1
|
Mahmudi H, Shahpouri M, Adili-Aghdam MA, Akbari M, Salemi A, Alimohammadvand S, Barzegari A, Mazloomi M, Jaymand M, Jahanban-Esfahlan R. Self-activating chitosan-based nanoparticles for sphingosin-1 phosphate modulator delivery and selective tumor therapy. Int J Biol Macromol 2024; 272:132940. [PMID: 38848845 DOI: 10.1016/j.ijbiomac.2024.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Innovation Center for Stem Cell Research and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Rana Jahanban-Esfahlan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Rigo F, De Stefano N, Patrono D, De Donato V, Campi L, Turturica D, Doria T, Sciannameo V, Berchialla P, Tandoi F, Romagnoli R. Impact of Hypothermic Oxygenated Machine Perfusion on Hepatocellular Carcinoma Recurrence after Liver Transplantation. J Pers Med 2023; 13:jpm13050703. [PMID: 37240873 DOI: 10.3390/jpm13050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Machine perfusion may be able to mitigate ischemia-reperfusion injury (IRI), which increases hepatocellular carcinoma (HCC) recurrence after liver transplantation (LT). This study aimed to investigate the impact of dual-hypothermic oxygenated machine perfusion (D-HOPE) on HCC recurrence in LT. METHODS A single-center retrospective study was conducted from 2016 to 2020. Pre- and postoperative data of HCC patients undergoing LT were analyzed. Recipients of a D-HOPE-treated graft were compared to those of livers preserved using static cold storage (SCS). The primary endpoint was recurrence-free survival (RFS). RESULTS Of 326 patients, 246 received an SCS-preserved liver and 80 received a D-HOPE-treated graft (donation after brain death (DBD), n = 66; donation after circulatory death (DCD), n = 14). Donors of D-HOPE-treated grafts were older and had higher BMI. All DCD donors were treated by normothermic regional perfusion and D-HOPE. The groups were comparable in terms of HCC features and estimated 5-year RFS according to the Metroticket 2.0 model. D-HOPE did not reduce HCC recurrence (D-HOPE 10%; SCS 8.9%; p = 0.95), which was confirmed using Bayesian model averaging and inverse probability of treatment weighting-adjusted RFS analysis. Postoperative outcomes were comparable between groups, except for lower AST and ALT peak in the D-HOPE group. CONCLUSIONS In this single-center study, D-HOPE did not reduce HCC recurrence but allowed utilizing livers from extended criteria donors with comparable outcomes, improving access to LT for patients suffering from HCC.
Collapse
Affiliation(s)
- Federica Rigo
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Victor De Donato
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Ludovico Campi
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Diana Turturica
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Teresa Doria
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Veronica Sciannameo
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Torino, 10126 Turin, Italy
| | - Paola Berchialla
- Centre for Biostatistics, Epidemiology and Public Health (C-BEPH), Department of Clinical and Biological Sciences, University of Torino, 10126 Turin, Italy
| | - Francesco Tandoi
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
- HPB and Liver Transplant Unit, Azienda Ospedaliero Universitaria Consorziale Policlinico, 70124 Bari, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
3
|
Chen H, Lu D, Yang X, Hu Z, He C, Li H, Lin Z, Yang M, Xu X. One Shoot, Two Birds: Alleviating Inflammation Caused by Ischemia/Reperfusion Injury to Reduce the Recurrence of Hepatocellular Carcinoma. Front Immunol 2022; 13:879552. [PMID: 35634295 PMCID: PMC9130551 DOI: 10.3389/fimmu.2022.879552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is crucial to tumorigenesis and the development of metastasis. Hepatic ischemia/reperfusion injury (IRI) is an unresolved problem in liver resection and transplantation which often establishes and remodels the inflammatory microenvironment in liver. More and more experimental and clinical evidence unmasks the role of hepatic IRI and associated inflammation in promoting the recurrence of hepatocellular carcinoma (HCC). Meanwhile, approaches aimed at alleviating hepatic IRI, such as machine perfusion, regulating the gut-liver axis, and targeting key inflammatory components, have been proved to prevent HCC recurrence. This review article highlights the underlying mechanisms and promising therapeutic strategies to reduce tumor recurrence through alleviating inflammation induced by hepatic IRI.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zhihang Hu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Chiyu He
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Huigang Li
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Modan Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Organ Transplantation, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China
| |
Collapse
|
4
|
A multi-hit therapeutic nanoplatform for hepatocellular carcinoma: Dual stimuli-responsive drug release, dual-modal imaging, and in situ oxygen supply to enhance synergistic therapy. Mater Today Bio 2022; 16:100338. [PMID: 35847375 PMCID: PMC9278082 DOI: 10.1016/j.mtbio.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 12/26/2022]
Abstract
Nanomedicine has been widely studied for the diagnosis and treatment of hepatocellular carcinoma (HCC). How to synthesize a nanoplatform possessing a high synergistic therapeutic efficacy remains a challenge in this emerging research field. In this study, a convenient all-in-one therapeutic nanoplatform (FTY720@AM/T7-TL) is designed for HCC. This advanced nanoplatform consists of multiple functional elements, including gold-manganese dioxide nanoparticles (AM), tetraphenylethylene (T), fingolimod (FTY720), hybrid-liposome (L), and T7 peptides (T7). The nanoplatform is negatively charged at physiological pH and can transit to a positively charged state once moving to acidic pH environments. The specially designed pH-responsive charge-reversal nanocarrier prolongs the half-life of nanodrugs in blood and improves cellular uptake efficiency. The platform achieves a sustained and controllable drug release through dual stimulus-response, with pH as the endogenous stimulus and near-infrared as the exogenous stimulus. Furthermore, the nanoplatform realizes in situ O2 generation by catalyzing tumor over-expressed H2O2, which alleviates tumor microenvironment hypoxia and improves photodynamic therapy. Both in vitro and in vivo studies show the prepared nanoplatform has good photothermal conversion, cellular uptake efficiency, fluorescence/magnetic resonance imaging capabilities, and synergistic anti-tumor effects. These results suggest that the prepared all-in-one nanoplatform has great potential for dual-modal imaging-guided synergistic therapy of HCC.
