1
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
2
|
López-Contreras F, Rojas-Barón L, Gómez M, Morera F, Sepúlveda P, Moroni M, Muñoz P, Acosta-Jammett G, Mieres M, Hirzmann J, Hermosilla C, Taubert A. Molecular Detection of Gurltia paralysans by Semi-Nested PCR in Cerebrospinal Fluid and Serum Samples from Domestic Cats ( Felis catus). Animals (Basel) 2020; 10:ani10071169. [PMID: 32660139 PMCID: PMC7401636 DOI: 10.3390/ani10071169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Feline gurltiosis is a parasitic myelopathy caused by Gurltia paralysans. This nematode infects domestic cats without distinction of sex, breed or age, invading the venous system of the spinal leptomeninges and causing vascular congestion that mainly produces paralysis of the pelvic limbs, among other clinical signs of chronic myelopathy. To date, the definitive diagnosis of feline gurltiosis is only possible through post-mortem analysis that shows the location of the parasite in the vasculature of the spinal cord. For this reason, this investigation aimed to detect G. paralysans DNA, via semi-nested PCR, in samples of cerebrospinal fluid and serum from 12 domestic cats from potentially endemic areas in southern Chile, with compatible signs of feline gurltiosis. The presence of G. paralysans-specific DNA was detected in the cerebrospinal fluid of four out of nine cats and the sera of seven out of seven cats. These results allow us to suggest the implementation of a semi-nested PCR technique as a routine diagnostic test for early and timely detection of feline gurltiosis. Abstract Gurltia paralysans is an angio-neurotropic metastrongyloid nematode that infects domestic and wild cats, invading the veins of the subarachnoid space of the spinal cord and mainly causing progressive paralysis of the pelvic limbs. The definitive diagnosis of feline gurltiosis can only be achieved by post-mortem examination that reveals the presence of the nematode in the spinal cord vein vasculature. An early diagnosis with conclusive results is required since laboratory and imaging findings are not sufficient. Therefore, the purpose of this study was to detect the presence of G. paralysans, via semi-nested PCR, in samples of cerebrospinal fluid (CSF) and the sera of domestic cats naturally infected with the parasite. A total of 12 cats with a diagnosis suggestive of feline gurltiosis were selected, and they underwent a complete neurological and imaging examination. DNA samples were analysed by semi-nested PCR, with universal (AaGp28Sa1/AaGp28Ss1) and specific (Gp28Sa3/Aa28Ss2) primers, for G. paralysans (G. paralysans 18S rRNA gene, partial sequence; ITS 1, 5.8S rRNA gene, and ITS 2, complete sequence; and 28S rRNA gene, partial sequence) and Aelurostrongylus abstrusus, obtaining amplifications of 356 and 300 bp, which indicated the presence or absence of nematode DNA, respectively. The presence of G. paralysans was detected in the CSF of four out of nine cats, and the sera of seven out of seven cats. In the sera analysis of five out of seven cats, a mixed infection with A. abstrusus was found, despite no alterations of the respiratory tract being observed during the necropsies. It is proposed that serum samples could be more effective than CSF in detecting the parasite by PCR analysis. Sequencing analysis showed high percentages of identity with G. paralysans, which indicated the feasibility of detection and the sensitivity/specificity of the method used, suggesting the implementation of semi-nested PCR as a routine diagnostic test for early and timely detection of feline gurltiosis.
Collapse
Affiliation(s)
- Freddy López-Contreras
- Institute of Pharmacology and Morphophysiology, Austral University of Chile, Valdivia 5090000, Chile; (F.L.-C.); (L.R.-B.); (F.M.); (P.S.)
| | - Lisbeth Rojas-Barón
- Institute of Pharmacology and Morphophysiology, Austral University of Chile, Valdivia 5090000, Chile; (F.L.-C.); (L.R.-B.); (F.M.); (P.S.)
| | - Marcelo Gómez
- Institute of Pharmacology and Morphophysiology, Austral University of Chile, Valdivia 5090000, Chile; (F.L.-C.); (L.R.-B.); (F.M.); (P.S.)
