1
|
Beckers P, Gebhardt T, Helm C. Loss of nervous system complexity – Morphological analyses shed light on the neuronal evolution in Myzostomida (Annelida). ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Patrick Beckers
- Institute of Evolutionary Biology and Zooecology, University of Bonn Bonn Germany
| | - Tobias Gebhardt
- Institute of Evolutionary Biology and Zooecology, University of Bonn Bonn Germany
| | - Conrad Helm
- Johann‐Friedrich‐Blumenbach Institute for Zoology & Anthropology Animal Evolution and Biodiversity University of Göttingen Göttingen Germany
| |
Collapse
|
2
|
Pal T, Padhan JK, Kumar P, Sood H, Chauhan RS. Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita. Mol Biol Rep 2018; 45:77-98. [PMID: 29349608 DOI: 10.1007/s11033-017-4135-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/12/2017] [Indexed: 12/13/2022]
Abstract
Swertia chirayita is a high-value medicinal herb exhibiting antidiabetic, hepatoprotective, anticancer, antiediematogenic and antipyretic properties. Scarcity of its plant material has necessitated in vitro production of therapeutic metabolites; however, their yields were low compared to field grown plants. Possible reasons for this could be differences in physiological and biochemical processes between plants grown in photoautotrophic versus photoheterotrophic modes of nutrition. Comparative transcriptomes of S. chirayita were generated to decipher the crucial molecular components associated with the secondary metabolites biosynthesis. Illumina HiSeq sequencing yielded 57,460 and 43,702 transcripts for green house grown (SCFG) and tissue cultured (SCTC) plants, respectively. Biological role analysis (GO and COG assignments) revealed major differences in SCFG and SCTC transcriptomes. KEGG orthology mapped 351 and 341 transcripts onto secondary metabolites biosynthesis pathways for SCFG and SCTC transcriptomes, respectively. Nineteen out of 30 genes from primary metabolism showed higher in silico expression (FPKM) in SCFG versus SCTC, possibly indicating their involvement in regulating the central carbon pool. In silico data were validated by RT-qPCR using a set of 16 genes, wherein 10 genes showed similar expression pattern across both the methods. Comparative transcriptomes identified differentially expressed transcription factors and ABC-type transporters putatively associated with secondary metabolism in S. chirayita. Additionally, functional classification was performed using NCBI Biosystems database. This study identified the molecular components implicated in differential modes of nutrition (photoautotrophic vs. photoheterotrophic) in relation to secondary metabolites production in S. chirayita.
Collapse
Affiliation(s)
- Tarun Pal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Jibesh Kumar Padhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Pawan Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Rajinder S Chauhan
- Department of Biotechnology, Bennett University, a Times Group Initiative, Plot No 8-11, TechZone II, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
3
|
Jimi N, Moritaki T, Kajihara H. Rare endoparasitic Asteriomyzostomum (Annelida: Asteriomyzostomidae) from Japan, including three new species descriptions and their phylogenetic position within Myzostomida. Parasitol Int 2017; 66:841-847. [PMID: 28797594 DOI: 10.1016/j.parint.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/15/2022]
Abstract
The rare myzostomid genus Asteriomyzostomum Jägersten, 1940 consists of two species, both parasitizing sea stars. The phylogenetic position of this genus among Myzostomida has not been previously shown using molecular data. In this study, three species of Asteriomyzostomum were collected from the Kumano Sea, Japan, and are described as A. hercules sp. nov., A. jinshou sp. nov., and A. monroeae sp. nov. Additional specimens of the genus Asteromyzostomum Wagin, 1954 were also collected from the Kumano Sea and briefly reported as Asteromyzostomum sp. A molecular phylogeny based on four gene markers (COI, 16S, 18S, H3) suggests that the three families Asteriomyzostomidae, Asteromyzostomidae, and Protomyzostomidae comprise a clade. The resulting topology of the tree indicates that a host change from Crinozoa (sea lilies and feather stars) to Asterozoa (asteroids and ophiuroids) occurred only once in the evolutionary history of Myzostomida.
