1
|
Akin S, Cekin N. Preeclampsia and STOX1 (storkhead-box protein 1): Molecular evaluation of STOX1 in preeclampsia. Gene 2024; 927:148742. [PMID: 38969244 DOI: 10.1016/j.gene.2024.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is clinically defined as a part of pregnancy characterized by hypertension and multiple organ failure. PE is broadly categorized into two types: "placental" and "maternal". Placental PE is associated with fetal growth restriction and adverse maternal and neonatal outcomes. STOX1 (Storkhead box 1), a transcription factor, discovered through a complete transcript analysis of the PE susceptibility locus of 70,000 bp on chromosome 10q22.1. So far, studies investigating the relationship between STOX1 and PE have focused on STOX1 overexpression, STOX1 isoform imbalance, and STOX1 variations that could have clinical consequence. Initially, the Y153H variation of STOX was associated with the placental form of PE. Additionally, studies focusing on the maternal and fetal interface have shown that NODAL and STOX1 variations play a role together in the unsuccessful remodeling of the spiral arteries. Research specifically addressing the overexpression of STOX1 has shown that its disruption of cellular hemoastasis, leading to impaired hypoxia response, disruption of the cellular antioxidant system, and nitroso/redox imbalance. Furthermore, functional studies have been conducted showing that the imbalance between STOX1 isoforms contributes to the pathogenesis of placental PE. Research indicates that STOX1B competes with STOX1A and that the overexpression of STOX1B reverses cellular changes that STOX1A induces to the pathogenesis of PE. In this review, we aimed at elucidating the relationship between STOX1 and PE as well as function of STOX1. In conclusion, based on a comprehensive literature review, numerous studies support the role of STOX1 in the pathogenesis of PE.
Collapse
Affiliation(s)
- Seyda Akin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, 58140 Sivas, Turkey.
| | - Nilgun Cekin
- Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Biology, 58140 Sivas, Turkey.
| |
Collapse
|
2
|
Wang Y, Wang H, Yu X, Wu Q, Lv X, Zhou X, Chen Y, Geng S. Identification of metabolism related biomarkers in obesity based on adipose bioinformatics and machine learning. J Transl Med 2024; 22:986. [PMID: 39482740 PMCID: PMC11526509 DOI: 10.1186/s12967-024-05615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/18/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Obesity has emerged as a growing global public health concern over recent decades. Obesity prevalence exhibits substantial global variation, ranging from less than 5% in regions like China, Japan, and Africa to rates exceeding 75% in urban areas of Samoa. AIM To examine the involvement of metabolism-related genes. METHODS Gene expression datasets GSE110729 and GSE205668 were accessed from the GEO database. DEGs between obese and lean groups were identified through DESeq2. Metabolism-related genes and pathways were detected using enrichment analysis, WGCNA, Random Forest, and XGBoost. The identified signature genes were validated by real-time quantitative PCR (qRT-PCR) in mouse models. RESULTS A total of 389 genes exhibiting differential expression were discovered, showing significant enrichment in metabolic pathways, particularly in the propanoate metabolism pathway. The orangered4 module, which exhibited the highest correlation with propanoate metabolism, was identified using Weighted Correlation Network Analysis (WGCNA). By integrating the DEGs, WGCNA results, and machine learning methods, the identification of two metabolism-related genes, Storkhead Box 1 (STOX1), NACHT and WD repeat domain-containing protein 2(NWD2) was achieved. These signature genes successfully distinguished between obese and lean individuals. qRT-PCR analysis confirmed the downregulation of STOX1 and NWD2 in mouse models of obesity. CONCLUSION This study has analyzed the available GEO dataset in order to identify novel factors associated with obesity metabolism and found that STOX1 and NWD2 may serve as diagnostic biomarkers.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Honglin Wang
- Department of Orthopedic Surgery, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xingrui Yu
- Institute of Information, Xiamen University, Xiamen, China
| | - Qinan Wu
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xinlu Lv
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Xuelian Zhou
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China
| | - Yong Chen
- The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
| | - Shan Geng
- Department of Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, No. 1073 South Erhuan Road, Tangxiang Street, Dazu District, Chongqing, 402360, China.