- Correspondence: ; Tel.: +56-6-3222-1548 or +56-6-3222-3247
| | - Francisco Morera
- Institute of Pharmacology and Morphophysiology, Austral University of Chile, Valdivia 5090000, Chile; (F.L.-C.); (L.R.-B.); (F.M.); (P.S.)
| | - Paulina Sepúlveda
- Institute of Pharmacology and Morphophysiology, Austral University of Chile, Valdivia 5090000, Chile; (F.L.-C.); (L.R.-B.); (F.M.); (P.S.)
| | - Manuel Moroni
- Institute of Animal Pathology, Austral University of Chile, Valdivia 5090000, Chile; (M.M.); (P.M.)
| | - Pamela Muñoz
- Institute of Animal Pathology, Austral University of Chile, Valdivia 5090000, Chile; (M.M.); (P.M.)
| | - Gerardo Acosta-Jammett
- Institute of Veterinary Preventive Medicine, Austral University of Chile, Valdivia 5090000, Chile;
| | - Marcelo Mieres
- Institute of Veterinarian Clinic Sciences, Austral University of Chile, Valdivia 5090000, Chile;
| | - Jörg Hirzmann
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (C.H.); (A.T.)
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (C.H.); (A.T.)
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (C.H.); (A.T.)
| |
Collapse
|
3
|
Mengying Z, Yiyue X, Tong P, Yue H, Limpanont Y, Ping H, Okanurak K, Yanqi W, Dekumyoy P, Hongli Z, Watthanakulpanich D, Zhongdao W, Zhi W, Zhiyue L. Apoptosis and necroptosis of mouse hippocampal and parenchymal astrocytes, microglia and neurons caused by Angiostrongylus cantonensis infection. Parasit Vectors 2017; 10:611. [PMID: 29258580 PMCID: PMC5735806 DOI: 10.1186/s13071-017-2565-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Angiostrongylus cantonensis has been the only parasite among Angiostrongylidae to cause human central nervous system infection characterized by eosinophilic meningitis or meningoencephalitis. The mechanism of the extensive neurological impairments of hosts caused by A. cantonensis larvae remains unclear. The aim of the present study was to investigate apoptosis, necroptosis and autophagy in the brains of mice infected with A. cantonensis, which will be valuable for better understanding the pathogenesis of angiostrongyliasis cantonensis. METHODS Functional and histological neurological impairments of brain tissues from mice infected with A. cantonensis were measured by the Morris water maze test and haematoxylin and eosin (H&E) staining, respectively. The transcriptional and translational levels of apoptosis-, necroptosis- and autophagy-related genes were quantified by quantitative real-time polymerase chain reaction (RT-PCR), and assessed by western blot and immunohistochemistry (IHC) analysis. Apoptotic and necroptotic cells and their distributions in infected brain tissues were analysed by flow cytometry and transmission electron microscopy (TEM). RESULTS Inflammatory response in the central nervous system deteriorated as A. cantonensis infection evolved, as characterized by abundant inflammatory cell infiltration underneath the meninges, which peaked at 21 days post-infection (dpi). The learning and memory capacities of the mice were significantly decreased at 14 dpi, indicating prominent impairment of their cognitive functions. Compared with those of the control group, the mRNA levels of caspase-3, -4, -6, and RIP3 and the protein levels of caspase-4, cleaved caspase-3, cleaved caspase-6, RIP3, and pRIP3 were obviously elevated. However, no changes in the mRNA or protein levels of FADD, Beclin-1 or LC3B were evident, indicating that apoptosis and necroptosis, but not autophagy, occurred in the brain tissues of mice infected with A. cantonensis. The quantitative RT-PCR, western blot, IHC, flow cytometry and TEM results further revealed the apoptotic and necroptotic microglia, astrocytes and neurons in the parenchymal and hippocampal regions of infected mice. CONCLUSIONS To our knowledge, we showed for the first time that A. cantonensis infection causes the apoptosis and necroptosis of microglia and astrocytes in the parenchymal and hippocampal regions of host brain tissues, further demonstrating the pathogenesis of A. cantonensis infection and providing potential therapeutic targets for the management of angiostrongyliasis.
