1
|
Eze FN. Transthyretin Amyloidosis: Role of oxidative stress and the beneficial implications of antioxidants and nutraceutical supplementation. Neurochem Int 2024; 179:105837. [PMID: 39154837 DOI: 10.1016/j.neuint.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Vogel J, Carpinteiro A, Luedike P, Buehning F, Wernhart S, Rassaf T, Michel L. Current Therapies and Future Horizons in Cardiac Amyloidosis Treatment. Curr Heart Fail Rep 2024; 21:305-321. [PMID: 38809394 PMCID: PMC11333534 DOI: 10.1007/s11897-024-00669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Cardiac amyloidosis (CA) is a condition characterized by misfolding and extracellular deposition of proteins, leading to organ dysfunction. While numerous forms of CA exist, two subtypes dominate clinical prevalence: Transthyretin amyloid (ATTR) and immunoglobulin light chain amyloid. RECENT FINDINGS The current scientific landscape reflects the urgency to advance therapeutic interventions with over 100 ongoing clinical trials. Heart failure treatment is affected by CA phenotype with poor tolerance of otherwise frequently used medications. Treating comorbidities including atrial fibrillation and valvular disease remains a challenge in CA, driven by technical difficulties and uncertain outcomes. Tafamidis is the first ATTR-stabilizer approved with a rapidly growing rate of clinical use. In parallel, various new therapeutic classes are in late-stage clinical trials including silencers, antibodies and genetic therapy. Managing CA is a critical challenge for future heart failure care. This review delineates the current standard-of-care and scientific landscape of CA therapy.
Collapse
Affiliation(s)
- Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Alexander Carpinteiro
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Simon Wernhart
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
3
|
Wu D, Chen W. Molecular mechanisms and emerging therapies in wild-type transthyretin amyloid cardiomyopathy. Heart Fail Rev 2024; 29:511-521. [PMID: 38233673 PMCID: PMC10942909 DOI: 10.1007/s10741-023-10380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM) is an underrecognized cause of heart failure due to misfolded wild-type transthyretin (TTRwt) myocardial deposition. The development of wild-type TTR amyloid fibrils is a complex pathological process linked to the deterioration of homeostatic mechanisms owing to aging, plausibly implicating multiple molecular mechanisms. The components of amyloid transthyretin often include serum amyloid P, proteoglycans, and clusterin, which may play essential roles in the localization and elimination of amyloid fibrils. Oxidative stress, impaired mitochondrial function, and perturbation of intracellular calcium dynamics induced by TTR contribute to cardiac impairment. Recently, tafamidis has been the only drug approved by the U.S. Food and Drug Administration (FDA) for the treatment of ATTRwt-CM. In addition, small interfering RNAs and antisense oligonucleotides for ATTR-CM are promising therapeutic approaches and are currently in phase III clinical trials. Newly emerging therapies, such as antibodies targeting amyloid, inhibitors of seed formation, and CRISPR‒Cas9 technology, are currently in the early stages of research. The development of novel therapies is based on progress in comprehending the molecular events behind amyloid cardiomyopathy. There is still a need to further advance innovative treatments, providing patients with access to alternative and effective therapies, especially for patients diagnosed at a late stage.
Collapse
Affiliation(s)
- Danni Wu
- Dept. of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Wei Chen
- Dept. of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Zhou J, Li Y, Geng J, Zhou H, Liu L, Peng X. Recent Progress in the Development and Clinical Application of New Drugs for Transthyretin Cardiac Amyloidosis. J Cardiovasc Pharmacol 2023; 82:427-437. [PMID: 37678276 PMCID: PMC10691666 DOI: 10.1097/fjc.0000000000001478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
ABSTRACT Transthyretincardiac amyloidosis is a rare disease that has gained significant attention in recent years because of misfolding of transthyretin fibrils produced by the liver, leading to their deposition in the myocardium. The disease has an insidious onset, nonspecific clinical manifestations, and historically lacked effective drugs, making early diagnosis and treatment challenging. The survival time of patients largely depends on the extent of heart involvement at the time of diagnosis, and conventional treatments for cardiovascular disease do not provide significant benefits. Effective management of the disease requires treatment of its underlying cause. Orthotopic liver transplantation and combined hepato-heart transplantation have been clinically effective means of treating transthyretin cardiac amyloidosis mutants for many years. However, transplantation has many limitations in clinical practice. In recent years, the development of new drugs has brought new hope to patients. This review presents the latest advances in drug development and clinical application to provide a reference for clinicians managing transthyretin cardiac amyloidosis.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Cardiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- Department of Medical, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Li
- Department of Gastroenterology, First Hospital Affiliated to Air Force Medical University, Xian, China
| | - Jing Geng
- Department of Medical, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Hong Zhou
- Department of Medical, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China; and
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023 Hubei, China
| |
Collapse
|
5
|
Durelle C, Delmont E, Michel C, Trabelsi A, Hostin MA, Ogier A, Bendahan D, Attarian S. Quantification of muscle involvement in familial amyloid polyneuropathy using MRI. Eur J Neurol 2023; 30:3286-3295. [PMID: 37422895 DOI: 10.1111/ene.15970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Transthyretin familial amyloid polyneuropathy (TTR-FAP) is a rare genetic disease with autosomal-dominant inheritance. In this study, we aimed to quantify fatty infiltration (fat fraction [FF]) and magnetization transfer ratio (MTR) in individual muscles of patients with symptomatic and asymptomatic TTR-FAP using magnetic resonance imaging. Secondarily, we aimed to assess correlations with clinical and electrophysiological variables. METHODS A total of 39 patients with a confirmed mutation in the TTR gene (25 symptomatic and 14 asymptomatic) and 14 healthy volunteers were included. A total of 16 muscles were manually delineated in the nondominant lower limb from T1-weighted anatomical images. The corresponding masks were propagated on the MTR and FF maps. Detailed neurological and electrophysiological examinations were conducted in each group. RESULTS The MTR was decreased (42.6 AU; p = 0.001) and FF was elevated (14%; p = 0.003) in the lower limbs of the symptomatic group, with preferential posterior and lateral involvement. In the asymptomatic group, elevated FF was quantified in the gastrocnemius lateralis muscle (11%; p = 0.021). FF was significantly correlated with disease duration (r = 0.49, p = 0.015), neuropathy impairment score for the lower limb (r = 0.42, p = 0.041), Overall Neuropathy Limitations Scale score (r = 0.49, p = 0.013), polyneuropathy disability score (r = 0.57, p = 0.03) and the sum of compound muscle action potential (r = 0.52, p = 0.009). MTR was strongly correlated to FF (r = 0.78, p < 0.0001), and a few muscles with an FF within the normal range had a reduced MTR. CONCLUSION These observations suggest that FF and MTR could be interesting biomarkers in TTR-FAP. In asymptomatic patients, FF in the gastrocnemius lateralis muscle could be a good indicator of the transition from an asymptomatic to a symptomatic form of the disease. MTR could be an early biomarker of muscle alterations.
Collapse
Affiliation(s)
- Clémence Durelle
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Emilien Delmont
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| | - Constance Michel
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Amira Trabelsi
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institute Fresnel, Marseille, France
| | - Marc-Adrien Hostin
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Augustin Ogier
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - David Bendahan
- Centre de résonance magnétique biologique et médicale (Crmbm), Marseille, France
| | - Shahram Attarian
- Centre de référence des maladies neuromusculaires et de la SLA, hôpitaux universitaires de Marseille, Marseille, France
| |
Collapse
|
6
|
Zhang W, Ding J, Wang W, Wang D, Pan Y, Xu D. Status and Future Directions of Therapeutics and Prognosis of Cardiac Amyloidosis. Ther Clin Risk Manag 2023; 19:581-597. [PMID: 37457506 PMCID: PMC10348342 DOI: 10.2147/tcrm.s414821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Accumulation of aberrant proteins in the heart causes cardiac amyloidosis, an uncommon and complicated illness. It can be classified into two main types: light chain (AL) and transthyretin (ATTR). The diagnosis of cardiac amyloidosis is challenging due to its non-specific clinical presentation and lack of definitive diagnostic tests. Diagnostic accuracy has increased with the advent of modern imaging methods, including cardiac magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Depending on the severity of cardiac amyloidosis, a number of treatments may be attempted and specified according to the subtype of amyloidosis and the presence of complications. However, there are still significant challenges in treating this condition due to its complexity and lack of effective treatments. The prognosis for patients with cardiac amyloidosis is poor. Despite recent advances in diagnosis and treatment, there is still a need for more effective treatments to improve outcomes for patients with this condition. Therefore, we aim to review the current and future therapeutics reported in the literature and among ongoing clinical trials recruiting patients with CA.
Collapse
Affiliation(s)
- Wenbing Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| | - Duo Wang
- Department of Geriatrics, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| | - Yinping Pan
- Department of Pediatrics, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun, 130000, People’s Republic of China
| |
Collapse
|
7
|
Tsoi MR, Lin JH, Patel AR. Emerging Therapies for Transthyretin Amyloidosis. Curr Oncol Rep 2023; 25:549-558. [PMID: 36943555 DOI: 10.1007/s11912-023-01397-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE OF REVIEW This review provides an overview of the available therapies for treating neuropathic and/or cardiac manifestations of transthyretin amyloidosis (ATTR), as well as investigational therapeutic agents in ongoing clinical trials. We discuss additional emergent approaches towards thwarting this life-threatening disease that until recently was considered virtually untreatable. RECENT FINDINGS Advances in noninvasive diagnostic methods for detecting ATTR have facilitated easier diagnosis and detection at an earlier stage of disease when therapeutic interventions are likely to be more effective. There are now several ATTR-directed treatments that are clinically available, as well as investigational agents that are being studied in clinical trials. Therapeutic strategies include tetramer stabilization, gene silencing, and fibril disruption. ATTR has been historically underdiagnosed. With advances in diagnostic methods and the advent of disease-modifying treatments, early diagnosis and initiation of treatment is revolutionizing management of this disease.
