1
|
The Binding of Different Substrate Molecules at the Docking Site and the Active Site of γ-Secretase Can Trigger Toxic Events in Sporadic and Familial Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24031835. [PMID: 36768156 PMCID: PMC9915333 DOI: 10.3390/ijms24031835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Pathogenic changes in γ-secretase activity, along with its response to different drugs, can be affected by changes in the saturation of γ-secretase with its substrate. We analyze the saturation of γ-secretase with its substrate using multiscale molecular dynamics studies. We found that an increase in the saturation of γ-secretase with its substrate could result in the parallel binding of different substrate molecules at the docking site and the active site. The C-terminal domain of the substrate bound at the docking site can interact with the most dynamic presenilin sites at the cytosolic end of the active site tunnel. Such interactions can inhibit the ongoing catalytic activity and increase the production of the longer, more hydrophobic, and more toxic Aβ proteins. Similar disruptions in dynamic presenilin structures can be observed with different drugs and disease-causing mutations. Both, C99-βCTF-APP substrate and its different Aβ products, can support the toxic aggregation. The aggregation depends on the substrate N-terminal domain. Thus, the C99-βCTF-APP substrate and β-secretase path can be more toxic than the C83-αCTF-APP substrate and α-secretase path. Nicastrin can control the toxic aggregation in the closed conformation. The binding of the C99-βCTF-APP substrate to γ-secretase can be controlled by substrate channeling between the nicastrin and β-secretase. We conclude that the presented two-substrate mechanism could explain the pathogenic changes in γ-secretase activity and Aβ metabolism in different sporadic and familial cases of Alzheimer's disease. Future drug-development efforts should target different cellular mechanisms that regulate the optimal balance between γ-secretase activity and amyloid metabolism.
Collapse
|
2
|
Jäntti H, Oksanen M, Kettunen P, Manta S, Mouledous L, Koivisto H, Ruuth J, Trontti K, Dhungana H, Keuters M, Weert I, Koskuvi M, Hovatta I, Linden AM, Rampon C, Malm T, Tanila H, Koistinaho J, Rolova T. Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice. Cells 2022; 11:cells11244116. [PMID: 36552881 PMCID: PMC9776487 DOI: 10.3390/cells11244116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
Collapse
Affiliation(s)
- Henna Jäntti
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Broad Institute, Cambridge, MA 02142, USA
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pinja Kettunen
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Stella Manta
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hennariikka Koivisto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Johanna Ruuth
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Hiramani Dhungana
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Meike Keuters
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Isabelle Weert
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Koskuvi
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Department of Physiology and Pharmacology, Karolinska Institutet, 17165 Solna, Sweden
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Psychology and Logopedics, University of Helsinki, 00014 Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Université de Toulouse, CNRS, UPS, CEDEX 09, 31062 Toulouse, France
- Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Heikki Tanila
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| | - Taisia Rolova
- Neuroscience Center, HILIFE, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: (J.K.); (T.R.)
| |
Collapse
|
3
|
Svedružić ŽM, Vrbnjak K, Martinović M, Miletić V. Structural Analysis of the Simultaneous Activation and Inhibition of γ-Secretase Activity in the Development of Drugs for Alzheimer's Disease. Pharmaceutics 2021; 13:pharmaceutics13040514. [PMID: 33917979 PMCID: PMC8068388 DOI: 10.3390/pharmaceutics13040514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Significance: The majority of the drugs which target membrane-embedded protease γ-secretase show an unusual biphasic activation–inhibition dose-response in cells, model animals, and humans. Semagacestat and avagacestat are two biphasic drugs that can facilitate cognitive decline in patients with Alzheimer’s disease. Initial mechanistic studies showed that the biphasic drugs, and pathogenic mutations, can produce the same type of changes in γ-secretase activity. Results: DAPT, semagacestat LY-411,575, and avagacestat are four drugs that show different binding constants, and a biphasic activation–inhibition dose-response for amyloid-β-40 products in SH-SY5 cells. Multiscale molecular dynamics studies have shown that all four drugs bind to the most mobile parts in the presenilin structure, at different ends of the 29 Å long active site tunnel. The biphasic dose-response assays are a result of the modulation of γ-secretase activity by the concurrent binding of multiple drug molecules at each end of the active site tunnel. The drugs activate γ-secretase by facilitating the opening of the active site tunnel, when the rate-limiting step is the tunnel opening, and the formation of the enzyme–substrate complex. The drugs inhibit γ-secretase as uncompetitive inhibitors by binding next to the substrate, to dynamic enzyme structures which regulate processive catalysis. The drugs can modulate the production of different amyloid-β catalytic intermediates by penetration into the active site tunnel, to different depths, with different flexibility and different binding affinity. Conclusions: Biphasic drugs and pathogenic mutations can affect the same dynamic protein structures that control processive catalysis. Successful drug-design strategies must incorporate transient changes in the γ-secretase structure in the development of specific modulators of its catalytic activity.