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China.
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Yosief RHS, Lone IM, Nachshon A, Himmelbauer H, Gat‐Viks I, Iraqi FA. Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach. Animal Model Exp Med 2024; 7:36-47. [PMID: 38356021 PMCID: PMC10961901 DOI: 10.1002/ame2.12386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.
Collapse
Affiliation(s)
- Roa'a H. S. Yosief
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| | - Aharon Nachshon
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Heinz Himmelbauer
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 181190 ViennaAustria
| | - Irit Gat‐Viks
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel‐AvivIsrael
| |
Collapse
|
4
|
Akin S, Pinarbasi E, Bildirici AE, Cekin N. STOX1 promotor region -922 T > C polymorphism is associated with Early-Onset preeclampsia. J OBSTET GYNAECOL 2022; 42:3464-3470. [PMID: 36369889 DOI: 10.1080/01443615.2022.2141612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Preeclampsia (PE), affecting 5-8% of pregnancies, is a common pregnancy disease that has harmful effects on mother and foetus. It has been found that the STOX1 (Storkhead Box 1), which is a transcription factor, carries variants associated with PE. Previous studies showed that, there was a strong relationship between PE and STOX1 variants. Therefore, we hypothesised that variants in the promoter region of the gene may be related to the onset of PE. The aim of this study is to investigate the contribution of STOX1 gene promoter region variants to PE. The blood samples taken from 118 PE patients and 96 healthy pregnant women were analysed by Sanger sequencing method. Sequence analysis results showed that, there is a-922 T > C polymorphism (rs884181) in the promoter region of the STOX1 gene. This polymorphism was found to be statistically significant in individuals with early onset PE (p = 0.02) and in PE (p = 0.014) compared to the control group.IMPACT STATEMENTWhat is already known on this subject? As a result of whole-exon studies on the STOX1 gene, polymorphisms were found to disrupt the structure/expression/function of the gene and strengthen its relationship with PE and HELLP syndrome. A previous study by our team found an association between Y153H, the most common polymorphism of STOX1, and early onset PE.What do the results of this study add? In our study, it was aimed to investigate the effect of genetic modifications in STOX1 gene promoter region on PE through the maternal genotype. Because any change in the promoter region affects the expression level of the gene. Also, for the first time, sequence analysis of the promoter region of STOX1 is investigated in PE. The variations in STOX1 appear to be important in PE especially in Early Onset PE.What are the implications of these findings for clinical practice and/or further research? Although PE is a disease that occurs with pregnancy and shows its effects most during this period, women and children with a history of PE are more prone to various disorders, especially cardiovascular diseases in the following years. Therefore, understanding the pathogenesis of the disease is important for both prevention and treatment process. Variations on STOX1 appear to be important in terms of disease risk.
Collapse
Affiliation(s)
- Seyda Akin
- Faculty of Medicine, Department of Medical Biology, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Ergun Pinarbasi
- Faculty of Medicine, Department of Medical Biology, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Aslihan Esra Bildirici
- Faculty of Medicine, Department of Medical Biology, Sivas Cumhuriyet University, Sivas, Türkiye.,Exon Biyotek, Cumhuriyet Teknokent, Sivas, Türkiye
| | - Nilgun Cekin
- Faculty of Medicine, Department of Medical Biology, Sivas Cumhuriyet University, Sivas, Türkiye
| |
Collapse
|
5
|
Guo Z, Zhu C, Wang Y, Li Z, Wang L, Fan J, Xu Y, Zou N, Kong Y, Li D, Sui L. miR-30a targets STOX2 to increase cell proliferation and metastasis in hydatidiform moles via ERK, AKT, and P38 signaling pathways. Cancer Cell Int 2022; 22:103. [PMID: 35246136 PMCID: PMC8895545 DOI: 10.1186/s12935-022-02503-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. However, its role in hydatidiform moles is not clear. Methods Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with different expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved. Result Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results in excessive proliferation of trophoblast cells in the hydatidiform mole. Conclusions In this study, we found that miR-30a plays an important role in the development of the hydatidiform mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell transformation. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02503-3.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chenyu Zhu
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Youhui Wang
