1
|
Maurya AK, Kröninger L, Ehret G, Bäumers M, Marson M, Scheu S, Nowack ECM. A nucleus-encoded dynamin-like protein controls endosymbiont division in the trypanosomatid Angomonas deanei. SCIENCE ADVANCES 2025; 11:eadp8518. [PMID: 40106558 DOI: 10.1126/sciadv.adp8518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Angomonas deanei is a trypanosomatid of the Strigomonadinae. All members of this subfamily contain a single β-proteobacterial endosymbiont. Intriguingly, cell cycles of host and endosymbiont are synchronized. The molecular mechanisms underlying this notable level of integration are unknown. Previously, we identified a nucleus-encoded dynamin-like protein, called ETP9, that localizes at the endosymbiont division site of A. deanei. Here, we found by comparative genomics that endosymbionts throughout the Strigomonadinae lost the capacity to autonomously form a division septum. We describe the cell cycle-dependent subcellular localization of ETP9 that follows accumulation of the bacterium-encoded division protein FtsZ at the endosymbiont division site. Furthermore, we found that ETP9 is essential in symbiotic but dispensable in aposymbiotic A. deanei that lost the endosymbiont. In the symbiotic strain, ETP9 knockdowns resulted in filamentous, division-impaired endosymbionts. Our work unveiled that in A. deanei an endosymbiont division machinery of dual genetic origin evolved in which a neo-functionalized host protein compensates for losses of endosymbiont division genes.
Collapse
Affiliation(s)
- Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marcel Marson
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Hrala M, Andrla P, Bosák J, Fedrová P, Mugutdinov A, Karpíšková R, Nedbalcová K, Raichová J, Faldyna M, Hořín P, Šmajs D. Whole genome sequences of nine Taylorella equigenitalis strains isolated in the Czech Republic between 1982-2021: Molecular dating suggests a common ancestor at the time of Roman Empire. PLoS One 2025; 20:e0315946. [PMID: 39752466 PMCID: PMC11698419 DOI: 10.1371/journal.pone.0315946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved. The aim of this study was to isolate contemporary strains, determine their genome sequences, evaluate their antibiotic resistance and compare them with other strains. We determined nine complete whole genome sequences of T. equigenitalis strains, mainly from samples collected from Kladruber horses in the Czech Republic. While T. equigenitalis strains from Kladruby isolated between 1982 and 2018 were inhibited by streptomycin, contemporary strains were found to be resistant to streptomycin, suggesting the recent emergence of this mutation. In addition, we used the collection dates of Kladruber horse strains to estimate the genome substitution rate, which resulted in a scaled mean evolutionary rate of 6.9×10-7 substitutions per site per year. Analysis with other available T. equigenitalis genome sequences (n = 18) revealed similarity of the Czech T. equigenitalis genomes with the Austrian T. equigenitalis genome, and molecular dating suggested a common ancestor of all analyzed T. equigenitalis strains from 1.5-2.6 thousand years ago, dating to the first centuries A.D. Our study revealed a recently emerged streptomycin resistance in T. equigenitalis strains from Kladruber horses, emphasizing the need for antibiotic surveillance and alternative treatments. Additionally, our findings provided insights into the pathogen's evolution rate, which is important for understanding its evolution and preparing preventive strategies.
Collapse
Affiliation(s)
- Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Andrla
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavla Fedrová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Amir Mugutdinov
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Renata Karpíšková
- Department of Public Health, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kateřina Nedbalcová
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Jitka Raichová
- National Stud at Kladruby nad Labem, Kladruby nad Labem, Czech Republic
| | - Martin Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Petr Hořín
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno (VETUNI), Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Kozak S, Merda D, Duquesne F, Breuil MF, Mawhinney I, Petry S. Whole genome sequence analysis of the 2018 Persian onager isolate suggests sublineages within the Taylorella asinigenitalis species. Vet Microbiol 2023; 286:109884. [PMID: 37832214 DOI: 10.1016/j.vetmic.2023.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
In 2018, a T. asinigenitalis strain (MCE663) was isolated in a Persian onager tested for contagious equine metritis (CEM) in a United Kingdom (UK) zoo. This bacterium had never been reported in the UK and Multilocus Sequence Typing described a new atypically divergent ST (ST60). Although the causative agent of CEM is the bacterium Taylorella equigenitalis, a first natural outbreak of endometritis caused by T. asinigenitalis ST70 was reported in 2019, putting its pathogenic potential into question. In this context, we aimed to further sequence the T. asinigenitalis MCE663 genome and characterize the strain using phenotypical and genetic approaches. Results showed that it gathered all identification characteristics of T. asinigenitalis with smaller colonies and it was susceptible to all tested antibiotics. Genome-level phylogeny showed that the genome MCE663 formed a distinct phylogroup, and only shared ≈ 96.1% of average nucleotide identity (ANI) with the three published T. asinigenitalis genomes, which together shared ≈ 98.3% ANI. According to current cut-offs consensus for species and subspecies delineation (95% and 98%, respectively), our results support the first insights of a sublineage delineation within the T. asinigenitalis species.