Collapse
Affiliation(s)
- Željko M. Svedružić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; (K.V.); (M.M.)
- Laboratory for Medical Biochemistry, Psychiatric Hospital Rab, Kampor 224, 51280 Rab, Croatia
- Correspondence:
| | - Katarina Vrbnjak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; (K.V.); (M.M.)
- Laboratory for Mechanisms of Cell Transformation (VIB-KU Leuven), ON IV Herestraat—Box 912, 3000 Leuven, Belgium
| | - Manuel Martinović
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia; (K.V.); (M.M.)
| | - Vedran Miletić
- Department of Informatics, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
4
|
Li CD, Junaid M, Chen H, Ali A, Wei DQ. Helix-Switch Enables C99 Dimer Transition between the Multiple Conformations. J Chem Inf Model 2019; 59:339-350. [PMID: 30570254 DOI: 10.1021/acs.jcim.8b00559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
C99 is the immediate precursor of amyloid-β (Aβ) and therefore is a central intermediate in the pathway that is believed to result in Alzheimer's disease (AD). Recent studies have shown that C99 dimerization changes the Aβ ratio, but the mechanism remains unclear. Previous studies of the C99 dimer have produced controversial structure models. To address these questions, we investigated C99 dimerization using molecular dynamics (MD) simulations. A helix-switch model was revealed in the formation and transition of the C99 dimer, and six types of conformations were identified. The different conformations show differential exposures of γ-cleavage sites and insertion depths in the bilayer, which may modulate γ-cleavage of C99 and lead to different Aβ levels. Our results redefine C99 dimerization, provide a framework to mediate the current controversial results, and give insights into the understanding of the relationship between C99 dimerization and Aβ formation.
Collapse
Affiliation(s)
- Cheng-Dong Li
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China.,Department of Mechanical Engineering and Material Science , Yale University , New Haven , Connecticut 06520-8286 , United States
| | - Muhammad Junaid
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Hui Chen
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Arif Ali
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and College of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Minhang District, Shanghai 200240 , China
| |
Collapse
|
5
|
Presenilins as Drug Targets for Alzheimer's Disease-Recent Insights from Cell Biology and Electrophysiology as Novel Opportunities in Drug Development. Int J Mol Sci 2018; 19:ijms19061621. [PMID: 29857474 PMCID: PMC6032171 DOI: 10.3390/ijms19061621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023] Open
Abstract
A major cause underlying familial Alzheimer's disease (AD) are mutations in presenilin proteins, presenilin 1 (PS1) and presenilin 2 (PS2). Presenilins are components of the γ-secretase complex which, when mutated, can affect amyloid precursor protein (APP) processing to toxic forms of amyloid beta (Aβ). Consequently, presenilins have been the target of numerous and varied research efforts to develop therapeutic strategies for AD. The presenilin 1 gene harbors the largest number of AD-causing mutations resulting in the late onset familial form of AD. As a result, the majority of efforts for drug development focused on PS1 and Aβ. Soon after the discovery of the major involvement of PS1 and PS2 in γ-secretase activity, it became clear that neuronal signaling, particularly calcium ion (Ca2+) signaling, is regulated by presenilins and impacted by mutations in presenilin genes. Intracellular Ca2+ signaling not only controls the activity of neurons, but also gene expression patterns, structural functionality of the cytoskeleton, synaptic connectivity and viability. Here, we will briefly review the role of presenilins in γ-secretase activity, then focus on the regulation of Ca2+ signaling, oxidative stress, and cellular viability by presenilins within the context of AD and discuss the relevance of presenilins in AD drug development efforts.
Collapse
|
6
|
Mastroeni D, Nolz J, Khdour OM, Sekar S, Delvaux E, Cuyugan L, Liang WS, Hecht SM, Coleman PD. Oligomeric amyloid β preferentially targets neuronal and not glial mitochondrial-encoded mRNAs. Alzheimers Dement 2018; 14:775-786. [PMID: 29396107 DOI: 10.1016/j.jalz.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Our laboratories have demonstrated that accumulation of oligomeric amyloid β (OAβ) in neurons is an essential step leading to OAβ-mediated mitochondrial dysfunction. METHODS Alzheimer's disease (AD) and matching control hippocampal neurons, astrocytes, and microglia were isolated by laser-captured microdissection from the same subjects, followed by whole-transcriptome sequencing. Complementary in vitro work was performed in OAβ-treated differentiated SH-SY5Y, followed by the use of a novel CoQ10 analogue for protection. This compound is believed to be effective both in suppressing reactive oxygen species and also functioning in mitochondrial electron transport. RESULTS We report decreases in the same mitochondrial-encoded mRNAs in Alzheimer's disease laser-captured CA1 neurons and in OAβ-treated SH-SY5Y cells, but not in laser-captured microglia and astrocytes. Pretreatment with a novel CoQ10 analogue, protects neuronal mitochondria from OAβ-induced mitochondrial changes. DISCUSSION Similarity of expression changes in neurons from Alzheimer's disease brain and neuronal cells treated with OAβ, and the effect of a CoQ10 analogue on the latter, suggests a pretreatment option to prevent OAβ toxicity, long before the damage is apparent.