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhen Li
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Lu Wang
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jianhui Fan
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yuefei Xu
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Na Zou
- Department of Pathology, Dalian Municipal Women And Children's Medical Center, Dalian, 116044, Liaoning, People's Republic of China
| | - Ying Kong
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Dong Li
- Department of Pathology, Dalian Municipal Women And Children's Medical Center, Dalian, 116044, Liaoning, People's Republic of China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
6
|
Jin FQ, Jin L, Wang YL. Downregulation of STOX1 is a novel prognostic biomarker for glioma patients. Open Life Sci 2021; 16:1164-1174. [PMID: 34722888 PMCID: PMC8546287 DOI: 10.1515/biol-2021-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022] Open
Abstract
Storkhead box 1 (STOX1) is a winged helix transcription factor structurally and functionally related to the forkhead family of transcription factors. Recent studies have highlighted its role in the central nervous system and revealed hints in the development of glioma. However, the expression profiles of STOX1, its association with clinicopathological characteristics, and potential functions in glioma remain unknown. In this study, we analyzed three publicly available datasets including CGGA, TCGA, and Rembrandt and revealed a grade-dependent reduction in STOX1 expression in glioma (P < 0.001). Chi-square test demonstrated that low STOX1 expression was significantly associated with older age at initial diagnosis (P < 0.001), less IDH1 mutation (P < 0.001), and advanced WHO grade (P < 0.001). Moreover, multivariate Cox regression analysis showed that STOX1 expression may serve as a novel independent prognostic biomarker in glioma patients. Bioinformatic functional analysis (GSEA) predicted that STOX1 was related to many key cancer pathways including P53 signaling pathway (P < 0.01), DNA replication (P < 0.05), homologous recombination (P < 0.05), and Wnt signaling pathway (P < 0.05). Taken together, these findings suggested that STOX1 may be used as a novel predictive molecular biomarker for glioma grading and overall patient survival. Further investigations on the functional roles and therapeutic value of STOX1 in glioma are warranted.
Collapse
Affiliation(s)
- Fei-qin Jin
- Department of Radiology, People’s Hospital of Gaoxin District, Suzhou, 215129, Jiangsu, China
| | - Lei Jin
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, Guangdong, China
- Department of Surgery, Division of Neurosurgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yan-ling Wang
- Department of Radiology, People’s Hospital of Gaoxin District, Suzhou, 215129, Jiangsu, China
| |
Collapse
|
7
|
Dunk CE, van Dijk M, Choudhury R, Wright TJ, Cox B, Leavey K, Harris LK, Jones RL, Lye SJ. Functional Evaluation of STOX1 (STORKHEAD-BOX PROTEIN 1) in Placentation, Preeclampsia, and Preterm Birth. Hypertension 2020; 77:475-490. [PMID: 33356399 DOI: 10.1161/hypertensionaha.120.15619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Revaluation of the association of the STOX1 (STORKHEAD_BOX1 PROTEIN 1) transcription factor mutation (Y153H, C allele) with the early utero-vascular origins of placental pathology is warranted. To investigate if placental STOX1 Y153H genotype affects utero-vascular remodeling-compromised in both preterm birth and preeclampsia-we utilized extravillous trophoblast (EVT) explant and placental decidual coculture models, transfection of STOX1 wild-type and mutant plasmids into EVT-like trophoblast cell lines, and a cohort of 75 placentas from obstetric pathologies. Primary EVT and HTR8/SVneo cells carrying STOX1 Y153H secreted lower levels of IL (interleukin) 6, and IL-8, and higher CXCL16 (chemokine [C-X-C motif] ligand 16) and TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) than wild-type EVT and Swan71 cells. Media from wild-type EVT or Swan71 cells transfected with wild-type STOX1 stimulated: endothelial chemokine expression, angiogenesis, and decidual natural killer cell and monocyte migration. In contrast, Y153H EVT conditioned medium, Swan71 transfected with the Y153H plasmid, or HTR8/SVneo media had no effect. Genotyping of placental decidual cocultures demonstrated association of the placental STOX1 CC allele with failed vascular remodeling. Decidual GG NODAL R165H increased in failed cocultures carrying the placental CC alleles of STOX1. Multivariate analysis of the placental cohort showed that the STOX1 C allele correlated with premature birth, with or without severe early-onset preeclampsia, and small for gestational age babies. In conclusion, placental STOX1 Y153H is a precipitating factor in preterm birth and placental preeclampsia due to defects in early utero-placental development.