Collapse
Affiliation(s)
- Naoto Jimi
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan.
| | | | - Hiroshi Kajihara
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10 W8, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
|
5
|
Capa M, Aguado MT, Bakken T. Phylogenetic hypothesis of Sphaerodoridae Malmgren, 1867 (Annelida) and its position within Phyllodocida. Cladistics 2015; 32:335-350. [DOI: 10.1111/cla.12134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 11/29/2022] Open
Affiliation(s)
- María Capa
- Norwegian University of Science and Technology; NTNU University Museum; NO-7491 Trondheim Norway
| | - M. Teresa Aguado
- Departamento de Biología (Zoología); Universidad Autónoma de Madrid; Cantoblanco 28049 Madrid Spain
| | - Torkild Bakken
- Norwegian University of Science and Technology; NTNU University Museum; NO-7491 Trondheim Norway
| |
Collapse
|
6
|
Andrade SC, Novo M, Kawauchi GY, Worsaae K, Pleijel F, Giribet G, Rouse GW. Articulating “Archiannelids”: Phylogenomics and Annelid Relationships, with Emphasis on Meiofaunal Taxa. Mol Biol Evol 2015. [DOI: 10.1093/molbev/msv157] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
7
|
Mao Y, Zhang Y, Xu C, Qiu Y. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae. Mol Ecol Resour 2015; 16:228-41. [PMID: 25879377 DOI: 10.1111/1755-0998.12415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa.
Collapse
Affiliation(s)
- Yunrui Mao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonghua Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Zakrzewski AC, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H. Early divergence, broad distribution, and high diversity of animal chitin synthases. Genome Biol Evol 2015; 6:316-25. [PMID: 24443419 PMCID: PMC3942024 DOI: 10.1093/gbe/evu011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Even though chitin is one of the most abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding new light on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. The most extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs in molluscs. Independent fusion to different kinds of myosin motor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in the morphology of many animals, the here presented CS diversification reveals many evolutionary complexities. Our findings strongly suggest a very broad and multifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest.
Collapse
Affiliation(s)
- Anne-C Zakrzewski
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Summers MM, Rouse GW. Phylogeny of Myzostomida (Annelida) and their relationships with echinoderm hosts. BMC Evol Biol 2014; 14:170. [PMID: 25164680 PMCID: PMC4160548 DOI: 10.1186/s12862-014-0170-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Myzostomids are marine annelids, nearly all of which live symbiotically on or inside echinoderms, chiefly crinoids, and to a lesser extent asteroids and ophiuroids. These symbionts possess a variety of adult body plans and lifestyles. Most described species live freely on the exterior of their hosts as adults (though starting life on the host inside cysts), while other taxa permanently reside in galls, cysts, or within the host's mouth, digestive system, coelom, or gonads. Myzostomid lifestyles range from stealing incoming food from the host's food grooves to consuming the host's tissue directly. Previous molecular studies of myzostomids have had limited sampling with respect to assessing the evolutionary relationships within the group; therefore molecular data from 75 myzostomid taxa were analyzed using maximum likelihood and maximum parsimony methods. To compare relationships of myzostomids with their hosts, a phylogeny was inferred for 53 hosts and a tanglegram constructed with 88 associations. RESULTS Gall- and some cyst-dwellers were recovered as a clade, while cyst-to-free-living forms were found as a grade including two clades of internal host-eaters (one infecting crinoids and the other asteroids and ophiuroids), mouth/digestive system inhabitants, and other cyst-dwellers. Clades of myzostomids were recovered that associated with asteroids, ophiuroids, and stalked or feather star crinoids. Co-phylogenetic analyses rejected a null-hypothesis of random associations at the global level, but not for individual associations. Event-based analyses relied most upon host-switching and duplication events to reconcile the association history. CONCLUSION Hypotheses were revised concerning the systematics and evolution of Myzostomida, as well their relationships to their hosts. We found two or three transitions between food-stealing and host-eating. Taxa that dwell within the mouth or digestive system and some cyst forms are arguably derived from cyst-to-free-living ancestors--possibly the result of a free-living form moving to the mouth and paedomorphic retention of the juvenile cyst. Phylogenetic conservatism in host use was observed among related myzostomid taxa. This finding suggests that myzostomids (which have a free-living planktonic stage) are limited to one or a few closely related hosts, despite most hosts co-occurring on the same reefs, many within physical contact of each other.