Collapse
Affiliation(s)
- Sofia Kozak
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Déborah Merda
- ANSES, Paris Est University, SPAAD Unit, Maisons-Alfort, France
| | - Fabien Duquesne
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Marie-France Breuil
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Ian Mawhinney
- APHA Veterinary Investigation Centre, Rougham Hill, Bury St Edmunds, Suffolk, UK
| | - Sandrine Petry
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| |
Collapse
|
4
|
Pelkola K, Heinikainen S, Pohjanvirta T. Core genome multilocus sequence typing analysis of Finnish Taylorella equigenitalis isolates. Vet Microbiol 2023; 285:109853. [PMID: 37633060 DOI: 10.1016/j.vetmic.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
In Finland, Taylorella equigenitalis, the causative agent of contagious equine metritis (CEM), was first detected in 1992. The aim of this study was to genotype Finnish T. equigenitalis isolates to investigate the epidemiology of the infection in the Finnish horse population. A total of 34 T. equigenitalis isolates from 24 horses obtained during 1992-2021 were subjected to whole genome sequencing (WGS) and subsequent local ad hoc core genome multi-locus sequence typing (cgMLST) targeting 1259 loci. Classical MLST profiles were extracted from the whole-genome sequence data. Three novel MLST types, ST81, ST82 and ST83, and four previously described sequence types, ST16, ST17, ST50 and ST63 were detected among the isolates. cgMLST minimum spanning tree analysis using 12 allele difference as threshold, resulted in five clusters and three singletons. cgMLST clusters were congruent with the MLST-defined groups, except for the ST83 isolates which were divided into two clusters. However, the high discriminatory power cgMLST allowed differentiation between isolates of the same MLST type as each isolate had a unique core genome ST. Our study suggests that cgMLST has the prospective for being a standardised typing method for T. equigenitalis in the future, and further contributes to worldwide phylogenetic and spatio-temporal analyses needed to better understand the epidemiology of the bacterium.
Collapse
Affiliation(s)
- Kirsti Pelkola
- Animal Health Diagnostics Unit, Finnish Food Authority, Mustialankatu 3, Helsinki FI-00790, Finland.
| | - Sirpa Heinikainen
- Animal Health Diagnostics Unit, Finnish Food Authority, Neulaniementie 4, Kuopio FI-70210, Finland
| | - Tarja Pohjanvirta
- Animal Health Diagnostics Unit, Finnish Food Authority, Neulaniementie 4, Kuopio FI-70210, Finland
| |
Collapse
|
5
|
Petry S, Breuil MF, Duquesne F. Surveillance of Contagious Equine Metritis: Results of the First 5-Year Period of French Proficiency Tests for Taylorella equigenitalis Detection by Real-Time PCR. J Equine Vet Sci 2023; 126:104248. [PMID: 36796741 DOI: 10.1016/j.jevs.2023.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Contagious equine metritis (CEM) detection by PCR is recognized by the European Union according to Commission Implementing Regulation (EU) No 846/2014, and real-time PCR is now recommended by the World Organisation for Animal Health Terrestrial Manual at the same level as the culture method. The present study highlights the creation of an efficient network of approved laboratories in France in 2017 for CEM detection by real-time PCR. The network currently consists of 20 laboratories. A first proficiency test (PT) was organized by the national reference laboratory for CEM in 2017 to evaluate the performance of the early network, followed by annual proficiency tests organized for ongoing periodic assessment of network performance. Results of the 5 PTs organized from 2017 to 2021 are presented, during which 5 real-time PCRs and 3 DNA extraction methods were used. Overall, 99.20% of the qualitative data corresponded to expected results and the R-squared of global DNA amplification calculated for each PT varied from 0.728 to 0.899. DNA extraction is also an important step in the analytical process, and results were more favorable with direct lysis compared to column extraction. Focusing on the most commonly used PCR (PCR 1: 86.4% of results) showed lowest cycle threshold values with direct lysis compared to column and magnetic bead extractions, and with magnetic bead extraction compared to column extraction, but neither of these differences were statistically significant.