Collapse
Affiliation(s)
- Melissa R Tsoi
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Jeffrey H Lin
- Department of Medicine, Tufts Medical Center, MA, 02111, Boston, USA
| | - Ayan R Patel
- Cardiac Amyloidosis Program, Tufts Medical Center, 800 Washington St., MA, 02111, Boston, USA.
| |
Collapse
|
8
|
Secretan PH, Vieillard V, Thirion O, Annereau M, Yayé HS, Astier A, Paul M, Damy T, Do B. 3D-Printed, Liquid-Filled Capsules of Concentrated and Stabilized Polyphenol Epigallocatechin Gallate, Developed in a Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12020424. [PMID: 36829983 PMCID: PMC9952645 DOI: 10.3390/antiox12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
In vitro studies have shown that epigallocatechin gallate (EGCG), the most potent antioxidant of the green tea polyphenol catechins, is able to effectively prevent the formation of amyloid plaques and induce their clearance. However, its high chemical reactivity promotes high chemical instability, which represents a major obstacle for the development of pharmaceutical forms containing solubilized EGCG, an essential condition for a better systemic passage via the oral route. After discovering that EGCG forms a deep eutectic with choline chloride, we exploited this property to formulate and patent liquid-filled capsules containing 200-800 mg of soluble EGCG in easy-to-administer sizes. The gelatin envelopes used are of the conventional type and their filling has been achieved using 3D printing technology. Not only did the EGCG-choline complex allow the formulation of hydrophilic solutions with a high concentration of active substance but it also contributed significantly to its chemical stability, since after at least 18 months of storage at 25 °C/60% RH and one year at 40 °C/75% RH, the capsules show unchanged hardness, chromatographic profiles and antioxidant activity compared to T0. Preclinical studies in monkeys showed that bioavailability was increased by a factor of 10 compared to marketed capsules comprising EGCG powder. This pharmaceutical development was conducted in the context of upcoming clinical trials to evaluate EGCG alone or in combination when treating transthyretin and light-chain cardiac amyloidosis.
Collapse
Affiliation(s)
| | - Victoire Vieillard
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Olivier Thirion
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Maxime Annereau
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Hassane Sadou Yayé
- Department of Pharmacy, Hôpitaux Universitaires Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Alain Astier
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Muriel Paul
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
- EpidermE, University Paris Est Creteil, 94010 Creteil, France
| | - Thibaud Damy
- Department of Cardiology, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Bernard Do
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| |
Collapse
|
9
|
Zegkos T, Gossios T, Ntelios D, Parcharidou D, Karvounis H, Efthimiadis G. Wild-Type Transthyretin Amyloid Cardiomyopathy: The Gordian-Knot of Novel Therapeutic Regimens. Cardiol Rev 2023; 31:36-41. [PMID: 36469360 DOI: 10.1097/crd.0000000000000427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wild-type TTR amyloidosis (wtATTR) represents a disease difficult to diagnose with poor prognosis. Increased clinical suspicion is key, allowing for timely diagnosis. Until recently, only off-label therapies were available but recent introduction of disease specific therapy has shown potential to alter the natural history of the disease. Tafamidis, the only currently approved drug for the therapy of wtATTR, provided significantly better survival and quality of life. However, not all subgroups of patients derived equal benefit. This, along with the increased cost of treatment raised question on whether treatment should be invariably administered through the wtATTR population. This review aims to summarize current evidence on the natural history and staging systems for wtATTR, as well as available treatment options. Special consideration is given to the selection process of patients who would be expected to gain maximum benefit from tafamidis treatment, based on an ethical and cost-effective point of view.
Collapse
Affiliation(s)
- Thomas Zegkos
- From the 1st Cardiology Department, Center of Cardiomyopathies and Inherited Cardiac Diseases, AHEPA University Hospital, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
10
|
Dasgupta NR. Care of Patients With Transthyretin Amyloidosis: the Roles of Nutrition, Supplements, Exercise, and Mental Health. Am J Cardiol 2022; 185 Suppl 1:S35-S42. [PMID: 36549789 DOI: 10.1016/j.amjcard.2022.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
Transthyretin (ATTR) amyloidosis is a debilitating disease that results in organ failure and eventual death. As the disease progresses, patients experience neurologic, gastrointestinal, and cardiovascular symptoms that increasingly compromise their nutritional status and exercise capacity. These symptoms cause considerable emotional stress and mental health challenges for patients and caregivers. This review summarizes common symptoms and mechanisms associated with malnutrition and exercise intolerance, and sources of emotional stress, and offers therapeutic strategies to address these issues. Although earlier diagnosis and disease-specific treatment are central to caring for patients with ATTR amyloidosis, additional attention to symptom-focused treatments to improve nutritional status, maintain exercise tolerance and capacity, and improve and maintain mental health are also important. In conclusion, a team-based approach involving multiple clinicians and providers can offer more comprehensive and coordinated care, support, and education for patients and caregivers.
Collapse
Affiliation(s)
- Noel R Dasgupta
- Department of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
11
|
Manganelli F, Fabrizi GM, Luigetti M, Mandich P, Mazzeo A, Pareyson D. Hereditary transthyretin amyloidosis overview. Neurol Sci 2022; 43:595-604. [PMID: 33188616 PMCID: PMC9780126 DOI: 10.1007/s10072-020-04889-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 01/12/2023]
Abstract
Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis is a rare autosomal dominantly inherited disorder caused by mutations in the transthyretin (TTR) gene. The pathogenetic model of ATTRv amyloidosis indicates that amyloidogenic, usually missense, mutations destabilize the native TTR favouring the dissociation of the tetramer into partially unfolded species that self-assemble into amyloid fibrils. Amyloid deposits and monomer-oligomer toxicity are the basis of multisystemic ATTRv clinical involvement. Peripheral nervous system (autonomic and somatic) and heart are the most affected sites. In the last decades, a better knowledge of pathomechanisms underlying the disease led to develop novel and promising drugs that are rapidly changing the natural history of ATTRv amyloidosis. Thus, clinicians face the challenge of timely diagnosis for addressing patients to appropriate treatment. As well, the progressive nature of ATTRv raises the issue of presymptomatic testing and risk management of carriers. The main aim of this review was to focus on what we know about ATTRv so far, from pathogenesis to clinical manifestations, diagnosis and hence patient's monitoring and treatment, and from presymptomatic testing to management of carriers.
Collapse
Affiliation(s)
- Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy.
| | - Gian Maria Fabrizi
- Section of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli. UOC Neurologia, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health (DINOGMI), University of Genoa, Genova, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Anna Mazzeo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Pareyson
- Rare Neurodegenerative and Neurometabolic Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Searching for the Best Transthyretin Aggregation Protocol to Study Amyloid Fibril Disruption. Int J Mol Sci 2021; 23:ijms23010391. [PMID: 35008816 PMCID: PMC8745744 DOI: 10.3390/ijms23010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.
Collapse
|
13
|
Molecular Mechanisms of Cardiac Amyloidosis. Int J Mol Sci 2021; 23:ijms23010025. [PMID: 35008444 PMCID: PMC8744761 DOI: 10.3390/ijms23010025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiac involvement has a profound effect on the prognosis of patients with systemic amyloidosis. Therapeutic methods for suppressing the production of causative proteins have been developed for ATTR amyloidosis and AL amyloidosis, which show cardiac involvement, and the prognosis has been improved. However, a method for removing deposited amyloid has not been established. Methods for reducing cytotoxicity caused by amyloid deposition and amyloid precursor protein to protect cardiovascular cells are also needed. In this review, we outline the molecular mechanisms and treatments of cardiac amyloidosis.
Collapse
|
14
|
Gonzalez-Duarte A, Ulloa-Aguirre A. A Brief Journey through Protein Misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). Int J Mol Sci 2021; 22:ijms222313158. [PMID: 34884963 PMCID: PMC8658192 DOI: 10.3390/ijms222313158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/23/2022] Open
Abstract
Transthyretin (TTR) amyloidogenesis involves the formation, aggregation, and deposition of amyloid fibrils from tetrameric TTR in different organs and tissues. While the result of amyloidoses is the accumulation of amyloid fibrils resulting in end-organ damage, the nature, and sequence of the molecular causes leading to amyloidosis may differ between the different variants. In addition, fibril accumulation and toxicity vary between different mutations. Structural changes in amyloidogenic TTR have been difficult to identify through X-ray crystallography; but nuclear magnetic resonance spectroscopy has revealed different chemical shifts in the backbone structure of mutated and wild-type TTR, resulting in diverse responses to the cellular conditions or proteolytic stress. Toxic mechanisms of TTR amyloidosis have different effects on different tissues. Therapeutic approaches have evolved from orthotopic liver transplants to novel disease-modifying therapies that stabilize TTR tetramers and gene-silencing agents like small interfering RNA and antisense oligonucleotide therapies. The underlying molecular mechanisms of the different TTR variants could be responsible for the tropisms to specific organs, the age at onset, treatment responses, or disparities in the prognosis.