Collapse
Affiliation(s)
- Diego Mastroeni
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ.
| | - Jennifer Nolz
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | | | - Elaine Delvaux
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | | | | | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | - Paul D Coleman
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
7
|
Langosch D, Steiner H. Substrate processing in intramembrane proteolysis by γ-secretase - the role of protein dynamics. Biol Chem 2017; 398:441-453. [PMID: 27845877 DOI: 10.1515/hsz-2016-0269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Intramembrane proteases comprise a number of different membrane proteins with different types of catalytic sites. Their common denominator is cleavage within the plane of the membrane, which usually results in peptide bond scission within the transmembrane helices of their substrates. Despite recent progress in the determination of high-resolution structures, as illustrated here for the γ-secretase complex and its substrate C99, it is still unknown how these enzymes function and how they distinguish between substrates and non-substrates. In principle, substrate/non-substrate discrimination could occur at the level of substrate binding and/or cleavage. Focusing on the γ-secretase/C99 pair, we will discuss recent observations suggesting that global motions within a substrate transmembrane helix may be much more important for defining a substrate than local unraveling at cleavage sites.
Collapse
|
8
|
Alzheimer’s-Causing Mutations Shift Aβ Length by Destabilizing γ-Secretase-Aβn Interactions. Cell 2017; 170:443-456.e14. [DOI: 10.1016/j.cell.2017.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022]
|
9
|
In silico design of the first DNA-independent mechanism-based inhibitor of mammalian DNA methyltransferase Dnmt1. PLoS One 2017; 12:e0174410. [PMID: 28399172 PMCID: PMC5388339 DOI: 10.1371/journal.pone.0174410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We use our earlier experimental studies of the catalytic mechanism of DNA methyltransferases to prepare in silico a family of novel mechanism-based inhibitors of human Dnmt1. Highly specific inhibitors of DNA methylation can be used for analysis of human epigenome and for the creation of iPS cells. RESULTS We describe a set of adenosyl-1-methyl-pyrimidin-2-one derivatives as novel mechanism-based inhibitors of mammalian DNA methyltransferase Dnmt1. The inhibitors have been designed to bind simultaneously in the active site and the cofactor site and thus act as transition-state analogues. Molecular dynamics studies showed that the lead compound can form between 6 to 9 binding interactions with Dnmt1. QM/MM analysis showed that the upon binding to Dnmt1 the inhibitor can form a covalent adduct with active site Cys1226 and thus act as a mechanism-based suicide-inhibitor. The inhibitor can target DNA-bond and DNA-free form of Dnmt1, however the suicide-inhibition step is more likely to happen when DNA is bound to Dnmt1. The validity of presented analysis is described in detail using 69 modifications in the lead compound structure. In total 18 of the presented 69 modifications can be used to prepare a family of highly specific inhibitors that can differentiate even between closely related enzymes such as Dnmt1 and Dnmt3a DNA methyltransferases. CONCLUSIONS Presented results can be used for preparation of some highly specific and potent inhibitors of mammalian DNA methylation with specific pharmacological properties.
Collapse
|
10
|
Arbor SC, LaFontaine M, Cumbay M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:5-21. [PMID: 27505013 PMCID: PMC4797837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.