Collapse
Affiliation(s)
- Caroline E Dunk
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.)
| | - Marie van Dijk
- Reproductive Biology Laboratory, Amsterdam University Medical Centers, the Netherlands (M.V.D.)
| | - Ruhul Choudhury
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Thomas J Wright
- Department of Ophthalmology, Kensington Eye Institute (T.J.W.), University of Toronto, Canada
| | - Brian Cox
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Katherine Leavey
- Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Division of Pharmacy and Optometry (L.K.H.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Faculty of Biology Medicine and Health (R.C., L.K.H., R.L.J.), University of Manchester, United Kingdom.,Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom (R.C., L.K.H., R.L.J.)
| | - Stephen J Lye
- From the Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Canada (C.E.D., S.J.L.).,Department of Physiology, Faculty of Medicine (B.C., K.L., S.J.L.), University of Toronto, Canada.,Department of Obstetrics and Gynaecology, Faculty of Medicine (S.J.L.), University of Toronto, Canada
| |
Collapse
|
8
|
Ducat A, Couderc B, Bouter A, Biquard L, Aouache R, Passet B, Doridot L, Cohen MB, Ribaux P, Apicella C, Gaillard I, Palfray S, Chen Y, Vargas A, Julé A, Frelin L, Cocquet J, San Martin CR, Jacques S, Busato F, Tost J, Méhats C, Laissue P, Vilotte JL, Miralles F, Vaiman D. Molecular Mechanisms of Trophoblast Dysfunction Mediated by Imbalance between STOX1 Isoforms. iScience 2020; 23:101086. [PMID: 32371375 PMCID: PMC7200942 DOI: 10.1016/j.isci.2020.101086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.
Collapse
Affiliation(s)
- Aurélien Ducat
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Betty Couderc
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Anthony Bouter
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Louise Biquard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Rajaa Aouache
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Ludivine Doridot
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Marie-Benoîte Cohen
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Pascale Ribaux
- Department of Gynecology Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Clara Apicella
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Irène Gaillard
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sophia Palfray
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Yulian Chen
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Alexandra Vargas
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Amélie Julé
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Léo Frelin
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, CNRS, University of Bordeaux, IPB, 33600 Pessac, France
| | - Julie Cocquet
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Camino Ruano San Martin
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Sébastien Jacques
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Institut de Biologie François Jacob, Commissariat àl'Energie Atomique, Evry 91057, France
| | - Céline Méhats
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Paul Laissue
- Biopas Laboratoires, BIOPAS GROUP, Bogotá, Colombia
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1313-GABI, 78350, Jouy-en-Josas, France
| | - Francisco Miralles
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France
| | - Daniel Vaiman
- Institut Cochin, U1016, INSERM, UMR 8504 CNRS, Université Paris Descartes, Paris 75014, France.
| |
Collapse
|
9
|
Li Z, Zhou G, Jiang L, Xiang H, Cao Y. Effect of STOX1 on recurrent spontaneous abortion by regulating trophoblast cell proliferation and migration via the PI3K/AKT signaling pathway. J Cell Biochem 2019; 120:8291-8299. [PMID: 30548667 PMCID: PMC6590170 DOI: 10.1002/jcb.28112] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
STOX1 is a transcription factor that is implicated in the high prevalence of human gestational diseases. It has been studied in various types of gestational diseases using different molecular and cellular biological technologies. However, the effect and detailed mechanism of storkhead box 1 (STOX1) in recurrent spontaneous abortion (RSA) remain unknown. This study aimed to explore the effect and detailed mechanism of STOX1 in human trophoblast cells. The result showed that downregulation of STOX1 by short hairpin RNA (shRNA) led to a decrease in proliferation and migration in HTR-8/SVneo cells, while it induced the apoptosis of HTR-8/SVneo cells. Moreover, the result showed that trophoblast cells expressed lower levels of pAKT and p85 subunits after treatment with STOX1 shRNA when compared with control. However, overexpression of STOX1 obviously increased the pAKT and p85 protein expressions. Transfection of pcDNA-AKT plasmid increased cell proliferation and migration in HTR-8/SVneo cells while suppressed the apoptosis of HTR-8/SVneo cells. Furthermore, inhibition of the PI3K/Akt pathway by a specific inhibitor promoted cell apoptosis and aggravatedly suppressed cell proliferation and migration of HTR-8/SVneo cells. On the other hand, upregulation of the PI3K/Akt pathway could increase the relative expression level of Bcl-2 and decrease the relative expression levels of Bax and Bim, while inhibition of the PI3K/Akt pathway led to adverse results. Our results demonstrated that inhibition of STOX1 could suppress trophoblast cell proliferation and migration, while promote apoptosis through inhibiting the PI3K/Akt signaling pathway. These findings might provide a new fundamental mechanism for regulating RSA and could be used to prevent and treat RSA in clinic.