Collapse
Affiliation(s)
- Mindi M Summers
- Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
10
|
Andrade SCS, Montenegro H, Strand M, Schwartz ML, Kajihara H, Norenburg JL, Turbeville JM, Sundberg P, Giribet G. A Transcriptomic Approach to Ribbon Worm Systematics (Nemertea): Resolving the Pilidiophora Problem. Mol Biol Evol 2014; 31:3206-15. [DOI: 10.1093/molbev/msu253] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
The molecular symplesiomorphies shared by the stem groups of metazoan evolution: can sites as few as 1% have a significant impact on recognizing the phylogenetic position of myzostomida? J Mol Evol 2014; 79:63-74. [PMID: 25128981 DOI: 10.1007/s00239-014-9635-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 07/22/2014] [Indexed: 10/24/2022]
Abstract
Although it is clear that taxon sampling, alignments, gene sampling, tree reconstruction methods and the total length of the sequences used are critical to the reconstruction of evolutionary history, weakly supported or misleading nodes exist in phylogenetic studies with no obvious flaw in those aspects. The phylogenetic studies focusing on the basal part of bilaterian evolution are such a case. During the past decade, Myzostomida has appeared in the basal part of Bilateria in several phylogenetic studies of Metazoa. However, most researchers have entertained only two competing hypotheses about the position of Myzostomida-an affinity with Annelida and an affinity with Platyhelminthes. In this study, dozens of symplesiomorphies were discovered by means of ancestral state reconstruction in the complete 18S and 28S rDNAs shared by the stem groups of Metazoa. By contrastive analysis on the datasets with or without such symplesiomorphic sites, we discovered that Myzostomida and other basal groups are basal lineages of Bilateria due to the corresponding symplesiomorphies shared with earlier lineages. As such, symplesiomorphies account for approximately 1-2% of the whole dataset have an essential impact on phylogenetic inference, and this study reminds molecular systematists of the importance of carrying out ancestral state reconstruction at each site in sequence-based phylogenetic studies. In addition, reasons should be explored for the low support of the hypothesis that Myzostomida belongs to Annelida in the results of phylogenomic studies. Future phylogenetic studies concerning Myzostomida should include all of the basal lineages of Bilateria to avoid directly neglecting the stand-alone basal position of Myzostomida as a potential hypothesis.
Collapse
|
12
|
Struck TH. TreSpEx-Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information. Evol Bioinform Online 2014; 10:51-67. [PMID: 24701118 PMCID: PMC3972080 DOI: 10.4137/ebo.s14239] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 12/16/2022] Open
Abstract
Phylogenies of species or genes are commonplace nowadays in many areas of comparative biological studies. However, for phylogenetic reconstructions one must refer to artificial signals such as paralogy, long-branch attraction, saturation, or conflict between different datasets. These signals might eventually mislead the reconstruction even in phylogenomic studies employing hundreds of genes. Unfortunately, there has been no program allowing the detection of such effects in combination with an implementation into automatic process pipelines. TreSpEx (Tree Space Explorer) now combines different approaches (including statistical tests), which utilize tree-based information like nodal support or patristic distances (PDs) to identify misleading signals. The program enables the parallel analysis of hundreds of trees and/or predefined gene partitions, and being command-line driven, it can be integrated into automatic process pipelines. TreSpEx is implemented in Perl and supported on Linux, Mac OS X, and MS Windows. Source code, binaries, and additional material are freely available at http://www.annelida.de/research/bioinformatics/software.html.