Collapse
Affiliation(s)
- Sage C. Arbor
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Mike LaFontaine
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| | - Medhane Cumbay
- Marian University College of Osteopathic Medicine, 3200 Cold Spring Road, Indianapolis, Indiana, 46222
| |
Collapse
|
11
|
Hunter S, Martin S, Brayne C. The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease. Methods Mol Biol 2016; 1303:71-99. [PMID: 26235060 DOI: 10.1007/978-1-4939-2627-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer's disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Box 113, Cambridge, CB2 0SP, UK,
| | | | | |
Collapse
|
12
|
Winkler E, Julius A, Steiner H, Langosch D. Homodimerization Protects the Amyloid Precursor Protein C99 Fragment from Cleavage by γ-Secretase. Biochemistry 2015; 54:6149-52. [DOI: 10.1021/acs.biochem.5b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Edith Winkler
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Ayse Julius
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| | - Harald Steiner
- BMC-Biomedical
Center, Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany
- DZNE-German Center for Neurodegenerative Diseases, Munich, Germany
| | - Dieter Langosch
- Lehrstuhl
Chemie der Biopolymere, Technische Universität München, Weihenstephaner
Berg 3, 85354 Freising, Germany
- Munich Center For Integrated Protein Science (CIPSM), Munich, Germany
| |
Collapse
|
13
|
Svedružić ŽM, Popović K, Šendula-Jengić V. Decrease in catalytic capacity of γ-secretase can facilitate pathogenesis in sporadic and Familial Alzheimer's disease. Mol Cell Neurosci 2015; 67:55-65. [PMID: 26051801 DOI: 10.1016/j.mcn.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alzheimer's disease can be a result of an age-induced disparity between increase in cellular metabolism of Aβ peptides and decrease in maximal activity of a membrane-embedded protease γ-secretase. RESULTS We compared activity of WT γ-secretase with the activity of 6 FAD mutants in its presenilin-1 component and 5 FAD mutants in Aβ-part of its APP substrate (Familial Alzheimer's disease). All 11 FAD mutations show linear correlation between the decrease in maximal activity and the clinically observed age-of-onset and age-of-death. Biphasic-inhibitors showed that a higher ratio between physiological Aβ-production and the maximal activity of γ-secretase can be observed in cells that can facilitate pathogenic changes in Aβ-products. For example, Aβ production in cells with WT γ-secretase is at 11% of its maximal activity, with delta-exon-9 mutant at 26%, while with M139V mutant is at 28% of the maximal activity. In the same conditions, G384A mutant is fully saturated and at its maximal activity. Similarly, Aβ production in cells with γ-secretase complex carrying Aph1AL component is 12% of its maximal activity, while in cells with Aph1B complex is 26% of its maximal activity. Similar to the cell-based studies, clinical studies of biphasic dose-response in plasma samples of 54 healthy individuals showed variable ratios between physiological Aβ production and the maximal activity of γ-secretase. CONCLUSIONS The increase in the ratio between physiological Aβ production and maximal activity of γ-secretase can be an early sign of pathogenic processes in enzyme-based, cell-based, and clinical studies of sporadic and Familiar Alzheimer's disease.
Collapse
Affiliation(s)
- Željko M Svedružić
- Medical Biochemistry, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia; Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
| | - Katarina Popović
- Neurology and Geriatrics, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia
| | - Vesna Šendula-Jengić
- Medical Biochemistry, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia; Neurology and Geriatrics, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia
| |
Collapse
|
14
|
Hunter S, Brayne C. Integrating the molecular and the population approaches to dementia research to help guide the future development of appropriate therapeutics. Biochem Pharmacol 2014; 88:652-60. [DOI: 10.1016/j.bcp.2013.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
|
15
|
Svedružić ŽM, Popović K, Šendula-Jengić V. Modulators of γ-secretase activity can facilitate the toxic side-effects and pathogenesis of Alzheimer's disease. PLoS One 2013; 8:e50759. [PMID: 23308095 PMCID: PMC3538728 DOI: 10.1371/journal.pone.0050759] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 11/18/2022] Open
Abstract
Background Selective modulation of different Aβ products of an intramembrane protease γ-secretase, could be the most promising strategy for development of effective therapies for Alzheimer's disease. We describe how different drug-candidates can modulate γ-secretase activity in cells, by studying how DAPT affects changes in γ-secretase activity caused by gradual increase in Aβ metabolism. Results Aβ 1–40 secretion in the presence of DAPT shows biphasic activation-inhibition dose-response curves. The biphasic mechanism is a result of modulation of γ-secretase activity by multiple substrate and inhibitor molecules that can bind to the enzyme simultaneously. The activation is due to an increase in γ-secretase's kinetic affinity for its substrate, which can make the enzyme increasingly more saturated with otherwise sub-saturating substrate. The noncompetitive inhibition that prevails at the saturating substrate can decrease the maximal activity. The synergistic activation-inhibition effects can drastically reduce γ-secretase's capacity to process its physiological substrates. This reduction makes the biphasic inhibitors exceptionally prone to the toxic side-effects and potentially pathogenic. Without the modulation, γ-secretase activity on it physiological substrate in cells is only 14% of its maximal activity, and far below the saturation. Significance Presented mechanism can explain why moderate inhibition of γ-secretase cannot lead to effective therapies, the pharmacodynamics of Aβ-rebound phenomenon, and recent failures of the major drug-candidates such as semagacestat. Novel improved drug-candidates can be prepared from competitive inhibitors that can bind to different sites on γ-secretase simultaneously. Our quantitative analysis of the catalytic capacity can facilitate the future studies of the therapeutic potential of γ-secretase and the pathogenic changes in Aβ metabolism.
Collapse
Affiliation(s)
- Željko M Svedružić
- Medical Biochemistry, PB Rab, Faculty of Medicine, University of Rijeka, Rab, Croatia.
| | | | | |
Collapse
|