Collapse
Affiliation(s)
- Zhang Mengying
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Xu Yiyue
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Pan Tong
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
| | - Hu Yue
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Yanin Limpanont
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Huang Ping
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Kamolnetr Okanurak
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Wu Yanqi
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Paron Dekumyoy
- Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Zhou Hongli
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | | | - Wu Zhongdao
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| | - Wang Zhi
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128 China
| | - Lv Zhiyue
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080 China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080 China
| |
Collapse
|
4
|
Yu L, Cao B, Long Y, Tukayo M, Feng C, Fang W, Luo D. Comparative transcriptomic analysis of two important life stages of Angiostrongylus cantonensis: fifth-stage larvae and female adults. Genet Mol Biol 2017. [PMID: 28644509 PMCID: PMC5488468 DOI: 10.1590/1678-4685-gmb-2016-0274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mechanisms involved in the fast growth of Angiostrongylus
cantonensis from fifth-stage larvae (L5) to female adults and how L5
breaks through the blood-brain barrier in a permissive host remain unclear. In this
work, we compared the transcriptomes of these two life stages to identify the main
factors involved in the rapid growth and transition to adulthood. RNA samples from
the two stages were sequenced and assembled de novo. Gene Ontology
and Kyoto Encyclopedia of Genes and Genomes pathway analyses of 1,346 differentially
expressed genes between L5 and female adults was then undertaken. Based on a
combination of analytical results and developmental characteristics, we suggest that
A. cantonensis synthesizes a large amount of cuticle in L5 to
allow body dilatation in the rapid growth period. Products that are degraded via the
lysosomal pathway may provide sufficient raw materials for cuticle production. In
addition, metallopeptidases may play a key role in parasite penetration of the
blood-brain barrier during migration from the brain. Overall, these results indicate
that the profiles of each transcriptome are tailored to the need for survival in each
developmental stage.
Collapse
Affiliation(s)
- Liang Yu
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Binbin Cao
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Long
- Translational Medicine Center, Hunan Cancer Hospital, Changsha, Hunan, 410006, China
| | - Meks Tukayo
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chonglv Feng
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Wenzhen Fang
- College of the Environment & Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Damin Luo
- Department of Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, 361102, China
| |
Collapse
|
5
|
Wei J, Wu F, He A, Zeng X, Ouyang LS, Liu MS, Zheng HQ, Lei WL, Wu ZD, Lv ZY. Microglia activation: one of the checkpoints in the CNS inflammation caused by Angiostrongylus cantonensis infection in rodent model. Parasitol Res 2015; 114:3247-54. [PMID: 26002828 DOI: 10.1007/s00436-015-4541-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 01/11/2023]
Abstract
Angiostrongylus cantonensis (A. cantonensis) is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats; humans are non-permissive hosts like the mice. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningo-encephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of hosts to parasite during A. cantonensis invasion and development. To further understand the reasons why mice and rats attain different outcomes in A. cantonensis infection, we used the HE staining to observe the pathological changes of infected mice and rats. In addition, we measured mRNA levels of some cytokines (IL-5, IL-6, IL-13, Eotaxin, IL-4, IL-10, TGF-β, IFN-γ, IL-17A, TNF-α, IL-1β, and iNOS) in brain tissues of mice and rats by real-time PCR. The result showed that brain inflammation in mice was more serious than in rats. Meanwhile, mRNA expression levels of IL-6, IL-1β, TNF-α, and iNOS increased after mice were infected. In contrast, mRNA levels of these cytokines in rats brain tissues decreased at post- infection 21 days. These cytokines mostly were secreted by activated microglia in central nervous system. Microglia of mice and rats were showed by Iba-1 (microglia marker) staining. In micee brains, microglia got together and had more significant activation than in rats brains. The results demonstrate that mice and rats have different CNS inflammation after infection by A. cantonensis, and it is in line with other researchers' reported findings. In conclusion, it is suggested that microglia activation is probably to be one of the most important factors in angiostrongyliasis from our study.