Collapse
Affiliation(s)
- Zhifang Li
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Guiju Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina,Department Gynecology, The Second Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Longfan Jiang
- Anqing Municipal Hospital, Anhui Medical UniversityAnqingChina
| | - Huifen Xiang
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| | - Yunxia Cao
- Reproductive Medicine Center, The First Affiliated Hospital, Anhui Medical UniversityHefeiChina
| |
Collapse
|
10
|
Visser A, Beijer M, Oudejans CBM, van Dijk M. The effect of maternal NODAL on STOX1 expression in extravillous trophoblasts is mediated by IGF1. PLoS One 2018; 13:e0202190. [PMID: 30092105 PMCID: PMC6084977 DOI: 10.1371/journal.pone.0202190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022] Open
Abstract
The number of molecules identified to be involved in communication between placenta and decidua is fast expanding. Previously, we showed that NODAL expressed in maternal endometrial stromal cells is able to affect NODAL and STOX1 expression in placental extravillous trophoblasts. The effect of maternal NODAL on placental NODAL expression is achieved via Activin A, while preliminary data suggests that maternal NODAL affects STOX1 expression in trophoblasts potentially via IGF1. In the current study, T-HESC endometrial stromal cells were treated with siRNAs against NODAL after which IGF1 mRNA expression was determined by quantitative RT-PCR, while IGF1 secretion was measured by ELISA. Recombinant IGF1 and inhibitors of the MAPK and PI3K/AKT pathways were added to SGHPL-5 extravillous trophoblasts after which the effects on STOX1 mRNA and STOX1 protein expression were determined. The effect of IGF1 and the MAPK and PI3K/AKT inhibitors on the invasive capacity of SGHPL-5 cells was investigated by performing invasion assays. We found that T-HESC cells treated with NODAL siRNAs showed significant upregulation of IGF1 mRNA expression and IGF1 protein secretion. Addition of IGF1 to SGHPL-5 cell media significantly upregulated STOX1 mRNA and protein expression. Using inhibitors of the PI3K/AKT and MAPK pathway showed that the effect of IGF1 on STOX1 expression is accomplished via MAPK signaling. Secondly, PI3K inhibition independently leads to reduced STOX1 expression which can be rescued by adding IGF1. IGF1 was unable to influence the invasive capacity of SGHPL-5 cells, while inhibiting the PI3K/AKT pathway did reduce the invasion of these cells. To conclude, here we show that downregulated NODAL expression in endometrial stromal cells, previously associated with pre-eclampsia like symptoms in mice, increases IGF1 secretion. Increased levels of IGF1 lead to increased expression levels of STOX1 in extravillous trophoblasts via the MAPK pathway, hereby identifying a novel signaling cascade involved in maternal-fetal communication.
