal Biotechnology; Konkuk University; Seoul Korea
| | - MJ Yoon
- Division of Animal Science and Biotechnology; Kyungpook National University; Sang-ju Korea
| | - NH Kim
- Department of Animal Science; College of Agriculture; Chungbuk National University; Choung-ju Korea
| | - JH Kim
- CHA Stem Cell Institute; Graduate School of Life Science and Biotechnology; Pochon CHA University; Seoul Korea
| | - SJ Uhm
- Department of Animal Science & Biotechnology; Sangji Youngseo College; Wonju Korea
| | - DH Kim
- Animal Biotechnology Division; National Institute of Animal Science; RDA; Suwon Korea
| | - HJ Chung
- Animal Biotechnology Division; National Institute of Animal Science; RDA; Suwon Korea
| | - H Song
- Department of Animal and Food Bioscience; College of Biomedical and Health Science; Konkuk University; Chung-ju Korea Korea
| |
Collapse
|
25
|
Novel GM animal technologies and their governance. Transgenic Res 2013; 22:681-95. [DOI: 10.1007/s11248-013-9724-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/11/2013] [Indexed: 12/31/2022]
|
26
|
Galvao FHF, Soler W, Pompeu E, Waisberg DR, Mello ESD, Costa ACL, Teodoro W, Velosa AP, Capelozzi VL, Antonangelo L, Catanozi S, Martins A, Malbouisson LMS, Cruz RJ, Figueira ER, Filho JAR, Chaib E, D'Albuquerque LAC. Immunoglobulin G profile in hyperacute rejection after multivisceral xenotransplantation. Xenotransplantation 2012; 19:298-304. [PMID: 22957972 DOI: 10.1111/xen.12002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Xenotransplantation is a potential solution for the high mortality of patients on the waiting list for multivisceral transplantation; nevertheless, hyperacute rejection (HAR) hampers this practice and motivates innovative research. In this report, we describe a model of multivisceral xenotransplantation in which we observed immunoglobulin G (IgG) involvement in HAR. METHODS We recovered en bloc multivisceral grafts (distal esophagus, stomach, small intestine, colon, liver, pancreas, and kidneys) from rabbits (n = 20) and implanted them in the swine (n = 15) or rabbits (n = 5, control). Three hours after graft reperfusion, we collected samples from all graft organs for histological study and to assess IgG fixation by immunofluorescence. Histopathologic findings were graded according to previously described methods. RESULTS No histopathological features of rejection were seen in the rabbit allografts. In the swine-to-rabbit grafts, features of HAR were moderate in the liver and severe in esophagus, stomach, intestines, spleen, pancreas, and kidney. Xenograft vessels were the central target of HAR. The main lesions included edema, hemorrhage, thrombosis, myosites, fibrinoid degeneration, and necrosis. IgG deposition was intense on cell membranes, mainly in the vascular endothelium. CONCLUSIONS Rabbit-to-swine multivisceral xenotransplants undergo moderate HAR in the liver and severe HAR in the other organs. Moderate HAR in the liver suggests a degree of resistance to the humoral immune response in this organ. Strong IgG fixation in cell membranes, including vascular endothelium, confirms HAR characterized by a primary humoral immune response. This model allows appraisal of HAR in multiple organs and investigation of the liver's relative resistance to this immune response.
Collapse
Affiliation(s)
- Flavio H F Galvao
- Department of Gastroenterology (LIM 37), University of São Paulo School of Medicine, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, Robson SC, Rees MA, Ayares D, Gridelli B, Tector AJ, Cooper DKC. Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol 2012; 8:621-34. [PMID: 23078060 PMCID: PMC3774271 DOI: 10.1586/eci.12.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pigs are currently the preferred species for future organ xenotransplantation. With advances in the development of genetically modified pigs, clinical xenotransplantation is becoming closer to reality. In preclinical studies (pig-to-nonhuman primate), the xenotransplantation of livers from pigs transgenic for human CD55 or from α1,3-galactosyltransferase gene-knockout pigs+/- transgenic for human CD46, is associated with survival of approximately 7-9 days. Although hepatic function, including coagulation, has proved to be satisfactory, the immediate development of thrombocytopenia is very limiting for pig liver xenotransplantation even as a 'bridge' to allotransplantation. Current studies are directed to understand the immunobiology of platelet activation, aggregation and phagocytosis, in particular the interaction between platelets and liver sinusoidal endothelial cells, hepatocytes and Kupffer cells, toward identifying interventions that may enable clinical application.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Christopher Burlak
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Joshua P Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | - Andrew J Lutz
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Leela L Paris
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Simon C Robson
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | | | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - A Joseph Tector
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Ekser B, Lin CC, Long C, Echeverri GJ, Hara H, Ezzelarab M, Bogdanov VY, Stolz DB, Enjyoji K, Robson SC, Ayares D, Dorling A, Cooper DKC, Gridelli B. Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transpl Int 2012; 25:882-96. [PMID: 22642260 DOI: 10.1111/j.1432-2277.2012.01506.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Upregulation of tissue factor (TF) expression on activated donor endothelial cells (ECs) triggered by the immune response (IR) has been considered the main initiator of consumptive coagulopathy (CC). In this study, we aimed to identify potential factors in the development of thrombocytopenia and CC after genetically engineered pig liver transplantation in baboons. Baboons received a liver from either an α1,3-galactosyltransferase gene-knockout (GTKO) pig (n = 1) or a GTKO pig transgenic for CD46 (n = 5) with immunosuppressive therapy. TF exposure on recipient platelets and peripheral blood mononuclear cell (PBMCs), activation of donor ECs, platelet and EC microparticles, and the IR were monitored. Profound thrombocytopenia and thrombin formation occurred within minutes of liver reperfusion. Within 2 h, circulating platelets and PBMCs expressed functional TF, with evidence of aggregation in the graft. Porcine ECs were negative for expression of P- and E-selectin, CD106, and TF. The measurable IR was minimal, and the severity and rapidity of thrombocytopenia were not alleviated by prior manipulation of the IR. We suggest that the development of thrombocytopenia/CC may be associated with TF exposure on recipient platelets and PBMCs (but possibly not with activation of donor ECs). Recipient TF appears to initiate thrombocytopenia/CC by a mechanism that may be independent of the IR.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, January-February 2012. Xenotransplantation 2012; 19:133-6. [PMID: 22497515 DOI: 10.1111/j.1399-3089.2012.00698.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory of Vascular Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|