Collapse
|
5
|
Xue Y, Liu H, Yang XX, Pang L, Liu J, Ng KTP, Yeung OWH, Lam YF, Zhang WY, Lo CM, Man K. Inhibition of Carnitine Palmitoyltransferase 1A Aggravates Fatty Liver Graft Injury via Promoting Mitochondrial Permeability Transition. Transplantation 2021; 105:550-560. [PMID: 32890136 DOI: 10.1097/tp.0000000000003437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatic steatosis is a major risk factor for graft failure due to increased susceptibility of fatty liver to ischemia-reperfusion injury (IRI) during transplantation. Here, we aimed to investigate the role of carnitine palmitoyltransferase 1A (CPT1A) in fatty liver graft injury and to explore the underlying mechanism and therapeutic potential on attenuating hepatic IRI. METHODS Intragraft CPT1A expression profile and the association with fatty graft injury were investigated in human and rat liver transplantation samples. The underlying mechanism and therapeutic potential of CPT1A activator against IRI were also explored in mouse hepatic ischemia-reperfusion plus major hepatectomy model and in in vitro. RESULTS CPT1A expression was significantly reduced (P = 0.0019; n = 96) in human fatty liver graft compared with normal one at early phase after transplantation. Low expression of CPT1A was significantly associated with high serum alanine aminotransferase (P = 0.0144) and aspartate aminotransferase (P = 0.0060) levels. The inhibited CPT1A and poor liver function were consistently observed in rat and mouse models with fatty livers. Furthermore, inhibition of CPT1A significantly promoted the translocation of chloride intracellular channel 1 to form chloride ion channel. The dysregulation of chloride ion channel activity subsequently triggered mitochondrial permeability transition (MPT) pore opening, exacerbated cellular oxidative stress, and energy depletion. Importantly, our intravital confocal imaging showed that CPT1A activation attenuated hepatic injury through preventing MPT after reperfusion in fatty mice. CONCLUSIONS CPT1A inhibition triggered MPT contributed to severe IRI in fatty liver graft. CPT1A restoration may offer therapeutic potential on attenuating hepatic IRI.
Collapse
Affiliation(s)
- Yan Xue
- Department of Surgery, HKU-SZH &LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rupp T, Pelouin O, Genest L, Legrand C, Froget G, Castagné V. Therapeutic potential of Fingolimod in triple negative breast cancer preclinical models. Transl Oncol 2020; 14:100926. [PMID: 33157518 PMCID: PMC7649527 DOI: 10.1016/j.tranon.2020.100926] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Fingolimod represses triple negative breast cancer cells survival in vitro by inducing cell apoptosis. Fingolimod represses triple negative breast cancer progression in orthotopic graft murine in vivo models. Fingolimod represses spleen and liver metastases without affecting lung metastasis in murine in vivo models. In contrast with Cisplatin, Fingolimod is well tolerated in murine in vivo models.
Surgery followed by a chemotherapy agent is the first-line treatment for breast cancer patients. Nevertheless, new targets are required for women with triple-negative breast cancer (TNBC) in order to improve the treatment of this aggressive cancer subtype. Multiple pro-inflammatory molecules including lipid-based substances such as sphingosine-1-phosphate (S1P) promote cancer progression. In this preclinical study, we aim to investigate the efficacy of Fingolimod, an inhibitor of S1P / S1P receptors axis, already approved as an immunomodulator in multiple sclerosis. The impact of Fingolimod was analyzed using in vitro 2D and 3D cell survival analysis and in vivo orthotopic graft models, using mouse and human TNBC cells implanted in immunocompetent or immunodeficient mice, respectively. Resection of the tumor primary mass was also performed to mimic the clinical standard of care. We demonstrated that Fingolimod repressed tumor cell survival in vitro. We also showed in preclinical mouse TNBC models that Fingolimod repressed tumor progression and liver and spleen metastases without apparent adverse effects on the animals. Our data indicate that Fingolimod induces tumor cells apoptosis and thereby represses tumor progression. Globally, our data suggest that Fingolimod merits further evaluation as a potential therapeutic opportunity for TNBC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France.
| | - Océane Pelouin
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France
| | | | | | | |
Collapse
|
7
|
Boteon Y, Flores Carvalho MA, Panconesi R, