1
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
2
|
CD155 in tumor progression and targeted therapy. Cancer Lett 2022; 545:215830. [PMID: 35870689 DOI: 10.1016/j.canlet.2022.215830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022]
Abstract
CD155, also known as the poliovirus receptor (PVR), has received considerable attention in recent years because of its intrinsic and extrinsic roles in tumor progression. Although barely expressed in host cells, CD155 is upregulated in tumor-infiltrating myeloid cells. High expression of CD155 in tumor cells across multiple cancer types is common and associated with poor patient outcomes. The intrinsic functions of CD155 in tumor cells promote tumor progression and metastasis, whereas its extrinsic immunoregulatory functions in the tumor microenvironment (TME) involve interaction with the upregulated inhibitory immune cell receptor and checkpoint TIGIT, suggesting that CD155 and CD155 pathways are promising tumor immunotherapy targets. Preclinical studies demonstrate that targeting CD155 and its receptor (anti-TIGIT) using a single treatment or in combination with anti-PD-1 can improve immune-mediated tumor control. However, there is still a limited understanding of CD155 and its associated targeting strategies, especially antibody and immune cell editing-related strategies of CD155 in cancer. Here, we review the role of CD155 in host and tumor cells in controlling tumor progression and discuss the potential of targeting CD155 for tumor therapy.
Collapse
|
3
|
Tsitlakidis A, Aifantis EC, Kritis A, Tsingotjidou AS, Cheva A, Selviaridis P, Foroglou N. Mechanical properties of human glioma. Neurol Res 2020; 42:1018-1026. [PMID: 32705967 DOI: 10.1080/01616412.2020.1796381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Brain gliomas represent some of the most aggressive tumors encountered by modern medicine and, despite major efforts to optimize early diagnosis and treatment, the prognosis remains poor. Due to the complex structure of the brain and the unique mechanical properties of the extracellular matrix, gliomas invade and expand into the brain parenchyma, along white matter tracts and within perivascular spaces, usually sparing normal vessels. Different methods have been developed to study the mechanical properties of gliomas in a wide range of scales, from cells and the microscale to tissues and the macroscale. In this review, the current view on glioma mechanics is presented and the methods used to determine glioma mechanical properties are outlined. Their principles and current state of affairs are discussed.
Collapse
Affiliation(s)
- Abraham Tsitlakidis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elias C Aifantis
- Laboratory of Mechanics and Materials, Polytechnic School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Aristeidis Kritis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Panagiotis Selviaridis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Nicolas Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki , Thessaloniki, Greece
| |
Collapse
|
4
|
Lee MN, Song JH, Oh SH, Tham NT, Kim JW, Yang JW, Kim ES, Koh JT. The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc42 activation. Stem Cell Res 2020; 45:101799. [PMID: 32339903 DOI: 10.1016/j.scr.2020.101799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
The primary cilium acts as a sensory organelle with diverse receptors and ion channels to detect extracellular cues and regulate cellular functions, including cell migration. The migration of mesenchymal stem cells (MSCs) to bone remodeling sites is important for bone homeostasis. Recently, we have suggested that osteopontin (OPN) is a significant chemoattractant in MSC migration to bone remodeling sites. The objective of this study was to determine whether the primary cilium acts as a chemoattractant sensory unit to detect OPN cues and control MSC migration. We found that the loss of primary cilium induced by silencing of IFT88 reduced OPN-induced migration of MSCs. The effect of IFT88 silencing on cellular attachment, spreading, and proliferation was negligible. The loss of primary cilium did not affect the level of integrinβ1 or CD44, two known receptors for OPN. Interestingly, CD44 was localized to the primary cilium by OPN stimulus. Knockdown of IFT88 or CD44 dysregulated OPN-induced signaling activation and abolished OPN-induced Cdc42 activation. Our findings suggest that the primary cilium acts as a chemoattractant sensor for OPN to regulate MSC migration by controlling not only CD44-mediated OPN signaling, but also Cdc42-mediated actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Mi Nam Lee
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ju Han Song
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sin-Hye Oh
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Nguyen Thi Tham
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jung-Woo Kim
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Jin-Woo Yang
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Eung-Sam Kim
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, Korea
| | - Jeong-Tae Koh
- Hard-tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea; Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Korea.