Collapse
Affiliation(s)
- Sandrine Petry
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| | - Marie-France Breuil
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Fabien Duquesne
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| |
Collapse
|
6
|
Dorrego A, Herranz C, Pérez-Sancho M, Camino E, Gómez-Arrones V, Carrasco JJ, De Gabriel-Pérez J, Serres C, Cruz-López F. First report and molecular characterization of cases of natural Taylorella asinigenitalis infection in three donkey breeds in Spain. Vet Microbiol 2023; 276:109604. [PMID: 36481483 DOI: 10.1016/j.vetmic.2022.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Taylorella asinigenitalis is a non-pathogenic bacteria isolated from the genital tract of donkeys but also a cause of metritis and vaginal discharge in mares. It is closely related to Taylorella equigenitalis, the cause of Contagious Equine Metritis (CEM) in horses, and has been present in different countries in Europe since 1995. Up to date, there are no studies on the prevalence of T. asinigenitalis in the equine or asinine populations in Spain; this is the first report of the presence of T. asinigenitalis in donkeys (Equus asinus) from different breeds in three regions of Spain. A total of 106 healthy animals of three different Spanish donkey breeds: Andaluza (26), Majorera (12) and Zamorano-Leonés (68) were sampled between June and July 2017 and a real-time PCR was used to detect T. asinigenitalis in all samples. A total of 39/221 (17,65 %) samples from 22/106 (20,75 %) animals yielded a positive result and were further characterized by MLST; an allelic profile and Sequence Type (ST) could be assigned to 11 of the 39 positive samples, resulting in four novel STs and no clonal complexes within the PubMLST database. There were statistically significant differences in the percentage of positive animals by breed and sex, and also in the variability of STs between farms. Breeding management would have an influence on the percentage of positives in a farm; artificial insemination and separating jacks from jennies should be implemented. Further studies to detect and characterize T. asinigenitalis in donkeys and horses from Spain would be required to obtain a broader epidemiological picture in this country.
Collapse
Affiliation(s)
- Abel Dorrego
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | - Carmen Herranz
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain; Animal Health Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Eliazar Camino
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain
| | | | - Juan Jesús Carrasco
- Equine Reproduction Center, (CENSYRA-Extremadura Government), Badajoz, Spain
| | - Jesús De Gabriel-Pérez
- Asociación Nacional de Criadores de Ganado Selecto de Raza Zamorano-Leonesa (ASZAL), Zamora, Spain
| | - Consuelo Serres
- Animal Medicine and Surgery Department, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Fátima Cruz-López
- VISAVET Health Surveillance Centre, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
7
|
Dorrego A, Serres C, Cruz-Lopez F. Taylorella asinigenitalis: raising awareness of its importance and presence in equine and asinine populations. Vet Rec 2022; 190:e1602. [PMID: 35303356 DOI: 10.1002/vetr.1602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Taylorella equigenitalis has long been recognised as a causative agent of contagious equine metritis, but practitioners may be less familiar with Taylorella asinigenitalis, which has been identified more recently. Here, Abel Dorrego, Consuelo Serres and Fatima Cruz-Lopez of the Universidad Complutense de Madrid describe T asinigenitalis and report the findings of a survey they carried out in donkeys in Spain.
Collapse
|
8
|
Breuil MF, Joseph M, Petry S. Comparison of five basal compositions of selective chocolate agar media for isolation of Taylorella equigenitalis. J Equine Vet Sci 2021; 110:103829. [PMID: 34871752 DOI: 10.1016/j.jevs.2021.103829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
The gold standard method to isolate and identify Taylorella equigenitalis, the contagious agent of equine metritis, is the culture method according to the World Organisation for Animal Health Terrestrial Manual. No selective T. equigenitalis chocolate agar medium has been developed since the 1980s and the existing media show limited performances due to the fastidious nature of T. equigenitalis and the presence of interfering bacteria in the genital tract of equines. Here, the growth rates of 6 T. equigenitalis strains and 7 non-T. equigenitalis strains were compared on Timoney's selective medium formulated with 5 different basal agars (Columbia, Eugon, Blood, Mueller-Hinton and Tryptose Blood) provided by 2 to 4 suppliers per basal agar. The impact of glucose and/or Vitox supplementation was also investigated. Overall, the performance of selective T. equigenitalis media could be improved by substituting Eugon or Columbia agar with Blood, Mueller-Hinton or Tryptose Blood agar. It is nevertheless essential to validate the basal agar/supplier pair using a panel of T. equigenitalis strains. Furthermore, our findings confirm the need to supplement the selective media with a mixture of amino acids, nucleotides, and organic, mineral and vitamin compounds, translated here by Vitox supplementation.