Collapse
|
13
|
Fernández R, Laumer CE, Vahtera V, Libro S, Kaluziak S, Sharma PP, Pérez-Porro AR, Edgecombe GD, Giribet G. Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol Biol Evol 2014; 31:1500-13. [PMID: 24674821 DOI: 10.1093/molbev/msu108] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relationships between the five extant orders of centipedes have been considered solved based on morphology. Phylogenies based on samples of up to a few dozen genes have largely been congruent with the morphological tree apart from an alternative placement of one order, the relictual Craterostigmomorpha, consisting of two species in Tasmania and New Zealand. To address this incongruence, novel transcriptomic data were generated to sample all five orders of centipedes and also used as a test case for studying gene-tree incongruence. Maximum likelihood and Bayesian mixture model analyses of a data set composed of 1,934 orthologs with 45% missing data, as well as the 389 orthologs in the least saturated, stationary quartile, retrieve strong support for a sister-group relationship between Craterostigmomorpha and all other pleurostigmophoran centipedes, of which the latter group is newly named Amalpighiata. The Amalpighiata hypothesis, which shows little gene-tree incongruence and is robust to the influence of among-taxon compositional heterogeneity, implies convergent evolution in several morphological and behavioral characters traditionally used in centipede phylogenetics, such as maternal brood care, but accords with patterns of first appearances in the fossil record.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Christopher E Laumer
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Varpu Vahtera
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MAZoological Museum, Department of Biology, University of Turku, Turku, Finland
| | - Silvia Libro
- Marine Science Center, Northeastern University, Nahant, MA
| | | | - Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Alicia R Pérez-Porro
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MACentre d'Estudis Avançats de Blanes (CEAB-CSIC), Catalonia, Spain
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
14
|
Weigert A, Helm C, Meyer M, Nickel B, Arendt D, Hausdorf B, Santos SR, Halanych KM, Purschke G, Bleidorn C, Struck TH. Illuminating the Base of the Annelid Tree Using Transcriptomics. Mol Biol Evol 2014; 31:1391-401. [DOI: 10.1093/molbev/msu080] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Helm C, Stevenson PA, Rouse GW, Bleidorn C. Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Weigert A, Helm C, Hausen H, Zakrzewski AC, Bleidorn C. Expression pattern of Piwi-like genes in adult Myzostoma cirriferum (Annelida). Dev Genes Evol 2013; 223:329-34. [PMID: 23609434 DOI: 10.1007/s00427-013-0444-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Piwi-like genes are a subgroup of Argonaute genes which participate as gene regulators by gene silencing. In most bilaterians, such as mouse, human, insects, and zebrafish, their expression is mostly limited to gonadal stem cells. But there are some striking exceptions to this pattern; flatworms and acoels also express Piwi-like genes in somatic stem cells, due to their unique replacement system. Annelid species like Capitella teleta and Platynereis dumerilii express these genes in cells of the posterior growth zone as well as in gonadal stem cells. To investigate the expression pattern of Piwi-like genes in another annelid, we established in situ hybridization for adult Myzostoma cirriferum. Piwi-like gene transcripts recovered in an mRNA-seq library of pooled adult stages of M. cirriferum were expanded using RACE PCR, cloned and sequenced. ML analysis confirmed the identity of both transcripts as part of the Piwi1-like or Piwi2-like subfamily of Argonaute proteins. The results of in situ hybridization studies show that the expression of both Piwi-like genes, Mc-Piwi1 and Mc-Piwi2, is clearly located only in gonadal stem cells, and as such we did not find any evidence for the existence of a posterior growth zone nor expression in somatic stem cells.
Collapse
Affiliation(s)
- Anne Weigert
- Molecular Evolution and Animal Systematics, Institute of Biology, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
17
|
Starrett J, Hedin M, Ayoub N, Hayashi CY. Hemocyanin gene family evolution in spiders (Araneae), with implications for phylogenetic relationships and divergence times in the infraorder Mygalomorphae. Gene 2013; 524:175-86. [DOI: 10.1016/j.gene.2013.04.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/18/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
18
|
Novo M, Riesgo A, Fernández-Guerra A, Giribet G. Pheromone evolution, reproductive genes, and comparative transcriptomics in mediterranean earthworms (annelida, oligochaeta, hormogastridae). Mol Biol Evol 2013; 30:1614-29. [PMID: 23596327 DOI: 10.1093/molbev/mst074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animals inhabiting cryptic environments are often subjected to morphological stasis due to the lack of obvious agents driving selection, and hence chemical cues may be important drivers of sexual selection and individual recognition. Here, we provide a comparative analysis of de novo-assembled transcriptomes in two Mediterranean earthworm species with the objective to detect pheromone proteins and other reproductive genes that could be involved in cryptic speciation processes, as recently characterized in other earthworm species. cDNA libraries of unspecific tissue of Hormogaster samnitica and three different tissues of H. elisae were sequenced in an Illumina Genome Analyzer II or Hi-Seq. Two pheromones, Attractin and Temptin were detected in all tissue samples and both species. Attractin resulted in a reliable marker for phylogenetic inference. Temptin contained multiple paralogs and was slightly overexpressed in the digestive tissue, suggesting that these pheromones could be released with the casts. Genes involved in sexual determination and fertilization were highly expressed in reproductive tissue. This is thus the first detailed analysis of the molecular machinery of sexual reproduction in earthworms.
Collapse
Affiliation(s)
- Marta Novo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, USA.
| | | | | | | |
Collapse
|
19
|
Helm C, Weigert A, Mayer G, Bleidorn C. Myoanatomy ofMyzostoma cirriferum(Annelida, Myzostomida): Implications for the evolution of the myzostomid body plan. J Morphol 2012; 274:456-66. [DOI: 10.1002/jmor.20107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/12/2022]
|
20
|
Riesgo A, Andrade SCS, Sharma PP, Novo M, Pérez-Porro AR, Vahtera V, González VL, Kawauchi GY, Giribet G. Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 2012; 9:33. [PMID: 23190771 PMCID: PMC3538665 DOI: 10.1186/1742-9994-9-33] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/08/2012] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED INTRODUCTION Traditionally, genomic or transcriptomic data have been restricted to a few model or emerging model organisms, and to a handful of species of medical and/or environmental importance. Next-generation sequencing techniques have the capability of yielding massive amounts of gene sequence data for virtually any species at a modest cost. Here we provide a comparative analysis of de novo assembled transcriptomic data for ten non-model species of previously understudied animal taxa. RESULTS cDNA libraries of ten species belonging to five animal phyla (2 Annelida [including Sipuncula], 2 Arthropoda, 2 Mollusca, 2 Nemertea, and 2 Porifera) were sequenced in different batches with an Illumina Genome Analyzer II (read length 100 or 150 bp), rendering between ca. 25 and 52 million reads per species. Read thinning, trimming, and de novo assembly were performed under different parameters to optimize output. Between 67,423 and 207,559 contigs were obtained across the ten species, post-optimization. Of those, 9,069 to 25,681 contigs retrieved blast hits against the NCBI non-redundant database, and approximately 50% of these were assigned with Gene Ontology terms, covering all major categories, and with similar percentages in all species. Local blasts against our datasets, using selected genes from major signaling pathways and housekeeping genes, revealed high efficiency in gene recovery compared to available genomes of closely related species. Intriguingly, our transcriptomic datasets detected multiple paralogues in all phyla and in nearly all gene pathways, including housekeeping genes that are traditionally used in phylogenetic applications for their purported single-copy nature. CONCLUSIONS We generated the first study of comparative transcriptomics across multiple animal phyla (comparing two species per phylum in most cases), established the first Illumina-based transcriptomic datasets for sponge, nemertean, and sipunculan species, and generated a tractable catalogue of annotated genes (or gene fragments) and protein families for ten newly sequenced non-model organisms, some of commercial importance (i.e., Octopus vulgaris). These comprehensive sets of genes can be readily used for phylogenetic analysis, gene expression profiling, developmental analysis, and can also be a powerful resource for gene discovery. The characterization of the transcriptomes of such a diverse array of animal species permitted the comparison of sequencing depth, functional annotation, and efficiency of genomic sampling using the same pipelines, which proved to be similar for all considered species. In addition, the datasets revealed their potential as a resource for paralogue detection, a recurrent concern in various aspects of biological inquiry, including phylogenetics, molecular evolution, development, and cellular biochemistry.