| |
Collapse
|
5
|
Kučan Brlić P, Lenac Roviš T, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol 2019; 16:40-52. [PMID: 30275538 PMCID: PMC6318332 DOI: 10.1038/s41423-018-0168-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
Poliovirus receptor (PVR, CD155) has recently been gaining scientific interest as a therapeutic target in the field of tumor immunology due to its prominent endogenous and immune functions. In contrast to healthy tissues, PVR is expressed at high levels in several human malignancies and seems to have protumorigenic and therapeutically attractive properties that are currently being investigated in the field of recombinant oncolytic virotherapy. More intriguingly, PVR participates in a considerable number of immunoregulatory functions through its interactions with activating and inhibitory immune cell receptors. These functions are often modified in the tumor microenvironment, contributing to tumor immunosuppression. Indeed, increasing evidence supports the rationale for developing strategies targeting these interactions, either in terms of checkpoint therapy (i.e., targeting inhibitory receptors) or in adoptive cell therapy, which targets PVR as a tumor marker.
Collapse
Affiliation(s)
- Paola Kučan Brlić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| | - Tihana Lenac Roviš
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia
| | - Guy Cinamon
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Pini Tsukerman
- Nectin Therapeutics Ltd., Hi-Tech Campus Givat Ram, POB 39135, 91390, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Faculty of Medicine, IMRIC, The Hebrew University Medical School, Jerusalem, Israel
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51 000, Rijeka, Croatia.
| |
Collapse
|
6
|
Wang HH, Liao CC, Chow NH, Huang LLH, Chuang JI, Wei KC, Shin JW. Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res 2017; 9:4785-4806. [PMID: 29218080 PMCID: PMC5714766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most malignant and aggressive brain tumors with great amount of hyaluronan (HA) secretion and CD44 overexpression (HA receptor). CD44 has been suggested as a cancer stem cells (CSCs) marker. However, several clinical studies have indicated that CD44low glioma cell exhibit CSCs traits. Additionally, our previous study indicated that more CD44 expression was associated with a better prognosis in GBM patients. To determine whether CD44 is an appropriate marker of glioma stem cells (GSCs), we manipulated CD44 expression using intrinsic (CD44 knockdown, CD44kd) and extrinsic (HA supplement, HA+) methods. Our results show that CD44kd suppressed cell proliferation by retarding cell cycle progression from G0/G1 to S phase. Furthermore, it caused GSCs traits, including lower expression of differentiation marker (glial fibrillary acidic protein, GFAP), a higher level of sphere formation and higher expression of stem cell markers (CD133, nestin and Oct4). The reduction of CD44 expression induced by HA+ was accompanied by an increase in GSCs properties. Interestingly, the presence of HA+ in glioma cells with GSC traits conversely facilitated differentiation. Our data indicated that the CD44 low-expressing cells exhibit more GSCs straits, suggesting that CD44 is not an appropriate marker for GSCs. Furthermore, the preferential expression of CD44 at the invasive rim in rat glioma specimen implies that CD44 may be more important for invasion and migration instead of GSCs marker in glioma.
Collapse
Affiliation(s)
- Hsiao-Han Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chen-Chieh Liao
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung UniversityTainan, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University HospitalTainan, Taiwan
- Graduate Institute of Molecular Medicine, National Cheng Kung University College of MedicineTainan, Taiwan
| | - Lynn Ling-Huei Huang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung UniversityTainan, Taiwan
- Institute of Clinical Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jih-Ing Chuang
- Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
7
|
Maherally Z, Fillmore HL, Tan SL, Tan SF, Jassam SA, Quack FI, Hatherell KE, Pilkington GJ. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity. FASEB J 2017; 32:168-182. [PMID: 28883042 PMCID: PMC5731124 DOI: 10.1096/fj.201700162r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022]
Abstract
The blood–brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins—laminin, fibronectin, collagen type IV, agrin, and perlecan—on adhesion and TEER was assessed using an electric cell-substrate impedance–sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.—Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood–brain barrier model exemplifies tight-junction integrity.