Collapse
Affiliation(s)
- Marie-France Breuil
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Marina Joseph
- Central Veterinary Research Laboratory, Bacteriology Department, Dubai, United Arab Emirates
| | - Sandrine Petry
- ANSES, Laboratory for Animal Health, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| |
Collapse
|
9
|
Wilsher S, Omar H, Ismer A, Allen T, Wernery U, Joseph M, Mawhinney I, Florea L, Thurston L, Duquesne F, Petry S. A new strain of Taylorella asinigenitalis shows differing pathogenicity in mares and Jenny donkeys. Equine Vet J 2020; 53:990-995. [PMID: 33174229 DOI: 10.1111/evj.13382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/03/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Three horse mares inadvertently inseminated with semen from a Tayorella asinigenitalis-positive Jack donkey developed severe, purulent endometritis whereas two Jenny donkeys mated naturally to the same Jack donkey did not develop clinical signs of infection. OBJECTIVES To isolate and identify the causative agent. STUDY DESIGN Case report. METHODS Endometrial swabs from the infected mares were cultured on selective and non-selective media under aerobic and microaerophilic conditions. Isolates were subjected to Gram staining, oxidase and catalase tests, the Monotayl Latex Agglutination test and PCR to test for both T. equigenitalis and T. asinigenitalis. In vitro antimicrobial susceptibility testing was performed and the bacterial isolate was genotyped using MLST. RESULTS A new sequence type of T. asinigenitalis was confirmed. MAIN LIMITATIONS A limited numbers of mares and donkeys are described. CONCLUSIONS This strain of T. asinigenitalis causes a severe venereal infection in mares but not in Jenny donkeys.
Collapse
Affiliation(s)
| | - Hussein Omar
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
| | - Ann Ismer
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
| | - Twink Allen
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
| | - Ulli Wernery
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Marina Joseph
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Ian Mawhinney
- APHA Veterinary Investigation Laboratory, Suffolk, UK
| | - Laura Florea
- APHA Veterinary Investigation Centre, Merrythought, Calthwaite, UK
| | - Lisa Thurston
- APHA Veterinary Investigation Centre, Merrythought, Calthwaite, UK
| | - Fabien Duquesne
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Sandrine Petry
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| |
Collapse
|
10
|
Léon A, Versmisse Y, Despois L, Castagnet S, Gracieux P, Blanchard B. Validation of an Easy Handling Sample Preparation and Triplex Real Time PCR for Rapid Detection of T. equigenitalis and Other Organisms Associated with Endometritis in Mares. J Equine Vet Sci 2020; 94:103241. [PMID: 33077078 DOI: 10.1016/j.jevs.2020.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022]
Abstract
Isolation and identification of Taylorella equigenitalis, the causative agent of contagious equine metritis, by bacteriology is laborious and does not permit differentiation from the other member of the genus, Taylorella asinigenitalis. Moreover, other organisms such as Klebsiella pneumoniae and Pseudomonas aeruginosa can also cause endometritis in mares and warrant diagnostic detection. Our objectives were to develop a rapid preparation method for field swab samples and to validate this protocol using new multiplex real-time polymerase chain reaction (rtPCR) detection tools for identification of these four pathogens. The complete analytical process from sample preparation to PCR analysis was then evaluated against bacteriology, the World Organisation for Health's (OIE) gold standard method for T. equigenitalis and commonly used for the other three pathogens. The diagnostic sensitivity and specificity of this method, which used direct lysis and a multiplex rtPCR, were 100% and >92%, respectively. This study provided a simple-to-use method for prebreeding screening of mares and stallions.
Collapse
Affiliation(s)
- Albertine Léon
- LABÉO Frank Duncombe, Caen, France; Normandie Univ, UNICAEN, U2RM, Caen, France.
| | | | | | - Sophie Castagnet
- LABÉO Frank Duncombe, Caen, France; Normandie Univ, UNICAEN, U2RM, Caen, France
| | | | | |
Collapse
|
11
|
Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, Avini AH, Bojang E, Yogamanoharan K, Sivanesan N, Ali B, Ashrafi M, Issa A, Kaur T, Latif A, Mohamed HAS, Maqsood A, Tamang L, Swager E, Stringer AJ, Snyder LAS. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6. [PMID: 32845827 PMCID: PMC7643975 DOI: 10.1099/mgen.0.000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commensal non-pathogenic Neisseria spp. live within the human host alongside the pathogenic Neisseria meningitidis and Neisseria gonorrhoeae and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct Neisseria spp. isolates taken from the throats of two human volunteers have been assessed here using a combination of microbiological and bioinformatics techniques. Three of the isolates have been identified as Neisseria subflava biovar perflava and one as Neisseria cinerea. Specific gene clusters have been identified within these commensal isolate genome sequences that are believed to encode a Type VI Secretion System, a newly identified CRISPR system, a Type IV Secretion System unlike that in other Neisseria spp., a hemin transporter, and a haem acquisition and utilization system. This investigation is the first to investigate these systems in either the non-pathogenic or pathogenic Neisseria spp. In addition, the N. subflava biovar perflava possess previously unreported capsule loci and sequences have been identified in all four isolates that are similar to genes seen within the pathogens that are associated with virulence. These data from the four commensal isolates provide further evidence for a Neisseria spp. gene pool and highlight the presence of systems within the commensals with functions still to be explored.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aylin Çağdaş
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Jefferson Lisboa Santos
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ricarda Streich
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alice Wong
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Amir H Avini
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ebrima Bojang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Karththeepan Yogamanoharan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Nivetha Sivanesan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Besma Ali
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Mariam Ashrafi
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Abdirizak Issa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Tajinder Kaur
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aisha Latif
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Hani A Sheik Mohamed
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Atifa Maqsood
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Laxmi Tamang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Emily Swager
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alex J Stringer
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
12
|
Wang X, Li D, Gao P, Gu W, He X, Yang W, Tang W. Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110655. [PMID: 32361136 DOI: 10.1016/j.ecoenv.2020.110655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Microbial treatment of heavy metal-polluted sites is considered an environmentally friendly bioremediation technology with high potential. This study shows that Pseudomonas chengduensis strain MBR, a bacterium that can potentially be applied in the treatment of heavy metal pollution, is most affected by Cd(II) stress at the beginning of its growth. Up to 100% of total Cd(II) adsorption occurs in the first 48 h after treatment of stationary phase cells with Cd(II). A biofilm forms on the cell surface, Cd(II) adsorbs, and is reduced to Cd (0) in the form of nanoscale particles. The genome of strain MBR was sequenced, annotated and analyzed. We identified various genes potentially related to cadmium resistance, transport and metabolism. Analysis of the strain MBR genome is helpful to explore the mechanism of Cd(II) resistance, and can provide new ideas for cadmium pollution control.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Wenzhi Gu
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong He
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, 610041, China
| | - Wenyi Yang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzhong Tang
- State Key Laboratory on Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| |
Collapse
|
13
|
Overview of spatio-temporal distribution inferred by multi-locus sequence typing of Taylorella equigenitalis isolated worldwide from 1977 to 2018 in equidae. Vet Microbiol 2020; 242:108597. [PMID: 32122601 DOI: 10.1016/j.vetmic.2020.108597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/29/2023]
Abstract
The accurate identification of Taylorella equigenitalis strains is essential to improve worldwide prevention and control strategies for contagious equine metritis (CEM). This study compared 367 worldwide equine strains using multilocus sequence typing according to the geographical origin, isolation year and equine breed. The strains were divided into 49 sequence types (STs), including 10 described for the first time. Three major and three minor clonal complexes (CCs), and 11 singletons, were identified. The genetic heterogeneity was low (0.13 STs/strain) despite the wide diversity of geographical origins (n = 16), isolation years (1977-2018) and equine breeds (n = 18). It was highest outside Europe and in the 1977-1997 period; current major STs and CCs already existed before 1998. Previous data associated the major CC1 with the first CEM outbreaks in 1977-1978 in the United Kingdom, Australia and the United States, and revealed its circulation in France. Our study confirms its circulation in France over a longer period of time (1992-2018) and its distribution in Spain and Germany but not throughout Europe. In addition to CC1, relationships between non-European and European countries were observed only through ST4, ST17 and ST30. Within Europe, several STs emerged with cross-border circulation, in particular ST16 and ST46 from the major complexes CC2 and CC8. These results constitute a baseline for monitoring the spread of CEM outbreaks. A retrospective analysis of a higher number of strains isolated worldwide between 1977 and the early 2000s would be helpful to obtain an exhaustive picture of the original CEM situation.
Collapse
|
14
|
May CE, Guthrie AJ, Schulman ML. Direct culture-independent sequence typing of Taylorella equigenitalis obtained from genital swabs and frozen semen samples from South African horses. J Vet Diagn Invest 2019; 31:792-794. [PMID: 31423914 DOI: 10.1177/1040638719871089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report herein the use of crude extracts obtained from samples of Taylorella equigenitalis-infected horses for the purpose of multi-locus sequence typing (MLST). Samples (n = 36) were collected from horses in South Africa from 1996 to 2017: 34 from genital swabs (stored at -20°C for 2-3 y) and 2 from cryopreserved raw semen aliquots (stored at -70°C for 18 y) prior to assay. The MLST assay showed a single sequence type (ST), designated ST4, that supported a point introduction and thus a common source for the South African outbreak of contagious equine metritis.
Collapse
Affiliation(s)
- Catherine E May
- Section of Reproduction, Department of Production Animal Studies (May, Schulman), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa.,Equine Research Centre (Guthrie), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa
| | - Alan J Guthrie
- Section of Reproduction, Department of Production Animal Studies (May, Schulman), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa.,Equine Research Centre (Guthrie), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa
| | - Martin L Schulman
- Section of Reproduction, Department of Production Animal Studies (May, Schulman), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa.,Equine Research Centre (Guthrie), Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, Gauteng, Republic of South Africa
| |
Collapse
|
15
|
Hwang JY, Cho GJ. First Identification of Taylorella equigenitalis From Genital Tracts of Thoroughbred Horses From the Inland Area of South Korea by Multilocus Sequence Typing. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Hara Y, Nakajima T, Akamatsu M, Yahiro M, Kagawa S, Petry S, Matsuda M, Moore JE. Development of a novel molecular detection method for clustered regularly interspaced short palindromic repeats (CRISPRs) in Taylorella organisms. J Med Microbiol 2015; 64:782-787. [PMID: 25934548 DOI: 10.1099/jmm.0.000079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contagious equine metritis is a bacterial infectious disease of horses caused by Taylorella equigenitalis, a Gram-negative eubacterium. The disease has been described in several continents, including Europe, North America and Asia. A novel molecular method was developed to detect clustered regularly interspaced short palindromic repeats (CRISPRs), which were separated by non-repetitive unique spacer regions (NRUSRs) of similar length, in the Taylorella equigenitalis EQ59 strain using a primer pair, f-/r-TeCRISPR-ladder, by PCR amplification. In total, 31 Taylorella isolates (17 T. equigenitalis and 14 Taylorella asinigenitalis) were examined. The T. equigenitalis isolates came from thoroughbred and cold-blooded horses from nine countries during 1980-1996, whilst the T. asinigenitalis isolates all originated from donkey jacks in France and the USA during 1997-2006. PAGE fractionated all of the 13 CRISPRs separated by 12 NRUSRs in T. equigenitalis EQ59. Permutation examples of CRISPRs, which were separated by NRUSRs for small-sized ladders, consisting of two doublet bands were shown. Putative CRISPRs separated by NRUSRs were amplified with 14/17 (82.4 %) geographically disparate T. equigenitalis isolates using the newly designed primer pair. Approximately 82.4 % of the T. equigenitalis isolates had CRISPRs separated by NRUSRs. The CRISPR locus was also found in the French T. asinigenitalis strain MCE3. Putative CRISPRs separated by NRUSRs were detected similarly in 4/14 (28.6 %) T. asinigenitalis isolates. Overall, a more detailed understanding of the molecular biology of CRISPRs within Taylorella organisms may help elucidate the pathogenic virulence and transmission mechanisms associated with this important equine pathogen.
Collapse
Affiliation(s)
- Yasushi Hara
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Takuya Nakajima
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Marie Akamatsu
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Motoki Yahiro
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Shizuko Kagawa
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - Sandrine Petry
- AFSSA, Laboratoire d'Etudes et de Recherches en Pathologie Equine, IPC, Goustranville 14430, France
| | - Motoo Matsuda
- Laboratory of Molecular Biology, School of Environmental Health Sciences, Azabu University, Sagamihara 252-5201, Japan
| | - John E Moore
- Centre for Infection and Immunity, Queen's University, Belfast BT9 7AB, UK.,Department of Bacteriology, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, UK
| |
Collapse
|
17
|
Hébert L, Rincé I, Sanna C, Laugier C, Rincé A, Petry S. The host model Galleria mellonella
is resistant to taylorellae infection. Lett Appl Microbiol 2014; 59:438-42. [DOI: 10.1111/lam.12297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 11/27/2022]
Affiliation(s)
- L. Hébert
- Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit; ANSES; Goustranville France
| | - I. Rincé
- Normandie Université; Université de Caen, U2RM Stress/Virulence EA4655; Caen France
| | - C. Sanna
- Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit; ANSES; Goustranville France
| | - C. Laugier
- Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit; ANSES; Goustranville France
| | - A. Rincé
- Normandie Université; Université de Caen, U2RM Stress/Virulence EA4655; Caen France
| | - S. Petry
- Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit; ANSES; Goustranville France
| |
Collapse
|
18
|
Survival of taylorellae in the environmental amoeba Acanthamoeba castellanii. BMC Microbiol 2014; 14:69. [PMID: 24641089 PMCID: PMC3995319 DOI: 10.1186/1471-2180-14-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background Taylorella equigenitalis is the causative agent of contagious equine metritis, a sexually-transmitted infection of Equidae characterised in infected mares by abundant mucopurulent vaginal discharge and a variable degree of vaginitis, cervicitis or endometritis, usually resulting in temporary infertility. The second species of the Taylorella genus, Taylorella asinigenitalis, is considered non-pathogenic, although mares experimentally infected with this bacterium can develop clinical signs of endometritis. To date, little is understood about the basic molecular virulence and persistence mechanisms employed by the Taylorella species. To clarify these points, we investigated whether the host-pathogen interaction model Acanthamoeba castellanii was a suitable model for studying taylorellae. Results We herein demonstrate that both species of the Taylorella genus are internalised by a mechanism involving the phagocytic capacity of the amoeba and are able to survive for at least one week inside the amoeba. During this one-week incubation period, taylorellae concentrations remain strikingly constant and no overt toxicity to amoeba cells was observed. Conclusions This study provides the first evidence of the capacity of taylorellae to survive in a natural environment other than the mammalian genital tract, and shows that the alternative infection model, A. castellanii, constitutes a relevant alternative system to assess host-pathogen interactions of taylorellae. The survival of taylorellae inside the potential environmental reservoir A. castellanii brings new insight, fostering a broader understanding of taylorellae biology and its potential natural ecological niche.