Collapse
Affiliation(s)
- Jie Wei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsai HC, Lee BY, Yen CM, Wann SR, Lee SSJ, Chen YS. Dexamethasone inhibits brain apoptosis in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection. Parasit Vectors 2015; 8:200. [PMID: 25890054 PMCID: PMC4382933 DOI: 10.1186/s13071-015-0792-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Background Angiostrongylus cantonensis, the rat lungworm, is the major cause of eosinophilic meningitis worldwide. Rats serve as the definitive host of the nematode, but humans can be infected incidentally, leading to eosinophilic meningitis. A previous BALB/c animal study has demonstrated increased apoptotic proteins and decreased anti-apoptotic proteins in mice infected with A. cantonensis. Steroids may be an effective treatment option for eosinophilic meningitis caused by A. cantonensis, but the involved mechanism is unclear. This study hypothesized that the beneficial effects of steroids on eosinophilic meningitis are mediated by decreased apoptosis. Methods In a BALB/c animal model, mice were orally infected with 50 A. cantonensis L3 via an oro-gastric tube and were sacrificed every week for 3 consecutive weeks after infection or until the end of the study. Dexamethasone was injected intra-peritoneally from the 7th day post-infection until the end of the 21-day study. Evans blue method was used to measure changes in the blood brain barrier, while western blotting, immuno-histochemistry, and TUNEL assay were used to analyze brain homogenates expression of apoptotic and anti-apoptotic proteins. Results There were increased amounts of Evans blue, apoptotic proteins (caspase-3, -8, and -9 and cytochrome C), and decreased anti-apoptotic proteins (bcl-2) after 2-3 weeks of infection. Dexamethasone administration significantly decreased Evans blue extravasations and apoptotic protein expressions. Conclusions Apoptosis of mice brain homogenates can be repressed by dexamethasone treatment.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan. .,National Defense Medical Center, Taipei, Taiwan.
| | - Bi-Yao Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Chuan-Min Yen
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shue-Ren Wann
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Susan Shin-Jung Lee
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| | - Yao-Shen Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan and National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
7
|
Angiostrongylus cantonensis in China. TREATMENT OF HUMAN PARASITOSIS IN TRADITIONAL CHINESE MEDICINE 2014. [DOI: 10.1007/978-3-642-39824-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Kyan Y, Ueda Y, Yoshida M, Sasahara K, Shinya K. Transcriptome profiling of brain edemas caused by influenza infection and lipopolysaccharide treatment. J Med Virol 2013; 86:905-11. [PMID: 24306925 DOI: 10.1002/jmv.23801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 12/11/2022]
Abstract
Influenza A virus-associated encephalopathy triggered by influenza virus infection often occurs in children aged five and younger in Japan. However, the mechanisms behind Influenza A virus-associated encephalopathy are not yet well understood. This study developed an Influenza A virus-associated encephalopathy-like model using mice infected with Influenza A virus and given lipopolysaccharide treatment. The results showed that the mice used in the model suffered from brain edemas nearly three times more severe, as well as having higher cytokine levels in sera compared to those of the control groups. Using gene expression profiling, cytokine-related genes were found not to be up-regulated in the brain in situ, while protein coding genes, which are known to be involved in blood-brain barrier disruption, were up-regulated. Categorizing the functional groups using gene ontology revealed the terms "ion channels," "calcium oscillation," and "membrane transporter activities." The blood-brain barrier disruption found in this Influenza A virus-associated encephalopathy model can therefore be assumed to be due to a cellular electrolyte imbalance of the neuronal tissue, in addition to a cytokine storm.