Collapse
Affiliation(s)
- Ana Riesgo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Centro de Estudios Avanzados de Blanes, CSIC, c/ Accés a la Cala St. Francesc 14, Blanes, Girona, 17300, Spain
| | - Sónia C S Andrade
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Prashant P Sharma
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Marta Novo
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Current address: Cardiff School of Biosciences, Cardiff University, BIOSI 1, Museum Avenue, Cardiff, CF10 3TL, UK
| | - Alicia R Pérez-Porro
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Centro de Estudios Avanzados de Blanes, CSIC, c/ Accés a la Cala St. Francesc 14, Blanes, Girona, 17300, Spain
| | - Varpu Vahtera
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Current address: Finnish Museum of Natural History, Zoology Unit, Pohjoinen Rautatiekatu 13, 00014 University of Helsinki, Helsinki, Finland
| | - Vanessa L González
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gisele Y Kawauchi
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
21
|
Helm C, Bernhart SH, Höner zu Siederdissen C, Nickel B, Bleidorn C. Deep sequencing of small RNAs confirms an annelid affinity of Myzostomida. Mol Phylogenet Evol 2012; 64:198-203. [PMID: 22724136 DOI: 10.1016/j.ympev.2012.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myzostomida comprise a group of marine worms associated mainly with echinoderms since the Carboniferous. Due to their unusual morphology the phylogenetic position in relation to other Lophotrochozoa is discussed since their description. According to different morphological and molecular markers the Myzostomida are either close to Platyzoa or Annelida. Here we investigated small non-coding RNAs of Myzostoma cirriferum to infer the phylogenetic position of myzostomids. Based on transcriptomic data collected by Illumina Deep Sequencing we analyzed the microRNA (miRNA) families occurring in M. cirriferum. Phylogenetic analysis revealed the presence of 13 miRNA-families exclusively shared by Annelida (including Sipuncula) and Myzostomida, as such highly significantly supporting an annelid origin of myzostomids. Furthermore, using a mapping-approach and secondary structure models we predicted several miRNA-candidates unique for myzostomids.
Collapse
Affiliation(s)
- Conrad Helm
- Molecular Evolution and Systematics of Animals, Institute of Biology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
22
|
Hedin M, Starrett J, Akhter S, Schönhofer AL, Shultz JW. Phylogenomic resolution of paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLoS One 2012; 7:e42888. [PMID: 22936998 PMCID: PMC3427324 DOI: 10.1371/journal.pone.0042888] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/12/2012] [Indexed: 11/19/2022] Open
Abstract
Next-generation sequencing technologies are rapidly transforming molecular systematic studies of non-model animal taxa. The arachnid order Opiliones (commonly known as "harvestmen") includes more than 6,400 described species placed into four well-supported lineages (suborders). Fossil plus molecular clock evidence indicates that these lineages were diverging in the late Silurian to mid-Carboniferous, with some fossil harvestmen representing the earliest known land animals. Perhaps because of this ancient divergence, phylogenetic resolution of subordinal interrelationships within Opiliones has been difficult. We present the first phylogenomics analysis for harvestmen, derived from comparative RNA-Seq data for eight species representing all suborders. Over 30 gigabases of original Illumina short-read data were used in de novo assemblies, resulting in 50-80,000 transcripts per taxon. Transcripts were compared to published scorpion and tick genomics data, and a stringent filtering process was used to identify over 350 putatively single-copy, orthologous protein-coding genes shared among taxa. Phylogenetic analyses using various partitioning strategies, data coding schemes, and analytical methods overwhelmingly support the "classical" hypothesis of Opiliones relationships, including the higher-level clades Palpatores and Phalangida. Relaxed molecular clock analyses using multiple alternative fossil calibration strategies corroborate ancient divergences within Opiliones that are possibly deeper than the recorded fossil record indicates. The assembled data matrices, comprising genes that are conserved, highly expressed, and varying in length and phylogenetic informativeness, represent an important resource for future molecular systematic studies of Opiliones and other arachnid groups.
Collapse
Affiliation(s)
- Marshal Hedin
- Department of Biology, San Diego State University, San Diego, California, United States of America.
| | | | | | | | | |
Collapse
|