Collapse
Affiliation(s)
- Allerdien Visser
- Amsterdam UMC, VU University Amsterdam, Department of Clinical Chemistry, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Maarten Beijer
- Amsterdam UMC, VU University Amsterdam, Department of Clinical Chemistry, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Cees B. M. Oudejans
- Amsterdam UMC, VU University Amsterdam, Department of Clinical Chemistry, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Marie van Dijk
- Amsterdam UMC, VU University Amsterdam, Department of Clinical Chemistry, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Reproductive Biology Laboratory, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Liu Y, Sun Z, Zhu J, Xiao B, Dong J, Li X. LncRNA-TCONS_00034812 in cell proliferation and apoptosis of pulmonary artery smooth muscle cells and its mechanism. J Cell Physiol 2018; 233:4801-4814. [PMID: 29150946 DOI: 10.1002/jcp.26279] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Yun Liu
- Department of Pharmacy; The First People's Hospital of Lianyungang; Lianyungang P.R. China
| | - Zengxian Sun
- Department of Pharmacy; The First People's Hospital of Lianyungang; Lianyungang P.R. China
| | - Jinquan Zhu
- Department of Pharmacy; The First People's Hospital of Lianyungang; Lianyungang P.R. China
| | - Bingxin Xiao
- Department of Pharmacy; The First People's Hospital of Lianyungang; Lianyungang P.R. China
| | - Jie Dong
- Department of Pharmacy; The First People's Hospital of Lianyungang; Lianyungang P.R. China
| | - Xiaomin Li
- Department of Emergency; Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang; Lianyungang P.R. China
| |
Collapse
|
12
|
Offenburger SL, Bensaddek D, Murillo AB, Lamond AI, Gartner A. Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Sci Rep 2017; 7:4314. [PMID: 28659600 PMCID: PMC5489525 DOI: 10.1038/s41598-017-04375-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/12/2017] [Indexed: 11/09/2022] Open
Abstract
Asymmetric cell divisions are required for cellular diversity and defects can lead to altered daughter cell fates and numbers. In a genetic screen for C. elegans mutants with defects in dopaminergic head neuron specification or differentiation, we isolated a new allele of the transcription factor HAM-1 [HSN (Hermaphrodite-Specific Neurons) Abnormal Migration]. Loss of both HAM-1 and its target, the kinase PIG-1 [PAR-1(I)-like Gene], leads to abnormal dopaminergic head neuron numbers. We identified discrete genetic relationships between ham-1, pig-1 and apoptosis pathway genes in dopaminergic head neurons. We used an unbiased, quantitative mass spectrometry-based proteomics approach to characterise direct and indirect protein targets and pathways that mediate the effects of PIG-1 kinase loss in C. elegans embryos. Proteins showing changes in either abundance, or phosphorylation levels, between wild-type and pig-1 mutant embryos are predominantly connected with processes including cell cycle, asymmetric cell division, apoptosis and actomyosin-regulation. Several of these proteins play important roles in C. elegans development. Our data provide an in-depth characterisation of the C. elegans wild-type embryo proteome and phosphoproteome and can be explored via the Encyclopedia of Proteome Dynamics (EPD) - an open access, searchable online database.
Collapse
Affiliation(s)
- Sarah-Lena Offenburger
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Dalila Bensaddek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Alejandro Brenes Murillo
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anton Gartner
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
13
|
Shen H, Cheng H, Chen H, Zhang J. Identification of key genes induced by platelet-rich plasma in human dermal papilla cells using bioinformatics methods. Mol Med Rep 2016; 15:81-88. [PMID: 27922680 PMCID: PMC5355651 DOI: 10.3892/mmr.2016.5988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/06/2016] [Indexed: 01/17/2023] Open
Abstract
Dermal papilla cells (DPCs) are located at the base of hair follicles, and are known to induce hair follicle regeneration. Platelet-rich plasma (PRP) functions in hair follicle regeneration. To investigate the influence of PRP on DPCs, the present study analyzed RNA-seq data of human hair dermal papilla cells (HHDPCs) that were treated or untreated by PRP. The data included in the RNA-seq were from two normal and two treated HHDPC samples. Following identification by Cuffdiff software, differentially expressed genes (DEGs) underwent enrichment analyses, and protein-protein interaction networks were constructed using Cytoscape software. Additionally, transcription factor (TF)-DEG and TF-long non-coding RNA (lncRNA) regulatory networks were constructed. A total of 178 differentially expressed lncRNA were screened, 365 were upregulated and 142 were downregulated. Notably, upregulated cyclin dependent kinase 1 (CDK1) (degree=76), polo-like kinase 1 (PLK1) (degree=65), cell division cycle 20 (degree=50), cyclin B1 (degree=49), aurora kinase B (degree=47), cyclin dependent kinase 2 (degree=46) and downregulated v-myc avian myelocytomatosis viral oncogene homolog (MYC) (degree=12) had higher degrees in networks. In addition, CCAAT/enhancer binding protein β, E2F transcription factor 1 (E2F1), early growth response 1 and MYC may be key TFs for their target genes, and were enriched in pathways associated with the cell cycle. They may also be involved in cell proliferation via various interactions with other genes, for example CDK1-PLK1 and E2F1→CDK1. These dysregulated genes induced by PRP may affect proliferation of HHDPCs.