Collapse
Affiliation(s)
- Alejandra Gonzalez-Duarte
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Col. Belisario Dominguez Sección XV, Tlalpan, Mexico City 14080, Mexico
- Correspondence:
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico;
| |
Collapse
|
15
|
Chandrasekhar G, Srinivasan E, Sekar PC, Venkataramanan S, Rajasekaran R. Molecular simulation probes the potency of resveratrol in regulating the toxic aggregation of mutant V30M TTR fibrils in Transthyretin mediated amyloidosis. J Mol Graph Model 2021; 110:108055. [PMID: 34688163 DOI: 10.1016/j.jmgm.2021.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) mediated amyloidosis is a highly ruinous illness that affects various organs by aggravating the deposition of misfolded or mutated TTR protein aggregates in tissues. Hence, hindering the formation of TTR amyloid aggregates could be a key strategy in finding an effective cure towards the aggravating disorder. In this analysis, we examined the subversive nature of point mutation, V30M, in TTR that promotes amyloidogenicity using discrete molecular dynamics (DMD) simulations. Besides, we probed the association of naturally occurring polyphenols: EGCG (a proven anti TTR aggregation agent as positive control), resveratrol and curcumin in mitigating the pathogenic repercussions of mutant TTR. Results from the computational studies endorsed that the resveratrol constitutes a restorative potential to subjugate TTR mediated amyloidosis, besides EGCG. Hence, this study could be a reminiscent aspect in understanding the inhibitory role of key polyphenols against the mutant TTR aggregates, which could be an aid towards structure-based drug design in the upcoming research era on familial amyloid disorders.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India
| | - E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India; Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P Chandra Sekar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India
| | - S Venkataramanan
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
16
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
17
|
Capustin M, Frishman WH. Transthyretin Cardiac Amyloidosis and Novel Therapies to Treat This Not-so-rare Cause of Cardiomyopathy. Cardiol Rev 2021; 29:263-273. [PMID: 34397539 DOI: 10.1097/crd.0000000000000387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transthyretin cardiac amyloidosis (ATTR-CA) is typically a late-onset disease caused by the deposit of transthyretin amyloid fibrils throughout the heart. When this occurs, various cardiac sequelae can develop, including hypotension, conduction abnormalities, and valvular lesions. The cardiomyopathy caused by ATTR-CA (ATTR-CM) has proven difficult to treat. Until recently, symptomatic management was the only therapeutic option, and many therapies used to treat congestive heart failure were ineffective or even detrimental to patients with ATTR-CM. In addition, treatment was limited to heart and liver transplantation. As a result, prognosis was poor. Recently, a few drug therapies have come to light as potential treatment modalities for ATTR-CM, most notably tafamidis, sold under the brand names Vyndaqel and Vyndamax. After the phase III Transthyretin Amyloidosis Cardiomyopathy trial displayed the drug's efficacy, it was given breakthrough therapy designation and was approved by the Food and Drug Administration on May 6, 2019, for the treatment of ATTR-CA. This novel therapy, as well as various other therapies in the pipeline, such as inotersen and patisiran, provide hope where, until recently, there was little. Unfortunately, the exorbitant cost of these new therapies may present a barrier to long-term treatment for some patients. However, by further improving diagnostic algorithms and incorporating these new treatments into our existing therapeutic modalities, patients with ATTR-CA should be able to live far longer than previously expected. Finally, further research combining these novel treatment modalities must be done, as they may prove to be additive or even synergistic in their treatment of ATTR amyloidosis.
Collapse
Affiliation(s)
- Matthew Capustin
- From the Department of Medicine, Zucker School of Medicine/Northwell Northshore-Long Island Jewish Medical Center, Manhasset, NY
| | - William H Frishman
- Department of Medicine and Cardiology, New York Medicine and Westchester Medical Center, Valhalla, NY
| |
Collapse
|
18
|
Adsi H, Levkovich SA, Haimov E, Kreiser T, Meli M, Engel H, Simhaev L, Karidi-Heller S, Colombo G, Gazit E, Laor Bar-Yosef D. Chemical Chaperones Modulate the Formation of Metabolite Assemblies. Int J Mol Sci 2021; 22:9172. [PMID: 34502079 PMCID: PMC8431448 DOI: 10.3390/ijms22179172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
The formation of amyloid-like structures by metabolites is associated with several inborn errors of metabolism (IEMs). These structures display most of the biological, chemical and physical properties of protein amyloids. However, the molecular interactions underlying the assembly remain elusive, and so far, no modulating therapeutic agents are available for clinical use. Chemical chaperones are known to inhibit protein and peptide amyloid formation and stabilize misfolded enzymes. Here, we provide an in-depth characterization of the inhibitory effect of osmolytes and hydrophobic chemical chaperones on metabolite assemblies, thus extending their functional repertoire. We applied a combined in vivo-in vitro-in silico approach and show their ability to inhibit metabolite amyloid-induced toxicity and reduce cellular amyloid content in yeast. We further used various biophysical techniques demonstrating direct inhibition of adenine self-assembly and alteration of fibril morphology by chemical chaperones. Using a scaffold-based approach, we analyzed the physiochemical properties of various dimethyl sulfoxide derivatives and their role in inhibiting metabolite self-assembly. Lastly, we employed whole-atom molecular dynamics simulations to elucidate the role of hydrogen bonds in osmolyte inhibition. Our results imply a dual mode of action of chemical chaperones as IEMs therapeutics, that could be implemented in the rational design of novel lead-like molecules.
Collapse
Affiliation(s)
- Hanaa Adsi
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (H.A.); (S.A.L.); (T.K.)
| | - Shon A. Levkovich
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (H.A.); (S.A.L.); (T.K.)
| | - Elvira Haimov
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (E.H.); (H.E.); (L.S.)
| | - Topaz Kreiser
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (H.A.); (S.A.L.); (T.K.)
| | | | - Hamutal Engel
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (E.H.); (H.E.); (L.S.)
| | - Luba Simhaev
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (E.H.); (H.E.); (L.S.)
| | - Shai Karidi-Heller
- The Future Scientists Center–Alpha Program at Tel Aviv Youth University, Tel Aviv 6997801, Israel;
| | - Giorgio Colombo
- SCITEC-CNR, via Mario Bianco 9, 20131 Milano, Italy; (M.M.); (G.C.)
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (H.A.); (S.A.L.); (T.K.)
- BLAVATNIK CENTER for Drug Discovery, Tel Aviv University, Tel Aviv 6997801, Israel; (E.H.); (H.E.); (L.S.)
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dana Laor Bar-Yosef
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (H.A.); (S.A.L.); (T.K.)
| |
Collapse
|
19
|
Polyphenols Epigallocatechin Gallate and Resveratrol, and Polyphenol-Functionalized Nanoparticles Prevent Enterovirus Infection through Clustering and Stabilization of the Viruses. Pharmaceutics 2021; 13:pharmaceutics13081182. [PMID: 34452144 PMCID: PMC8398301 DOI: 10.3390/pharmaceutics13081182] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023] Open
Abstract
To efficiently lower virus infectivity and combat virus epidemics or pandemics, it is important to discover broadly acting antivirals. Here, we investigated two naturally occurring polyphenols, Epigallocatechin gallate (EGCG) and Resveratrol (RES), and polyphenol-functionalized nanoparticles for their antiviral efficacy. Concentrations in the low micromolar range permanently inhibited the infectivity of high doses of enteroviruses (107 PFU/mL). Sucrose gradient separation of radiolabeled viruses, dynamic light scattering, transmission electron microscopic imaging and an in-house developed real-time fluorescence assay revealed that polyphenols prevented infection mainly through clustering of the virions into very stable assemblies. Clustering and stabilization were not compromised even in dilute virus solutions or after diluting the polyphenols-clustered virions by 50-fold. In addition, the polyphenols lowered virus binding on cells. In silico docking experiments of these molecules against 2- and 3-fold symmetry axes of the capsid, using an algorithm developed for this study, discovered five binding sites for polyphenols, out of which three were novel binding sites. Our results altogether suggest that polyphenols exert their antiviral effect through binding to multiple sites on the virion surface, leading to aggregation of the virions and preventing RNA release and reducing cell surface binding.
Collapse
|
20
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
21
|
González-Burgos E, Ureña-Vacas I, Sánchez M, Gómez-Serranillos MP. Nutritional Value of Moringa oleifera Lam. Leaf Powder Extracts and Their Neuroprotective Effects via Antioxidative and Mitochondrial Regulation. Nutrients 2021; 13:nu13072203. [PMID: 34206952 PMCID: PMC8308447 DOI: 10.3390/nu13072203] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Age-related neurodegenerative disorders are an increasing public health problem. Oxidative stress is one of the major causes. Medicinal plant-based functional foods can be effective for these diseases. The aim of this work is to investigate the neuroprotective role of methanol extracts of Moringa oleifera leaf powder on antioxidant/oxidant imbalance and mitochondrial regulation in a H2O2-induced oxidative stress model in human neuroblastoma cells. On nutritional analysis, results showed that moringa contained 28.50% carbohydrates, 25.02% proteins, 10.42% fat, 11.83% dietary fiber, 1.108 mg β-carotene, 326.4 µg/100 g vitamin B1 and 15.2 mg/100 g vitamin C. In-vitro assays revealed that moringa methanol extracts had more phenolic content and higher antioxidant activity than acetone extracts. Moreover, pretreatments with methanol extracts showed a protective effect against H2O2-induced oxidative damage through increasing cell viability and reducing free radicals. Furthermore, the extract decreased lipid peroxidation and enhanced glutathione levels and antioxidant enzyme activity. Finally, moringa also prevented mitochondrial dysfunction by regulating calcium levels and increasing mitochondrial membrane potential. The most active concentration was 25 µg/mL. In summary, the nutritional and functional properties of Moringa oleifera as a neuroprotective agent could be beneficial to protect against oxidative stress and provide necessary nutrients for a healthy diet.
Collapse
|
22
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
23
|
Palit P, Chattopadhyay D, Thomas S, Kundu A, Kim HS, Rezaei N. Phytopharmaceuticals mediated Furin and TMPRSS2 receptor blocking: can it be a potential therapeutic option for Covid-19? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153396. [PMID: 33380375 PMCID: PMC7591300 DOI: 10.1016/j.phymed.2020.153396] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Currently, novel coronavirus disease (Covid-19) outbreak creates global panic across the continents, as people from almost all countries and territories have been affected by this highly contagious viral disease. The scenario is deteriorating due to lack of proper & specific target-oriented pharmacologically safe prophylactic agents or drugs, and or any effective vaccine. drug development is urgently required to back in the normalcy in the community and to combat this pandemic. PURPOSE Thus, we have proposed two novel drug targets, Furin and TMPRSS2, as Covid-19 treatment strategy. We have highlighted this target-oriented novel drug delivery strategy, based on their pathophysiological implication on SARS-CoV-2 infection, as evident from earlier SARS-CoV-1, MERS, and influenza virus infection via host cell entry, priming, fusion, and endocytosis. STUDY DESIGN & METHODS: An earlier study suggested that Furin and TMPRSS2 knockout mice had reduced level of viral load and a lower degree of organ damage such as the lung. The present study thus highlights the promise of some selected novel and potential anti-viral Phytopharmaceutical that bind to Furin and TMPRSS2 as target. RESULT Few of them had shown promising anti-viral response in both preclinical and clinical study with acceptable therapeutic safety-index. CONCLUSION Hence, this strategy may limit life-threatening Covid-19 infection and its mortality rate through nano-suspension based intra-nasal or oral nebulizer spray, to treat mild to moderate SARS-COV-2 infection when Furin and TMPRSS2 receptor may initiate to express and activate for processing the virus to cause cellular infection by replication within the host cell and blocking of host-viral interaction.
Collapse
Affiliation(s)
- Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, Assam-788011 India.
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kerala 686 560, India.
| | - Amit Kundu
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14194, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
24
|
Addison D, Slivnick JA, Campbell CM, Vallakati A, Jneid H, Schelbert E. Recent Advances and Current Dilemmas in the Diagnosis and Management of Transthyretin Cardiac Amyloidosis. J Am Heart Assoc 2021; 10:e019840. [PMID: 33899502 PMCID: PMC8200718 DOI: 10.1161/jaha.120.019840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac amyloidosis (CA) is an increasingly recognized cause of heart failure, arrhythmias, and sudden cardiac death. While CA was previously rapidly fatal, recent advances in diagnosis and treatment have significantly improved outcomes. Advances in cardiac imaging and biomarkers have critically improved the accuracy and efficiency with which CA is diagnosed, even allowing for the noninvasive diagnosis of transthyretin CA. Cardiac magnetic resonance imaging, technetium nuclear imaging, echocardiography, and blood-based biomarkers have established important and complementary roles in the management and advancement of care. At the same time, the development of novel targeted amyloid therapies has allowed patients with CA to live longer and potentially achieve better quality of life. Still, despite this significant progress, there remain critical ongoing questions in the field. Accordingly, within this review we will highlight recent advances in cardiac imaging and therapeutics for CA, while focusing on key opportunities for further optimization of care and outcomes among this growing population. Specifically, we will discuss ongoing debates in the diagnosis of CA, including the interpretation of indeterminate cardiac imaging findings, the best technique to screen asymptomatic transthyretin amyloidosis gene mutation carriers for cardiac involvement, and the ideal method for monitoring response to CA treatment. We will additionally focus on recent advances in treatment for transthyretin amyloidosis-CA, including a discussion of available agents as well as highlighting ongoing clinical trials. Together, these data will allow clinicians to emerge with a greater understanding of the present and future of diagnosis, management, and potentially enhanced outcomes in this rapidly advancing field.
Collapse
Affiliation(s)
- Daniel Addison
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Jeremy A Slivnick
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Courtney M Campbell
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Ajay Vallakati
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Hani Jneid
- Division of Cardiology Baylor College of MedicineMichael E. DeBakey VA Medical Center Houston TX
| | - Erik Schelbert
- Division of Cardiology Department of Internal Medicine University of Pittsburgh PA
| |
Collapse
|
25
|
Diphenyl-Methane Based Thyromimetic Inhibitors for Transthyretin Amyloidosis. Int J Mol Sci 2021; 22:ijms22073488. [PMID: 33800546 PMCID: PMC8038088 DOI: 10.3390/ijms22073488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Thyromimetics, whose physicochemical characteristics are analog to thyroid hormones (THs) and their derivatives, are promising candidates as novel therapeutics for neurodegenerative and metabolic pathologies. In particular, sobetirome (GC-1), one of the initial halogen-free thyromimetics, and newly synthesized IS25 and TG68, with optimized ADME-Tox profile, have recently attracted attention owing to their superior therapeutic benefits, selectivity, and enhanced permeability. Here, we further explored the functional capabilities of these thyromimetics to inhibit transthyretin (TTR) amyloidosis. TTR is a homotetrameric transporter protein for THs, yet it is also responsible for severe amyloid fibril formation, which is facilitated by tetramer dissociation into non-native monomers. By combining nuclear magnetic resonance (NMR) spectroscopy, computational simulation, and biochemical assays, we found that GC-1 and newly designed diphenyl-methane-based thyromimetics, namely IS25 and TG68, are TTR stabilizers and efficient suppressors of TTR aggregation. Based on these observations, we propose the novel potential of thyromimetics as a multi-functional therapeutic molecule for TTR-related pathologies, including neurodegenerative diseases.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Cardiac amyloidosis is an underrecognized cause of heart failure. We review clinical clues to the diagnoses, a rational approach to testing, and current and emerging therapies. RECENT FINDINGS Advances in the diagnosis of amyloid cardiomyopathy include (1) use of 99mtechnetium (99mTc) bone-avid compounds which allow accurate noninvasive diagnosis of transthyretin cardiac amyloidosis (ATTR-CM) in the context of a negative monoclonal light chain screen; and (2) the use of serum and urine immunofixation electrophoresis with serum free light chains as an accurate first diagnostic step for light chain cardiac amyloidosis (AL-CM). Advances in treatment include tafamidis for ATTR-CM and immunologic therapies for AL-CM. With the advent of accurate noninvasive diagnostic modalities and effective therapies, early recognition of cardiac amyloidosis is paramount to implement a diagnostic algorithm and expeditiously institute effective therapies to minimize morbidity and mortality.
Collapse
|
27
|
Cruz Rodriguez JB, Tallaj JA. Narrative review of pharmacotherapy for transthyretin cardiac amyloid. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:519. [PMID: 33850916 PMCID: PMC8039703 DOI: 10.21037/atm-20-4636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of cardiac amyloidosis is determined by the amyloid type and degree of involvement. Two types of amyloid commonly infiltrate the heart: immunoglobulin light-chain amyloid (AL), and transthyretin amyloid (ATTR), that encompasses other two forms, a hereditary form (hATTR), and a sporadic, age-related wild-type (wtATTR). The prevalence is expected to increase with aging population. The natural history of ATTR cardiomyopathy includes progressive heart failure (HF), complicated by arrhythmias and conduction system disease. New therapies options have been approved or are under investigation. We performed a narrative literature review, manually-searched the reference lists of included articles and relevant reviews. Treatment for cardiac ATTR should be directed towards alleviation of HF symptoms and to slow or stop progressive amyloid deposition. Conventional HF medications are poorly tolerated and may not alter the disease progression or symptoms, except perhaps with the administration of diuretics. There are three approaches of therapy for ATTR cardiomyopathy: tetramer stabilizers, inhibition of ATTR protein synthesis and clearance of deposited fibrils. Tafamidis diminishes the progression of cardiomyopathy, functional parameters, improves overall outcome in patients with early disease stages, irrespective of ATTR status and is well tolerated. Diflunisal has shown promising results in early studies, but at the expense of significant side effects. Two new agents, antisense oligonucleotides, patisiran and inotersen are under investigation in cardiac amyloidosis. Patisiran appears to be the most effective treatment for hATTR, although evidence is limited, with a relatively small cardiac subpopulation. Therapies considering clearance of amyloid fibrils from tissue remain experimental. In conclusion, tafamidis is the only approved agent for the treatment of ATTR cardiomyopathy although multiple other agents have shown promising early results and are undergoing clinical trials. Careful consideration of the type of ATTR, comorbidities and disease stage will be key in deciding the optimal therapy for ATTR patients.
Collapse
Affiliation(s)
- Jose B Cruz Rodriguez
- Division of Cardiovascular Diseases, Texas Tech University Health Science Center El Paso, El Paso, TX, USA
| | - Jose A Tallaj
- Division of Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Medicine, Birmingham VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
28
|
Canadian Guidelines for Hereditary Transthyretin Amyloidosis Polyneuropathy Management. Can J Neurol Sci 2021; 49:7-18. [PMID: 33631091 DOI: 10.1017/cjn.2021.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hereditary transthyretin-mediated (hATTR) amyloidosis is a progressive disease caused by mutations in the TTR gene leading to multisystem organ dysfunction. Pathogenic TTR aggregation, misfolding, and fibrillization lead to deposition of amyloid in multiple body organs and frequently involve the peripheral nerve system and the heart. Common neurologic manifestations include: sensorimotor polyneuropathy (PN), autonomic neuropathy, small-fiber PN, and carpal tunnel syndrome. Many patients have significant progression due to diagnostic delays as hATTR PN is not considered within the differential diagnosis. Recently, two effective novel disease-modifying therapies, inotersen and patisiran, were approved by Health Canada for the treatment of hATTR PN. Early diagnosis is crucial for the timely introduction of these disease-modifying treatments that reduce impairments, improve quality of life, and extend survival. In this guideline, we aim to improve awareness and outcomes of hATTR PN by making recommendations directed to the diagnosis, monitoring, and treatment in Canada.
Collapse
|
29
|
Evaluation of Dimer of Epicatechin from an Endophytic Fungus Curvularia australiensis FC2AP on Acute Toxicity Levels, Anti-Inflammatory and Anti-Cervical Cancer Activity in Animal Models. Molecules 2021; 26:molecules26030654. [PMID: 33513835 PMCID: PMC7866062 DOI: 10.3390/molecules26030654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer, as the most frequent cancer in women globally and accounts almost 14% in India. It can be prevented or treated with vaccines, radiation, chemotherapy, and brachytherapy. The chemotherapeutic agents cause adverse post effects by the destruction of the neighboring normal cells or altering the properties of the cells. In order to reduce the severity of the side effects caused by the chemically synthesized therapeutic agents, the current research developed an anti-cancer agent dimer of epicatechin (DoE), a natural bioactive secondary metabolite (BSM) mediated from an endophytic fungus Curvularia australiensis FC2AP. The investigation has initiated with the evaluation of inhibiting the angiogenesis which is a main activity in metastasis, and it was assessed through Hen’s Egg Test on Chorio Allantoic Membrane (HET-CAM) test; the BSM inhibited the growth of blood vessels in the developing chick embryo. Further the DoE was evaluated for its acute toxicity levels in albino mice, whereas the survival dose was found to be 1250 mg/kg and the lethal dose was 1500 mg/kg body weight of albino mice; hematological, biochemical, and histopathological analyses were assessed. The anti-inflammatory responses of the DoE were evaluated in carrageenan induced Wistar rats and the reduction of inflammation occurred in a dose-dependent manner. By fixing the effective dose for anti-inflammation analysis, the DoE was taken for the anti-cervical cancer analysis in benzo (a) pyrene induced female Sprague-Dawley rats for 60 days trial. After the stipulated days, the rats were taken for hematological antioxidants, lipid peroxidation (LPO), member bound enzymes, cervical histopathological and carcinogenic markers analyses. The results specified that the DoE has the capability of reducing the tumor in an efficient way. This is the first report of flavonoid-DoE production from an endophytic fungus C. australiensis has the anticancer potentiality and it can be stated as anti-cancer drug.
Collapse
|
30
|
Bezerra F, Saraiva MJ, Almeida MR. Modulation of the Mechanisms Driving Transthyretin Amyloidosis. Front Mol Neurosci 2020; 13:592644. [PMID: 33362465 PMCID: PMC7759661 DOI: 10.3389/fnmol.2020.592644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transthyretin (TTR) amyloidoses are systemic diseases associated with TTR aggregation and extracellular deposition in tissues as amyloid. The most frequent and severe forms of the disease are hereditary and associated with amino acid substitutions in the protein due to single point mutations in the TTR gene (ATTRv amyloidosis). However, the wild type TTR (TTR wt) has an intrinsic amyloidogenic potential that, in particular altered physiologic conditions and aging, leads to TTR aggregation in people over 80 years old being responsible for the non-hereditary ATTRwt amyloidosis. In normal physiologic conditions TTR wt occurs as a tetramer of identical subunits forming a central hydrophobic channel where small molecules can bind as is the case of the natural ligand thyroxine (T4). However, the TTR amyloidogenic variants present decreased stability, and in particular conditions, dissociate into partially misfolded monomers that aggregate and polymerize as amyloid fibrils. Therefore, therapeutic strategies for these amyloidoses may target different steps in the disease process such as decrease of variant TTR (TTRv) in plasma, stabilization of TTR, inhibition of TTR aggregation and polymerization or disruption of the preformed fibrils. While strategies aiming decrease of the mutated TTR involve mainly genetic approaches, either by liver transplant or the more recent technologies using specific oligonucleotides or silencing RNA, the other steps of the amyloidogenic cascade might be impaired by pharmacologic compounds, namely, TTR stabilizers, inhibitors of aggregation and amyloid disruptors. Modulation of different steps involved in the mechanism of ATTR amyloidosis and compounds proposed as pharmacologic agents to treat TTR amyloidosis will be reviewed and discussed.
Collapse
Affiliation(s)
- Filipa Bezerra
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, IBMC-Instituto de Biologia Molecular e Celular, i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Department of Molecular Biology, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Advances in Treatment of ATTRv Amyloidosis: State of the Art and Future Prospects. Brain Sci 2020; 10:brainsci10120952. [PMID: 33316911 PMCID: PMC7763612 DOI: 10.3390/brainsci10120952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary amyloid transthyretin (ATTRv) amyloidosis with polyneuropathy is a progressive disease that is transmitted as an autosomal dominant trait and characterized by multiple organ failure, including axonal sensory-motor neuropathy, cardiac involvement, and autonomic dysfunction. Liver transplantation (LT) and combined heart-liver transplantation, introduced in the 1990s, have been the only therapies for almost two decades. In 2011, tafamidis meglumine became the first specific drug approved by regulatory agencies, since then the attention toward this disease has progressively increased and several drugs with different mechanisms of action are now available. This review describes the drugs already on the market, those that have shown interesting results although not yet approved, and those currently being tested.
Collapse
|
32
|
Dohrn MF, Ihne S, Hegenbart U, Medina J, Züchner SL, Coelho T, Hahn K. Targeting transthyretin - Mechanism-based treatment approaches and future perspectives in hereditary amyloidosis. J Neurochem 2020; 156:802-818. [PMID: 33155274 DOI: 10.1111/jnc.15233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
The liver-derived, circulating transport protein transthyretin (TTR) is the cause of systemic hereditary (ATTRv) and wild-type (ATTRwt) amyloidosis. TTR stabilization and knockdown are approved therapies to mitigate the otherwise lethal disease course. To date, the variety in phenotypic penetrance is not fully understood. This systematic review summarizes the current literature on TTR pathophysiology with its therapeutic implications. Tetramer dissociation is the rate-limiting step of amyloidogenesis. Besides destabilizing TTR mutations, other genetic (RBP4, APCS, AR, ATX2, C1q, C3) and external (extracellular matrix, Schwann cell interaction) factors influence the type of onset and organ tropism. The approved small molecule tafamidis stabilizes the tetramer and significantly decelerates the clinical course. By sequence-specific mRNA knockdown, the approved small interfering RNA (siRNA) patisiran and antisense oligonucleotide (ASO) inotersen both significantly reduce plasma TTR levels and improve neuropathy and quality of life compared to placebo. With enhanced hepatic targeting capabilities, GalNac-conjugated siRNA and ASOs have recently entered phase III clinical trials. Bivalent TTR stabilizers occupy both binding groves in vitro, but have not been tested in trials so far. Tolcapone is another stabilizer with the potential to cross the blood-brain barrier, but its half-life is short and liver failure a potential side effect. Amyloid-directed antibodies and substances like doxycycline aim at reducing the amyloid load, however, none of the yet developed antibodies has successfully passed clinical trials. ATTR-amyloidosis has become a model disease for pathophysiology-based treatment. Further understanding of disease mechanisms will help to overcome the remaining limitations, including application burden, side effects, and blood-brain barrier permeability.
Collapse
Affiliation(s)
- Maike F Dohrn
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sandra Ihne
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany.,Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), University and University Hospital Würzburg, Würzburg, Germany
| | - Ute Hegenbart
- Amyloidosis Center Heidelberg, Department of Internal Medicine V, Division of Hematology/Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jessica Medina
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Stephan L Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Teresa Coelho
- Andrade's Center for Familial Amyloidosis, University of Porto, Porto, Portugal.,Department of Neurosciences, Hospital de Santo António, Centro Hospitalar Do Porto, University of Porto, Porto, Portugal
| | - Katrin Hahn
- Department of Neurology, Charité University Medicine, Berlin, Germany.,Amyloidosis Center Charité Berlin (ACCB), Charité University Medicine, Berlin, Germany
| |
Collapse
|
33
|
Terry C. Insights from nature: A review of natural compounds that target protein misfolding in vivo. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Spoladore R, Falasconi G, Marcatti M, Di Maio S, Fiore G, Slavich M, Margonato A, Turco A, Fragasso G. Advances in pharmacotherapy for cardiac amyloidosis. Expert Opin Pharmacother 2020; 22:469-481. [PMID: 33043721 DOI: 10.1080/14656566.2020.1836159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Amyloidosis is a group of progressive and devastating disorders resulting from extracellular deposition of misfolded proteins into tissues. When deposition of fibrils occurs in cardiac tissues, this systemic disease can lead to a very poor prognosis. Systemic amyloidosis can be acquired [light chain (AL) amyloidosis; AA amyloidosis], or hereditary [transthyretin (ATTR) amyloidosis]. Cardiac disease in amyloidosis is usually secondary to a systemic disease. The diagnosis of cardiac involvement is often delayed and yields an adverse prognosis. AREAS COVERED in this review, the authors report current literature on advances in pharmacotherapy for cardiac amyloidosis, mainly focused on AL and ATTR amyloidosis treatment. EXPERT OPINION Most pharmacological trials in amyloidosis patients, both AL and TTR, are directed to study the effects of drugs on polyneuropathy. However, since cardiac involvement carries a prominent negative survival impact in amyloidosis patients, future research should be more focused on amyloidosis cardiomyopathy as primary endpoint. Additionally, in AL amyloidosis therapies are mainly derived from experience on multiple myeloma treatment. In this specific setting, possible future research could particularly focus on immunotherapeutic agents able to optimize the standard chemotherapy results and, thus, allowing a larger population of patients to be treated by bone marrow stem cell transplantation.
Collapse
Affiliation(s)
- R Spoladore
- Hypertrophic Cardiomyopathy Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - G Falasconi
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - M Marcatti
- Haematology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - S Di Maio
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - G Fiore
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - M Slavich
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| | - A Margonato
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - A Turco
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - G Fragasso
- Clinical Cardiology Unit, IRCCS San Raffaele University Hospital, Milan, Italy.,Heart Failure Unit, IRCCS San Raffaele University Hospital, Milan, Italy
| |
Collapse
|
35
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
36
|
Zhang S, Cao M, Fang F. The Role of Epigallocatechin-3-Gallate in Autophagy and Endoplasmic Reticulum Stress (ERS)-Induced Apoptosis of Human Diseases. Med Sci Monit 2020; 26:e924558. [PMID: 32952149 PMCID: PMC7504867 DOI: 10.12659/msm.924558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tea containing abundant catechins is a popular non-alcoholic beverage worldwide. Epigallocatechin-3-gallate (EGCG) is the predominately active substance in catechins, exhibiting a wide range of functional properties including cancer suppression, neuroprotective, metabolic regulation, cardiovascular protection, stress adjustment, and antioxidant in various diseases. Autophagy, a basic cell function, participates in various physiological processes which include clearing away abnormally folded proteins and damaged organelles, and regulating growth. EGCG not only regulates autophagy via increasing Beclin-1 expression and reactive oxygen species generation, but also causing LC3 transition and decreasing p62 expression. EGCG-induced autophagy is involved in the occurrence and development of many human diseases, including cancer, neurological diseases, diabetes, cardiovascular diseases, and injury. Apoptosis is a common cell function in biology and is induced by endoplasmic reticulum stress (ERS) as a cellular stress response which is caused by various internal and external factors. ERS-induced apoptosis of EGCG influences cell survival and death in various diseases via regulating IRE1, ATF6, and PERK signaling pathways, and activating GRP78 and caspase proteins. The present manuscript reviews that the effect of EGCG in autophagy and ERS-induced apoptosis of human diseases.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Dermatology, Shanghai Xuhui District Central Hospital, Shanghai, China (mainland)
| | - Mengke Cao
- Department of Dermatology, Jinshan Hospital of Fudan University, Shanghai, China (mainland)
| | - Fang Fang
- Department of Dermatology, Shanghai Eighth People's Hospital, Shanghai, China (mainland)
| |
Collapse
|
37
|
Magrinelli F, Fabrizi GM, Santoro L, Manganelli F, Zanette G, Cavallaro T, Tamburin S. Pharmacological treatment for familial amyloid polyneuropathy. Cochrane Database Syst Rev 2020; 4:CD012395. [PMID: 32311072 PMCID: PMC7170468 DOI: 10.1002/14651858.cd012395.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Disease-modifying pharmacological agents for transthyretin (TTR)-related familial amyloid polyneuropathy (FAP) have become available in the last decade, but evidence on their efficacy and safety is limited. This review focuses on disease-modifying pharmacological treatment for TTR-related and other FAPs, encompassing amyloid kinetic stabilisers, amyloid matrix solvents, and amyloid precursor inhibitors. OBJECTIVES To assess and compare the efficacy, acceptability, and tolerability of disease-modifying pharmacological agents for familial amyloid polyneuropathies (FAPs). SEARCH METHODS On 18 November 2019, we searched the Cochrane Neuromuscular Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, and Embase. We reviewed reference lists of articles and textbooks on peripheral neuropathies. We also contacted experts in the field. We searched clinical trials registries and manufacturers' websites. SELECTION CRITERIA We included randomised clinical trials (RCTs) or quasi-RCTs investigating any disease-modifying pharmacological agent in adults with FAPs. Disability due to FAP progression was the primary outcome. Secondary outcomes were severity of peripheral neuropathy, change in modified body mass index (mBMI), quality of life, severity of depression, mortality, and adverse events during the trial. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review included four RCTs involving 655 people with TTR-FAP. The manufacturers of the drugs under investigation funded three of the studies. The trials investigated different drugs versus placebo and we did not conduct a meta-analysis. One RCT compared tafamidis with placebo in early-stage TTR-FAP (128 randomised participants). The trial did not explore our predetermined disability outcome measures. After 18 months, tafamidis might reduce progression of peripheral neuropathy slightly more than placebo (Neuropathy Impairment Score (NIS) in the lower limbs; mean difference (MD) -3.21 points, 95% confidential interval (CI) -5.63 to -0.79; P = 0.009; low-certainty evidence). However, tafamidis might lead to little or no difference in the change of quality of life between groups (Norfolk Quality of Life-Diabetic Neuropathy (Norfolk QOL-DN) total score; MD -4.50 points, 95% CI -11.27 to 2.27; P = 0.19; very low-certainty evidence). No clear between-group difference was found in the numbers of participants who died (risk ratio (RR) 0.65, 95% CI 0.11 to 3.74; P = 0.63; very low-certainty evidence), who dropped out due to adverse events (RR 1.29, 95% CI 0.30 to 5.54; P = 0.73; very low-certainty evidence), or who experienced at least one severe adverse event during the trial (RR 1.16, 95% CI 0.37 to 3.62; P = 0.79; very low-certainty evidence). One RCT compared diflunisal with placebo (130 randomised participants). At month 24, diflunisal might reduce progression of disability (Kumamoto Score; MD -4.90 points, 95% CI -7.89 to -1.91; P = 0.002; low-certainty evidence) and peripheral neuropathy (NIS plus 7 nerve tests; MD -18.10 points, 95% CI -26.03 to -10.17; P < 0.001; low-certainty evidence) more than placebo. After 24 months, changes from baseline in the quality of life measured by the 36-Item Short-Form Health Survey score showed no clear difference between groups for the physical component (MD 6.10 points, 95% CI 2.56 to 9.64; P = 0.001; very low-certainty evidence) and the mental component (MD 4.40 points, 95% CI -0.19 to 8.99; P = 0.063; very low-certainty evidence). There was no clear between-group difference in the number of people who died (RR 0.46, 95% CI 0.15 to 1.41; P = 0.17; very low-certainty evidence), in the number of dropouts due to adverse events (RR 2.06, 95% CI 0.39 to 10.87; P = 0.39; very low-certainty evidence), and in the number of people who experienced at least one severe adverse event (RR 0.77, 95% CI 0.18 to 3.32; P = 0.73; very low-certainty evidence) during the trial. One RCT compared patisiran with placebo (225 randomised participants). After 18 months, patisiran reduced both progression of disability (Rasch-built Overall Disability Scale; least-squares MD 8.90 points, 95% CI 7.00 to 10.80; P < 0.001; moderate-certainty evidence) and peripheral neuropathy (modified NIS plus 7 nerve tests - Alnylam version; least-squares MD -33.99 points, 95% CI -39.86 to -28.13; P < 0.001; moderate-certainty evidence) more than placebo. At month 18, the change in quality of life between groups favoured patisiran (Norfolk QOL-DN total score; least-squares MD -21.10 points, 95% CI -27.20 to -15.00; P < 0.001; low-certainty evidence). There was little or no between-group difference in the number of participants who died (RR 0.61, 95% CI 0.21 to 1.74; P = 0.35; low-certainty evidence), dropped out due to adverse events (RR 0.33, 95% CI 0.13 to 0.82; P = 0.017; low-certainty evidence), or experienced at least one severe adverse event (RR 0.91, 95% CI 0.64 to 1.28; P = 0.58; low-certainty evidence) during the trial. One RCT compared inotersen with placebo (172 randomised participants). The trial did not explore our predetermined disability outcome measures. From baseline to week 66, inotersen reduced progression of peripheral neuropathy more than placebo (modified NIS plus 7 nerve tests - Ionis version; MD -19.73 points, 95% CI -26.50 to -12.96; P < 0.001; moderate-certainty evidence). At week 65, the change in quality of life between groups favoured inotersen (Norfolk QOL-DN total score; MD -10.85 points, 95% CI -17.25 to -4.45; P < 0.001; low-certainty evidence). Inotersen may slightly increase mortality (RR 5.94, 95% CI 0.33 to 105.60; P = 0.22; low-certainty evidence) and occurrence of severe adverse events (RR 1.48, 95% CI 0.85 to 2.57; P = 0.16; low-certainty evidence) compared to placebo. More dropouts due to adverse events were observed in the inotersen than in the placebo group (RR 8.57, 95% CI 1.16 to 63.07; P = 0.035; low-certainty evidence). There were no studies addressing apolipoprotein AI-FAP, gelsolin-FAP, and beta-2-microglobulin-FAP. AUTHORS' CONCLUSIONS Evidence on the pharmacological treatment of FAPs from RCTs is limited to TTR-FAP. No studies directly compare disease-modifying pharmacological treatments for TTR-FAP. Results from placebo-controlled trials indicate that tafamidis, diflunisal, patisiran, and inotersen may be beneficial in TTR-FAP, but further investigations are needed. Since direct comparative studies for TTR-FAP will be hampered by sample size and costs required to demonstrate superiority of one drug over another, long-term non-randomised open-label studies monitoring their efficacy and safety are needed.
Collapse
Affiliation(s)
- Francesca Magrinelli
- University of VeronaDepartment of Neurosciences, Biomedicine and Movement SciencesPiazzale L.A. Scuro n. 10VeronaVRItaly37134
| | - Gian Maria Fabrizi
- University of VeronaDepartment of Neurosciences, Biomedicine and Movement SciencesPiazzale L.A. Scuro n. 10VeronaVRItaly37134
| | - Lucio Santoro
- University Federico II of NaplesDepartment of Neurosciences, Reproductive Sciences and OdontostomatologyVia Sergio Pansini n. 5NaplesItaly80131
| | - Fiore Manganelli
- University Federico II of NaplesDepartment of Neurosciences, Reproductive Sciences and OdontostomatologyVia Sergio Pansini n. 5NaplesItaly80131
| | - Giampietro Zanette
- Pederzoli HospitalNeurology SectionVia Monte Baldo n° 24Peschiera del GardaVRItaly37019
| | - Tiziana Cavallaro
- University of VeronaDepartment of Neurosciences, Biomedicine and Movement SciencesPiazzale L.A. Scuro n. 10VeronaVRItaly37134
| | - Stefano Tamburin
- University of VeronaDepartment of Neurosciences, Biomedicine and Movement SciencesPiazzale L.A. Scuro n. 10VeronaVRItaly37134
| | | |
Collapse
|
38
|
Ibrahim RB, Yeh SY, Lin KP, Ricardo F, Yu TY, Chan CC, Tsai JW, Liu YT. Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. Cell Mol Life Sci 2020; 77:1421-1434. [PMID: 31728576 PMCID: PMC11105042 DOI: 10.1007/s00018-019-03357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive. Here, we examined the biological properties of various TTR mutations and found that the cellular secretory pattern of the wild-type (WT) TTR was similar to those of the late-onset mutant (Ala97Ser, p. Ala117Ser), stable mutant (Thr119Met, p. Thr139Met), early-onset mutant (Val30Met, p. Val50Met), but not in the unstable mutant (Asp18Gly, p. Asp38Gly). Cytotoxicity assays revealed their toxicities in the order of Val30Met > Ala97Ser > WT > Thr119Met in neuroblastoma cells. Surprisingly, while early-onset amyloidogenic TTR monomers (M-TTRs) are retained by the endoplasmic reticulum quality control (ERQC), late-onset amyloidogenic M-TTRs can be secreted extracellularly. Treatment of thapsigargin (Tg) to activate the unfolded protein response (UPR) alleviates Ala97Ser M-TTR secretion. Interestingly, Ala97Ser TTR overexpression in Drosophila causes late-onset fast neurodegeneration and a relatively short lifespan, recapitulating human disease progression. Our study demonstrates that the escape of TTR monomers from the ERQC may underlie late-onset amyloidogenesis in patients and suggests that targeting ERQC could mitigate late-onset ATTR.
Collapse
Affiliation(s)
- Ridwan Babatunde Ibrahim
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Yu Yeh
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kon-Ping Lin
- Division of Peripheral Neuropathy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Frans Ricardo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| | - Yo-Tsen Liu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Division of Epilepsy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
39
|
Guo X, Liu Z, Zheng Y, Li Y, Li L, Liu H, Chen Z, Wu L. Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1057-1081. [PMID: 32210536 PMCID: PMC7071892 DOI: 10.2147/dddt.s237252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Transthyretin (TTR) is a tetrameric protein, and its dissociation, aggregation, deposition, and misfolding are linked to several human amyloid diseases. As the main transporter for thyroxine (T4) in plasma and cerebrospinal fluid, TTR contains two T4-binding sites, which are docked with T4 and subsequently maintain the structural stability of TTR homotetramer. Affected by genetic disorders and detrimental environmental factors, TTR degrades to monomer and/or form amyloid fibrils. Reasonably, stabilization of TTR might be an efficient strategy for the treatment of TTR-related amyloidosis. However, only 10-25% of T4 in the plasma is bound to TTR under physiological conditions. Expectedly, T4 analogs with different structures aiming to bind to T4 pockets may displace the functions of T4. So far, a number of compounds including both natural and synthetic origin have been reported. In this paper, we summarized the potent inhibitors, including bisaryl structure-based compounds, flavonoids, crown ethers, and carboranes, for treating TTR-related amyloid diseases and the combination modes of some compounds binding to TTR protein.
Collapse
Affiliation(s)
- Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhaowen Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yizhou Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Yamei Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Linfu Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Hai Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, People's Republic of China
| |
Collapse
|
40
|
Luigetti M, Romano A, Di Paolantonio A, Bisogni G, Sabatelli M. Diagnosis and Treatment of Hereditary Transthyretin Amyloidosis (hATTR) Polyneuropathy: Current Perspectives on Improving Patient Care. Ther Clin Risk Manag 2020; 16:109-123. [PMID: 32110029 PMCID: PMC7041433 DOI: 10.2147/tcrm.s219979] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Hereditary transthyretin amyloidosis (hATTR) with polyneuropathy (formerly known as Familial Amyloid Polyneuropathy) is a rare disease due to mutations in the gene encoding transthyretin (TTR) and characterized by multisystem extracellular deposition of amyloid, leading to dysfunction of different organs and tissues. hATTR amyloidosis represents a diagnostic challenge for neurologists considering the great variability in clinical presentation and multiorgan involvement. Generally, patients present with polyneuropathy, but clinicians should consider the frequent cardiac, ocular and renal impairment. Especially a hypertrophic cardiomyopathy, even if usually latent, is identifiable in at least 50% of the patients. Therapeutically, current available options act at different stages of TTR production, including synthesis inhibition (liver transplantation and/or gene-silencing drugs) or tetramer TTR stabilization (TTR stabilizers), increasing survival at different disease stages. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/n8sg_YlGJiA
Collapse
Affiliation(s)
- Marco Luigetti
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy.,Centro Clinico NEMO Adulti, Rome, Italy
| |
Collapse
|
41
|
Toronjo-Urquiza L, Acosta-Martin AE, James DC, Nagy T, Falconer RJ. The use of catechins in Chinese hamster ovary cell media for the improvement of monoclonal antibody yields and a reduction of acidic species. Biotechnol Prog 2020; 36:e2980. [PMID: 32067358 DOI: 10.1002/btpr.2980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Catechin compounds have potential benefits for recombinant monoclonal antibody (Mab) production as chemical additives in cell culture media. In this study, four catechin compounds catechin (Cat), epicatechin (EC), gallocatechin-gallate (GCG), and epigallocatechin-gallate (EGCG) were added to cell culture media (at 50 μM) and their effects on the recombinant Chinese hamster ovary (CHO) cell culture, specific productivity, and Mab quality were assessed. The results indicate that the improvement of specific productivity was linked to cell growth inhibition. All catechins caused cell phase growth arrest by lowering the number of cells in the G1/G0 phase and increasing the cells in the S and G2/M phases. Late addition of the catechin resulted in a significantly higher final IgG concentration. Cat and EC caused an improvement in the final antibody titer of 1.5 ± 0.1 and 1.3 ± 0.1 fold, respectively. Catechins with a galloyl group (GCG and EGCG) arrested cell growth and reduced cell specific productivity at the concentrations tested. The Cat-treated IgG was found to have reduced acidic species with a corresponding increase in the main peak.
Collapse
Affiliation(s)
- Luis Toronjo-Urquiza
- Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield, UK
| | - David C James
- Department of Chemical & Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Tibor Nagy
- Bioprocess Strategy and Development, Fujifilm Diosynth Biotechnologies, Stockton-on-Tees, UK
| | - Robert J Falconer
- Department of Chemical Engineering and Advanced Materials, University of Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Müller ML, Butler J, Heidecker B. Emerging therapies in transthyretin amyloidosis – a new wave of hope after years of stagnancy? Eur J Heart Fail 2020; 22:39-53. [DOI: 10.1002/ejhf.1695] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Maximilian L. Müller
- Department of Cardiology, Charité Universitätsmedizin BerlinCampus Benjamin Franklin Berlin Germany
| | - Javed Butler
- Department of MedicineThe Mississippi Medical Center Jackson MS USA
| | - Bettina Heidecker
- Department of Cardiology, Charité Universitätsmedizin BerlinCampus Benjamin Franklin Berlin Germany
| |
Collapse
|
43
|
Sharma V, Ghosh KS. Inhibition of Amyloid Fibrillation by Small Molecules and Nanomaterials: Strategic Development of Pharmaceuticals Against Amyloidosis. Protein Pept Lett 2019; 26:315-323. [PMID: 30848182 DOI: 10.2174/0929866526666190307164944] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Amyloid fibrils are a special class of self-assembled protein molecules, which exhibit various toxic effects in cells. Different physiological disorders such as Alzheimer's, Parkinson's, Huntington's diseases, etc. happen due to amyloid formation and lack of proper cellular mechanism for the removal of fibrils. Therefore, inhibition of amyloid fibrillation will find immense applications to combat the diseases associated with amyloidosis. The development of therapeutics against amyloidosis is definitely challenging and numerous strategies have been followed to find out anti-amyloidogenic molecules. Inhibition of amyloid aggregation of proteins can be achieved either by stabilizing the native conformation or by decreasing the chances of assembly formation by the unfolded/misfolded structures. Various small molecules such as naturally occurring polyphenols, flavonoids, small organic molecules, surfactants, dyes, chaperones, etc. have demonstrated their capability to interrupt the amyloid fibrillation of proteins. In addition to that, in last few years, different nanomaterials were evolved as effective therapeutic inhibitors against amyloidosis. Aromatic and hydrophobic interactions between the partially unfolded protein molecules and the inhibitors had been pointed as a general mechanism for inhibition. In this review article, we are presenting an overview on the inhibition of amyloidosis by using different small molecules (both natural and synthetic origin) as well as nanomaterials for development of pharmaceutical strategies against amyloid diseases.
Collapse
Affiliation(s)
- Vandna Sharma
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| | - Kalyan Sundar Ghosh
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
| |
Collapse
|
44
|
Yamamoto H, Yokochi T. Transthyretin cardiac amyloidosis: an update on diagnosis and treatment. ESC Heart Fail 2019; 6:1128-1139. [PMID: 31553132 PMCID: PMC6989279 DOI: 10.1002/ehf2.12518] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/19/2019] [Accepted: 08/25/2019] [Indexed: 12/14/2022] Open
Abstract
Transthyretin cardiac amyloidosis (ATTR‐CA) demonstrates progressive, potentially fatal, and infiltrative cardiomyopathy caused by extracellular deposition of transthyretin‐derived insoluble amyloid fibrils in the myocardium. Two distinct types of transthyretin (wild type or variant) become unstable, and misfolding forms aggregate, resulting in amyloid fibrils. ATTR‐CA, which has previously been underrecognized and considered to be rare, has been increasingly recognized as a cause of heart failure with preserved ejection fraction among elderly persons. With the advanced technology, the diagnostic tools have been improving for cardiac amyloidosis. Recently, the efficacy of several disease‐modifying agents focusing on the amyloidogenic process has been demonstrated. ATTR‐CA has been changing from incurable to treatable. Nevertheless, there are still no prognostic improvements due to diagnostic delay or misdiagnosis because of phenotypic heterogeneity and co‐morbidities. Thus, it is crucial for clinicians to be aware of this clinical entity for early diagnosis and proper treatment. In this mini‐review, we focus on recent advances in diagnosis and treatment of ATTR‐CA.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of Cardiovascular Medicine, Narita-Tomisato Tokushukai Hospital, 1-1-1 Hiyoshidai, Tomisato, Chiba, 286-0201, Japan
| | - Tomoki Yokochi
- Department of Clinical Research, Chiba Tokushukai Hospital, Chiba, Japan
| |
Collapse
|
45
|
Gertz MA, Mauermann ML, Grogan M, Coelho T. Advances in the treatment of hereditary transthyretin amyloidosis: A review. Brain Behav 2019; 9:e01371. [PMID: 31368669 PMCID: PMC6749475 DOI: 10.1002/brb3.1371] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Amyloid transthyretin amyloidosis (ATTR) is a progressive and often fatal disease caused by the buildup of mutated (hereditary ATTR [hATTR]; also known as ATTR variant [ATTRv]) or normal transthyretin (wild-type ATTR) throughout the body. Two new therapies-inotersen, an antisense oligonucleotide therapy, and patisiran, an RNA interference therapy-received marketing authorization and represent a significant advance in the treatment of amyloidosis. Herein, we describe the clinical presentation of ATTR, commonly used procedures in its diagnosis, and current treatment landscape for ATTR, with a focus on hATTR. METHODS A PubMed search from 2008 to September 2018 was conducted to review the literature on ATTR. RESULTS Until recently, there have been few treatment options for polyneuropathy of hATTR. Inotersen and patisiran substantially reduce the amyloidogenic precursor protein transthyretin and have demonstrated efficacy in patients with early- and late-stage disease and in slowing or improving neuropathy progression. In contrast, established therapies, such as liver transplantation, typically reserved for patients with early-stage disease, and tafamidis, indicated for the treatment of early-stage disease in Europe, or diflunisal, a nonsteroidal anti-inflammatory drug that is used off-label, are associated with side effects and/or unclear efficacy in certain patient populations. Thus, inotersen and patisiran are positioned to be the preferred therapeutic modalities. CONCLUSIONS Important differences between inotersen and patisiran, including formulation, dosing, requirements for premedications, and safety monitoring, require an understanding and knowledge of each treatment for informed decision making.