Collapse
Affiliation(s)
- Yukihiro Kyan
- Graduate School of Medicine, Kobe University, Hyogo, Japan
| | | | | | | | | |
Collapse
|
9
|
Angiostrongylus cantonensis: tegumental and hypodermic alterations of the fourth-stage larvae following administration of tribendimidine in vivo and in vitro. Parasitol Res 2013; 112:3035-40. [DOI: 10.1007/s00436-013-3479-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
|
10
|
Peng H, Sun R, Zhang Q, Zhao J, Wei J, Zeng X, Zheng H, Wu Z. Interleukin 33 mediates type 2 immunity and inflammation in the central nervous system of mice infected with Angiostrongylus cantonensis. J Infect Dis 2012; 207:860-9. [PMID: 23148283 DOI: 10.1093/infdis/jis682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Angiostrongylus cantonensis can induce central nervous system (CNS) injury and cause human eosinophilic meningitis. The CNS has been found to have high expression of interleukin 33 (IL-33), which promotes the pathogenesis of T-helper 2 (Th2)-related disease. Given the predominantly type 2 response induced by A. cantonensis-infected mice and human, it is likely that IL-33 may play a role in aiding this process. We report here that IL-33 protein and ST2L messenger RNA (mRNA) transcripts in the brains were upregulated during A. cantonensis infection and that both splenocytes and brain mononuclear cells became IL-33 responsive and produced interleukin 5 and interleukin 13. Furthermore, administration of IL-33 to A. cantonensis-infected mice enhanced ST2L expression and cytokine production. Interestingly, brain IL-33 protein and ST2L mRNA levels were elevated 14-21 days after infection in BALB/c mice, compared with C57BL/6 mice. Thus, our data indicate that IL-33 produced in the brain may function as an inflammatory mediator in eosinophilic meningitis induced by A. cantonensis.
Collapse
Affiliation(s)
- Hui Peng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Differences in microglia activation between rats-derived cell and mice-derived cell after stimulating by soluble antigen of IV larva from Angiostrongylus cantonensis in vitro. Parasitol Res 2012; 112:207-14. [PMID: 23073569 DOI: 10.1007/s00436-012-3127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 01/14/2023]
Abstract
Angiostrongylus cantonensis is a rodent nematode. Adult worms of A. cantonensis live in the pulmonary arteries of rats. Humans and mice are accidental hosts or named nonpermissive hosts. The larva cannot develop into an adult worm and only causes serious eosinophilic meningitis or meningoencephalitis if humans or mice eat food containing larva of A. cantonensis in the third stage. The differing consequences largely depend on differing immune responses of the host to parasite during A. cantonensis invasion and development. Microglia is considered to be the key immune cell in the central nervous system like macrophage. To further understand the reasons for why mice and rats attain different outcomes in A. cantonensis infection, we set up the method to isolate and culture newborn rats' primary microglia and observe the activation of the microglia cells, comparing with mice microglia cell line N9. We treated cells with soluble antigen of the fourth larva of A. cantonensis (L4 larva) and measured mRNA levels of IL-1β, IL-5, IL-6, IL-13, eotaxin, iNOS, and TNF-α by real-time PCR. The results showed that N9 expressed high mRNA level of IL-6, IL-1β, TNF-α, iNOS, IL-5, IL-13, and eotaxin, but primary microglia only had IL-5, IL-13, and eotaxin mRNA level. It implies that microglia from rats and mice had different reaction to soluble antigen of A. cantonensis. Therefore, we supposed that microglia may play an immune modulation role during the brain inflammation induced by A. cantonensis.
Collapse
|