Collapse
Affiliation(s)
- Haiyan Shen
- Department of Plastic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Hanxiao Cheng
- Department of Plastic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Haihua Chen
- Department of Plastic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jufang Zhang
- Department of Plastic Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
14
|
Abstract
INTRODUCTION Preeclampsia is a major pregnancy disease, explained partly by genetic predispositions. STOX1, a transcription factor discovered in 2005, was the first gene directly associated with genetic forms of the disease. Alterations of STOX1 expression as well as STOX1 variants have also been associated to Alzheimer's disease. These observations make of this gene a putative therapeutic target. Area covered: Two major isoforms (STOX1A and STOX1B) are encoded by the gene and are theoretically able to compete for the same binding site, while only the most complete (STOX1A) is supposed to be able to activate gene expression. This makes the ratio between STOX1A and STOX1B as well as their position inside the cell (nucleus or cytoplasm) crucial to understand how STOX1 functions. STOX1 appears to have multiple gene targets, especially in pathways connected to inflammation, oxidative stress, and cell cycle. Expert opinion: STOX1-directed therapies, could be directed either towards its targets (genes or pathways), or directly at STOX1. For this the addressing of STOX1 to various cell compartments could theoretically be modified; also it could be possible of altering the balance between the two isoforms, through selectively inhibiting one of them, possibly improving the outcomes in severe preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| | - Francisco Miralles
- a Department of Development, Reproduction and Cancer , Institut Cochin , Paris , France
| |
Collapse
|
15
|
Stox1 as a novel transcriptional suppressor of Math1 during cerebellar granule neurogenesis and medulloblastoma formation. Cell Death Differ 2016; 23:2042-2053. [PMID: 27564589 DOI: 10.1038/cdd.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 07/02/2016] [Accepted: 07/14/2016] [Indexed: 11/08/2022] Open
Abstract
Cerebellar granule neuronal progenitors (GNPs) are the precursors of cerebellar granule cells (CGCs) and are believed to be the cell of origin for medulloblastoma (MB), yet the molecular mechanisms governing GNP neurogenesis are poorly elucidated. Here, we demonstrate that storkhead box 1 (Stox1), a forkhead transcriptional factor, has a pivotal role in cerebellar granule neurogenesis and MB suppression. Expression of Stox1 is upregulated along with GNP differentiation and repressed by activation of sonic hedgehog (SHH) signaling. Stox1 exerts its neurogenic and oncosuppressing effect via direct transcriptional repression of Math1, a basic helix-loop-helix transcription activator essential for CGC genesis. This study illustrates a SHH-Stox1-Math1 regulatory axis in normal cerebellar development and MB formation.