Collapse
|
19
|
Whiteson KL, Hernandez D, Lazarevic V, Gaia N, Farinelli L, François P, Pilo P, Frey J, Schrenzel J. A genomic perspective on a new bacterial genus and species from the Alcaligenaceae family, Basilea psittacipulmonis. BMC Genomics 2014; 15:169. [PMID: 24581117 PMCID: PMC4028982 DOI: 10.1186/1471-2164-15-169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 02/06/2014] [Indexed: 11/28/2022] Open
Abstract
Background A novel Gram-negative, non-haemolytic, non-motile, rod-shaped bacterium was discovered in the lungs of a dead parakeet (Melopsittacus undulatus) that was kept in captivity in a petshop in Basel, Switzerland. The organism is described with a chemotaxonomic profile and the nearly complete genome sequence obtained through the assembly of short sequence reads. Results Genome sequence analysis and characterization of respiratory quinones, fatty acids, polar lipids, and biochemical phenotype is presented here. Comparison of gene sequences revealed that the most similar species is Pelistega europaea, with BLAST identities of only 93% to the 16S rDNA gene, 76% identity to the rpoB gene, and a similar GC content (~43%) as the organism isolated from the parakeet, DSM 24701 (40%). The closest full genome sequences are those of Bordetella spp. and Taylorella spp. High-throughput sequencing reads from the Illumina-Solexa platform were assembled with the Edena de novo assembler to form 195 contigs comprising the ~2 Mb genome. Genome annotation with RAST, construction of phylogenetic trees with the 16S rDNA (rrs) gene sequence and the rpoB gene, and phylogenetic placement using other highly conserved marker genes with ML Tree all suggest that the bacterial species belongs to the Alcaligenaceae family. Analysis of samples from cages with healthy parakeets suggested that the newly discovered bacterial species is not widespread in parakeet living quarters. Conclusions Classification of this organism in the current taxonomy system requires the formation of a new genus and species. We designate the new genus Basilea and the new species psittacipulmonis. The type strain of Basilea psittacipulmonis is DSM 24701 (= CIP 110308 T, 16S rDNA gene sequence Genbank accession number JX412111 and GI 406042063).
Collapse
Affiliation(s)
- Katrine L Whiteson
- Genomic Research Laboratory, Department of Internal Medicine, Service of Infectious Diseases, Geneva University Hospitals, Gabrielle-Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Development of a single multi-locus sequence typing scheme for Taylorella equigenitalis and Taylorella asinigenitalis. Vet Microbiol 2013; 167:609-18. [DOI: 10.1016/j.vetmic.2013.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 11/20/2022]
|
21
|
Schulman ML, May CE, Keys B, Guthrie AJ. Contagious equine metritis: Artificial reproduction changes the epidemiologic paradigm. Vet Microbiol 2013; 167:2-8. [PMID: 23332460 DOI: 10.1016/j.vetmic.2012.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
22
|
Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making. PLoS One 2013; 8:e64856. [PMID: 23741407 PMCID: PMC3669393 DOI: 10.1371/journal.pone.0064856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/19/2013] [Indexed: 11/24/2022] Open
Abstract
This study elucidates the genomic basis of the evolution of pathogens alongside free-living organisms within the family Alcaligenaceae of Betaproteobacteria. Towards that end, the complete genome sequence of the sulfur-chemolithoautotroph Tetrathiobacter kashmirensis WT001T was determined and compared with the soil isolate Achromobacter xylosoxidans A8 and the two pathogens Bordetella bronchiseptica RB50 and Taylorella equigenitalis MCE9. All analyses comprehensively indicated that the RB50 and MCE9 genomes were almost the subsets of A8 and WT001T, respectively. In the immediate evolutionary past Achromobacter and Bordetella shared a common ancestor, which was distinct from the other contemporary stock that gave rise to Tetrathiobacter and Taylorella. The Achromobacter-Bordetella precursor, after diverging from the family ancestor, evolved through extensive genome inflation, subsequent to which the two genera separated via differential gene losses and acquisitions. Tetrathiobacter, meanwhile, retained the core characteristics of the family ancestor, and Taylorella underwent massive genome degeneration to reach an evolutionary dead-end. Interestingly, the WT001T genome, despite its conserved architecture, had only 85% coding density, besides which 578 out of its 4452 protein-coding sequences were found to be pseudogenized. Translational impairment of several DNA repair-recombination genes in the first place seemed to have ushered the rampant and indiscriminate frame-shift mutations across the WT001T genome. Presumably, this strain has just come out of a recent evolutionary bottleneck, representing a unique transition state where genome self-degeneration has started comprehensively but selective host-confinement has not yet set in. In the light of this evolutionary link, host-adaptation of Taylorella clearly appears to be the aftereffect of genome implosion in another member of the same bottleneck. Remarkably again, potent virulence factors were found widespread in Alcaligenaceae, corroborating which hemolytic and mammalian cell-adhering abilities were discovered in WT001T. So, while WT001T relatives/derivatives in nature could be going the Taylorella way, the lineage as such was well-prepared for imminent host-confinement.