Collapse
Affiliation(s)
| | | | | | - Teresa Coelho
- Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal
| |
Collapse
|
46
|
Hengge R. Targeting Bacterial Biofilms by the Green Tea Polyphenol EGCG. Molecules 2019; 24:molecules24132403. [PMID: 31261858 PMCID: PMC6650844 DOI: 10.3390/molecules24132403] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms are multicellular aggregates in which cells are embedded in an extracellular matrix of self-produced biopolymers. Being refractory to antibiotic treatment and host immune systems, biofilms are involved in most chronic infections, and anti-biofilm agents are being searched for urgently. Epigallocatechin-3-gallate (EGCG) was recently shown to act against biofilms by strongly interfering with the assembly of amyloid fibres and the production of phosphoethanolamin-modified cellulose fibrils. Mechanistically, this includes a direct inhibition of the fibre assembly, but also triggers a cell envelope stress response that down-regulates the synthesis of these widely occurring biofilm matrix polymers. Based on its anti-amyloidogenic properties, EGCG seems useful against biofilms involved in cariogenesis or chronic wound infection. However, EGCG seems inefficient against or may even sometimes promote biofilms which rely on other types of matrix polymers, suggesting that searching for 'magic bullet' anti-biofilm agents is an unrealistic goal. Combining molecular and ecophysiological aspects in this review also illustrates why plants control the formation of biofilms on their surfaces by producing anti-amyloidogenic compounds such as EGCG. These agents are not only helpful in combating certain biofilms in chronic infections but even seem effective against the toxic amyloids associated with neuropathological diseases.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10155 Berlin, Germany.
| |
Collapse
|
47
|
Carpal tunnel syndrome and spinal canal stenosis: harbingers of transthyretin amyloid cardiomyopathy? Clin Res Cardiol 2019; 108:1324-1330. [PMID: 30953182 DOI: 10.1007/s00392-019-01467-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/19/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Carpal tunnel syndrome (CTS) and spinal canal stenosis can be frequently observed in the medical history of patients with transthyretin amyloidosis (ATTR), both in the hereditary (mt-ATTR) and wild-type (wt-ATTR) form. The aim of this retrospective single-center analysis was to determine the prevalence of these findings, delay to diagnosis of systemic amyloidosis and the prognostic value in a large cohort of patients with wt-ATTR and mt-ATTR amyloidosis. METHODS Medical records of 253 patients diagnosed with wt-ATTR, 136 patients with mt-ATTR and 77 asymptomatic gene carriers were screened for history of CTS and spinal canal stenosis and laboratory analysis, electrocardiography and echocardiographic results, respectively. Clinical follow-up was performed by phone assessment. RESULTS History of CTS was present in 77 patients (56%) with mt-ATTR, in 152 patients (60%) with wt-ATTR and even in 10 of the asymptomatic gene carriers (13%). Latency between carpal tunnel surgery and first diagnosis of systemic amyloidosis was significantly longer in wt-ATTR compared to mt-ATTR (117 ± 179 months vs. 66 ± 73 months; p = 0.02). In total, 36 patients (14%) with wt-ATTR and 7 patients (5%) with mt-ATTR had a history of clinically significant spinal canal stenosis. In the subgroup of mt-ATTR, patients with CTS had thicker IVS (19 ± 5 mm vs. 16 ± 5 mm, p < 0.05), higher LV mass index (225 ± 78 g vs. 193 ± 98 g, p < 0.05), lower Karnofsky index (78 ± 15% vs. 83 ± 17%, p < 0.05), and lower mitral annular plane systolic excursion (MAPSE; 9 ± 4 mm vs. 11 ± 5 mm, p < 0.05) compared to patients without CTS, whereas in wt-ATTR no significant differences could be observed. No significant difference in survival was observed between patients with and without CTS (wt-ATTR: 67 vs. 63 months, p = 0.45; mt-ATTR: 74 vs. 63 months, p = 0.60). A combination of CTS and spinal stenosis was present in 32 wt-ATTR patients (12%) and 3 mt-ATTR patients (2.2%). CONCLUSIONS The prevalence of CTS is high and the latency between CTS surgery and diagnosis of amyloidosis is long among patients with wt-ATTR and mt-ATTR. CTS might be predictive for future occurrence of systemic (predominantly cardiac) ATTR amyloidosis.
Collapse
|
48
|
Uncovering the Neuroprotective Mechanisms of Curcumin on Transthyretin Amyloidosis. Int J Mol Sci 2019; 20:ijms20061287. [PMID: 30875761 PMCID: PMC6471102 DOI: 10.3390/ijms20061287] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 02/07/2023] Open
Abstract
Transthyretin (TTR) amyloidoses (ATTR amyloidosis) are diseases associated with transthyretin (TTR) misfolding, aggregation and extracellular deposition in tissues as amyloid. Clinical manifestations of the disease are variable and include mainly polyneuropathy and/or cardiomyopathy. The reasons why TTR forms aggregates and amyloid are related with amino acid substitutions in the protein due to mutations, or with environmental alterations associated with aging, that make the protein more unstable and prone to aggregation. According to this model, several therapeutic approaches have been proposed for the diseases that range from stabilization of TTR, using chemical chaperones, to clearance of the aggregated protein deposited in tissues in the form of oligomers or small aggregates, by the action of disruptors or by activation of the immune system. Interestingly, different studies revealed that curcumin presents anti-amyloid properties, targeting multiple steps in the ATTR amyloidogenic cascade. The effects of curcumin on ATTR amyloidosis will be reviewed and discussed in the current work in order to contribute to knowledge of the molecular mechanisms involved in TTR amyloidosis and propose more efficient drugs for therapy.
Collapse
|
49
|
Cappelli F, Martone R, Taborchi G, Morini S, Bartolini S, Angelotti P, Farsetti S, Di Mario C, Perfetto F. Epigallocatechin-3-gallate tolerability and impact on survival in a cohort of patients with transthyretin-related cardiac amyloidosis. A single-center retrospective study. Intern Emerg Med 2018; 13:873-880. [PMID: 29882023 DOI: 10.1007/s11739-018-1887-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/29/2018] [Indexed: 01/11/2023]
Abstract
Transthyretin-related (ATTR) cardiac amyloidosis is currently lacking a disease-modifying therapy. Despite demonstration of effectiveness in halting amyloid deposition, no study focused on epigallocatechin-3-gallate (EGCG) impact on patient survival. We sought to explore prognostic impact of EGCG in a cohort of lone cardiac ATTR patients. From the Florence Tuscan Regional Amyloid Centre database, we retrospectively selected ATTR patients treated with EGCG (675mg daily dose) for a minimum of 9 months, between March 2013 and December 2016. As a control group, we selected ATTR patients who received guideline-directed medical therapy alone. End point of the study was time to all cause death or cardiac transplantation. Sixty-five patients (30 treatment groups vs. 35 control groups) had a median follow-up of 691 days. There were no differences in baseline characteristics between groups. Five deaths occurred in EGCG group versus eight in control group; one patient underwent effective cardiac transplantation in EGCG group. There was no difference in survival estimates between EGCG and control group (60 ± 15% vs. 61 ± 12%, p = 0.276). EGCG was well tolerated, without major safety concerns. In a real-world cohort of ATTR patients with lone cardiac involvement, EGCG was a safe therapeutic option, but was not associated with survival improvement.
Collapse
Affiliation(s)
- Francesco Cappelli
- Tuscan Regional Amyloid Center, Careggi University Hospital, Florence, Italy.
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy.
| | - Raffaele Martone
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy
| | - Giulia Taborchi
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy
| | - Sofia Morini
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy
| | - Simone Bartolini
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy
| | - Paola Angelotti
- Tuscan Regional Amyloid Center, Careggi University Hospital, Florence, Italy
| | - Silvia Farsetti
- Tuscan Regional Amyloid Center, Careggi University Hospital, Florence, Italy
| | - Carlo Di Mario
- Interventional Structural Cardiology Division, Careggi University Hospital, Florence, Italy
| | - Federico Perfetto
- Tuscan Regional Amyloid Center, Careggi University Hospital, Florence, Italy
| |
Collapse
|
50
|
Khalatbary AR, Khademi E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr Neurosci 2018; 23:281-294. [DOI: 10.1080/1028415x.2018.1500124] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ali Reza Khalatbary
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emad Khademi
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|