Collapse
|
16
|
Nie X, Zhang K, Wang L, Ou G, Zhu H, Gao WQ. Transcription factor STOX1 regulates proliferation of inner ear epithelial cells via the AKT pathway. Cell Prolif 2015; 48:209-20. [PMID: 25677106 DOI: 10.1111/cpr.12174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Storkhead box 1 (STOX1) belongs to the forkhead family of transcription factors, and is reported to be involved in apoptosis of Caenorhabditis elegans. However, up to now the precise role of STOX1 in mammalian epithelial development has not been established. Here, we report that it plays an important role in regulation of proliferation of inner ear epithelial cells. MATERIALS AND METHODS Immunohistochemistry and reverse transcription-PCR assays were used to determine expression pattern of STOX1 in the mouse inner ear. Furthermore, its overexpression and knockdown effects on mouse inner ear epithelial cells were studied using RT-PCR, immunofluorescence, MTT assay, BrdU labelling and western blotting. RESULTS Storkhead box 1 was selectively expressed in epithelial cells, but not in stromal cells of the inner ear. Its over-expression enhanced cell proliferation and sphere formation, however, STOX1 knockdown inhibited cell proliferation and sphere formation in purified utricular epithelial cells in culture. Consistently, several cell cycle regulatory genes such as for PCNA, cyclin A and cyclin E, were up-regulated by STOX1 over-expression. Furthermore, biochemical analyses indicated that proliferation-promoting effects induced by STOX1 were mediated via phosphorylation of AKT in these cells. CONCLUSIONS Taken together, we demonstrate that STOX1 is a novel stimulatory factor for inner ear epithelial cell proliferation and might be an important target to be considered in regeneration or repair of inner ear epithelium.
Collapse
Affiliation(s)
- Xiaowei Nie
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 210027, China
| | | | | | | | | | | |
Collapse
|
17
|
Bath C, Muttuvelu D, Emmersen J, Vorum H, Hjortdal J, Zachar V. Transcriptional dissection of human limbal niche compartments by massive parallel sequencing. PLoS One 2013; 8:e64244. [PMID: 23717577 PMCID: PMC3661480 DOI: 10.1371/journal.pone.0064244] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 04/10/2013] [Indexed: 12/13/2022] Open
Abstract
Corneal epithelium is maintained throughout life by well-orchestrated proliferation of limbal epithelial stem cells (LESCs), followed by migration and maturation centripetally towards the ocular surface. Disturbance of LESCs can potentially lead to a blinding condition, which can be reversed by reconstitution of a functional LESC pool. The current clinical procedures are effective to some degree, however, deeper knowledge of the molecular interplay within the limbal niche is necessary to achieve a fully satisfactory patient outcome. The present study was thus undertaken to carry out a comprehensive transcriptome analysis of four distinct human limbal compartments, including basal limbal crypts (BLCs), superficial limbal crypts (SLCs), cornea, and the supporting stroma, with the aid of laser capture microdissection and deep RNA sequencing. The tissue harvest pipeline was rigorously optimized so that the exposure to cold ischemia would be less than five minutes. The global gene ontology analysis confirmed existence of primitive cells in BLCs, migratory and activated cells in SLCs, and differentiated cells in cornea. Interestingly, many significantly upregulated genes in SLCs mapped to processes involved in regulation of vasculature, such as sFLT1. In contrast, BLCs exhibited many genes mapping to neurogenic processes and processes related to cell development. The primitive nature of BLCs was, furthermore, confirmed by the KEGG pathway analysis, and some potential regulators of LESCs were revealed, such as Lrig1 and SOX9. The analysis also yielded comprehensive lists of uniquely expressed genes in both BLCs and cornea, which may be useful to identify possible biomarkers. In conclusion, the current investigation provides new insight into the relationship between distinct cell populations within the limbal niche, identifies candidates to be verified for novel biological functions, and yields a wealth of information for prospective data mining.
Collapse
Affiliation(s)
- Chris Bath
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | - Danson Muttuvelu
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Jeppe Emmersen
- Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Vladimir Zachar
- Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
18
|
STOX1A induces phosphorylation of tau proteins at epitopes hyperphosphorylated in Alzheimer's disease. Neurosci Lett 2012; 528:104-9. [PMID: 22995177 DOI: 10.1016/j.neulet.2012.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/22/2022]
Abstract
Intraneuronal fibrillary tangles are a major hallmark of several neurodegenerative diseases including Alzheimer's disease. The major constituents of these hallmarks are hyper-phosphorylated tau. In this study we used a neuronal cellular model which over-expresses transcription factor STOX1A in combination with the longest human tau isoform to test the effect of STOX1A on tau phosphorylation. Our results show that STOX1A induces phosphorylation of the longest human tau isoform at phospho-epitopes typically found in neurofibrillary tangles in Alzheimer's disease. In conclusion, our results show a STOX1A-dependent effect on tau phosphorylation found in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|