Collapse
|
23
|
Motta MCM, Martins ACDA, de Souza SS, Catta-Preta CMC, Silva R, Klein CC, de Almeida LGP, de Lima Cunha O, Ciapina LP, Brocchi M, Colabardini AC, de Araujo Lima B, Machado CR, de Almeida Soares CM, Probst CM, de Menezes CBA, Thompson CE, Bartholomeu DC, Gradia DF, Pavoni DP, Grisard EC, Fantinatti-Garboggini F, Marchini FK, Rodrigues-Luiz GF, Wagner G, Goldman GH, Fietto JLR, Elias MC, Goldman MHS, Sagot MF, Pereira M, Stoco PH, de Mendonça-Neto RP, Teixeira SMR, Maciel TEF, de Oliveira Mendes TA, Ürményi TP, de Souza W, Schenkman S, de Vasconcelos ATR. Predicting the proteins of Angomonas deanei, Strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family. PLoS One 2013; 8:e60209. [PMID: 23560078 PMCID: PMC3616161 DOI: 10.1371/journal.pone.0060209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/22/2013] [Indexed: 11/30/2022] Open
Abstract
Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.
Collapse
Affiliation(s)
- Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Allan Cezar de Azevedo Martins
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvana Sant’Anna de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosane Silva
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecilia Coimbra Klein
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
- BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | | | - Oberdan de Lima Cunha
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Luciane Prioli Ciapina
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Ana Cristina Colabardini
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruna de Araujo Lima
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Christian Macagnan Probst
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Claudia Beatriz Afonso de Menezes
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Claudia Elizabeth Thompson
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
| | - Daniella Castanheira Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Fiori Gradia
- Laboratório de Biologia Molecular de Tripanossomatídeos, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas/Fundação Oswaldo Cruz, Curitiba, Paraná, Brazil
| | - Edmundo C. Grisard
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fabiana Fantinatti-Garboggini
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | - Gabriela Flávia Rodrigues-Luiz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glauber Wagner
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marie-France Sagot
- BAMBOO Team, INRIA Grenoble-Rhône-Alpes, Villeurbanne, France
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Patrícia H. Stoco
- Laboratórios de Protozoologia e de Bioinformática, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rondon Pessoa de Mendonça-Neto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Talles Eduardo Ferreira Maciel
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Turán P. Ürményi
- Laboratório de Metabolismo Macromolecular Firmino Torres de Castro, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail: (ATRdV); (SS)
| | - Ana Tereza Ribeiro de Vasconcelos
- Laboratório Nacional de Computação Científica, Laboratório de Bioinformática, Petrópolis, Rio de Janeiro, Brazil
- * E-mail: (ATRdV); (SS)
| |
Collapse
|
24
|
Molecular identification and characterization of clustered regularly interspaced short palindromic repeat (CRISPR) gene cluster in Taylorella equigenitalis. Folia Microbiol (Praha) 2012; 58:375-84. [DOI: 10.1007/s12223-012-0217-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/06/2012] [Indexed: 11/26/2022]
|
25
|
Hauser H, Richter DC, van Tonder A, Clark L, Preston A. Comparative genomic analyses of the Taylorellae. Vet Microbiol 2012; 159:195-203. [PMID: 22541164 DOI: 10.1016/j.vetmic.2012.03.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/01/2012] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
|
26
|
Nelson OW, Garrity GM. Genome sequences published outside of Standards in Genomic Sciences, January-March 2012. Stand Genomic Sci 2012. [DOI: 10.4056/sigs.1756022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|