Collapse
Affiliation(s)
- Zaynah Maherally
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Helen L Fillmore
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Sim Ling Tan
- Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suk Fei Tan
- Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Samah A Jassam
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Friederike I Quack
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Kathryn E Hatherell
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| | - Geoffrey J Pilkington
- Brain Tumour Research Centre, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom; and
| |
Collapse
|
8
|
Jassam SA, Maherally Z, Smith JR, Ashkan K, Roncaroli F, Fillmore HL, Pilkington GJ. TNF-α enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis. Neuro Oncol 2016; 18:679-90. [PMID: 26472821 PMCID: PMC4827040 DOI: 10.1093/neuonc/nov248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/05/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better understanding of CD15/CD62E interaction, enhanced by tumor necrosis factor-α (TNF-α), and its correlation with brain metastasis in non-small cell lung cancer (NSCLC). METHODS CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry. RESULTS CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on metastatic NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P < .001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-α, with lower levels on metastatic NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions (P < .0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in lung metastatic brain biopsies. CONCLUSION This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a crucial role in adhesion in concert with TNF-α activation of its binding partner, CD62E.
Collapse
Affiliation(s)
- Samah A Jassam
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Zaynah Maherally
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - James R Smith
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Keyoumars Ashkan
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Federico Roncaroli
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Helen L Fillmore
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| | - Geoffrey J Pilkington
- Cellular and Molecular Neuro-oncology Research Group, Brain Tumour Research Centre, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK (S.A.J., Z.M., J.R.S., H.L.F., G.J.P.); Neuro-surgery, King's College Hospital, Denmark Hill, London, UK (K.A.); Institute of Brain Behaviour and Mental Health, The University of Manchester, Manchester, UK (F.R.)
| |
Collapse
|
9
|
|
10
|
Maherally Z, Smith JR, Ghoneim MK, Dickson L, An Q, Fillmore HL, Pilkington GJ. Silencing of CD44 in Glioma Leads to Changes in Cytoskeletal Protein Expression and Cellular Biomechanical Deformation Properties as Measured by AFM Nanoindentation. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Adult neurogenesis and glial oncogenesis: when the process fails. BIOMED RESEARCH INTERNATIONAL 2014; 2014:438639. [PMID: 24738058 PMCID: PMC3971505 DOI: 10.1155/2014/438639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/29/2014] [Indexed: 02/01/2023]
Abstract
Malignant brain tumors, including glioblastoma multiforme (GBM), are known for their high degree of invasiveness, aggressiveness, and lethality. These tumors are made up of heterogeneous cell populations and only a small part of these cells (known as cancer stem cells) is responsible for the initiation and recurrence of the tumor. The biology of cancer stem cells and their role in brain tumor growth and therapeutic resistance has been extensively investigated. Recent work suggests that glial tumors arise from neural stem cells that undergo a defective process of differentiation. The understanding of this process might permit the development of novel treatment strategies targeting cancer stem cells. In the present review, we address the mechanisms underlying glial tumor formation, paying special attention to cancer stem cells and the role of the microenvironment in preserving them and promoting tumor growth. Recent advancements in cancer stem cell biology, especially regarding tumor initiation and resistance to chemo- or radiotherapy, have led to the development of novel treatment strategies that focus on the niche of the stem cells that make up the tumor. Encouraging results from preclinical studies predict that these findings will be translated into the clinical field in the near future.
Collapse
|
12
|
Sayegh ET, Kaur G, Bloch O, Parsa AT. Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 2013; 49:1212-44. [PMID: 24271659 DOI: 10.1007/s12035-013-8593-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/11/2013] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is an aggressive and incurable brain tumor with a grave prognosis. Recurrence is inevitable even with maximal surgical resection, in large part because GBM is a highly invasive tumor. Invasiveness also contributes to the failure of multiple cornerstones of GBM therapy, including radiotherapy, temozolomide chemotherapy, and vascular endothelial growth factor blockade. In recent years there has been significant progress in the identification of protein biomarkers of invasive phenotype in GBM. In this article, we comprehensively review the literature and survey a broad spectrum of biomarkers, including proteolytic enzymes, extracellular matrix proteins, cell adhesion molecules, neurodevelopmental factors, cell signaling and transcription factors, angiogenic effectors, metabolic proteins, membrane channels, and cytokines and chemokines. In light of the marked variation seen in outcomes in GBM patients, the systematic use of these biomarkers could be used to form a framework for better prediction, prognostication, and treatment selection, as well as the identification of molecular targets for further laboratory investigation and development of nascent, directed therapies.
Collapse
Affiliation(s)
- Eli T Sayegh
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611-2911, USA
| | | | | | | |
Collapse
|
13
|
Sotoca AM, Roelofs-Hendriks J, Boeren S, van der Kraan PM, Vervoort J, van Zoelen EJJ, Piek E. Comparative proteome approach demonstrates that platelet-derived growth factor C and D efficiently induce proliferation while maintaining multipotency of hMSCs. Exp Cell Res 2013; 319:2649-62. [PMID: 23933496 DOI: 10.1016/j.yexcr.2013.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/03/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023]
Abstract
This is the first study that comprehensively describes the effects of the platelet-derived growth factor (PDGF) isoforms C and D during in vitro expansion of human mesenchymal stem cells (hMSCs). Our results show that PDGFs can enhance proliferation of hMSCs without affecting their multipotency. It is of great value to culture and expand hMSCs in a safe and effective manner without losing their multipotency for manipulation and further development of cell-based therapies. Moreover, differential effects of PDGF isoforms have been observed on lineage-specific differentiation induced by BMP2 and Vitamin D3. Based on label-free LC-based quantitative proteomics approach we have furthermore identified specific pathways induced by PDGFs during the proliferation process, showing the importance of bioinformatics tools to study cell function.
Collapse
Affiliation(s)
- Ana M Sotoca
- Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Carter JA, Górecki DC, Mein CA, Ljungberg B, Hafizi S. CpG dinucleotide-specific hypermethylation of the TNS3 gene promoter in human renal cell carcinoma. Epigenetics 2013; 8:739-47. [PMID: 23803643 DOI: 10.4161/epi.25075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tensin3 is a cytoskeletal regulatory protein that inhibits cell motility. Downregulation of the gene encoding Tensin3 (TNS3) in human renal cell carcinoma (RCC) may contribute to cancer cell metastatic behavior. We speculated that epigenetic mechanisms, e.g., gene promoter hypermethylation, might account for TNS3 downregulation. In this study, we identified and validated a TNS3 gene promoter containing a CpG island, and quantified the methylation level within this region in RCC. Using a luciferase reporter assay we demonstrated a functional minimal promoter activity for a 500-bp sequence within the TNS3 CpG island. Pyrosequencing enabled quantitative determination of DNA methylation of each CpG dinucleotide (a total of 43) in the TNS3 gene promoter. Across the entire analyzed CpG stretch, RCC DNA showed a higher methylation level than both non-tumor kidney DNA and normal control DNA. Out of all the CpGs analyzed, two CpG dinucleotides, specifically position 2 and 8, showed the most pronounced increases in methylation levels in tumor samples. Furthermore, CpG-specific higher methylation levels were correlated with lower TNS3 gene expression levels in RCC samples. In addition, pharmacological demethylation treatment of cultured kidney cells caused a 3-fold upregulation of Tensin3 expression. In conclusion, these results reveal a differential methylation pattern in the TNS3 promoter occurring in human RCC, suggesting an epigenetic mechanism for aberrant Tensin downregulation in human kidney cancer.
Collapse
Affiliation(s)
- Jessica A Carter
- Institute of Biomedical and Biomolecular Science (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | | | | | | |
Collapse
|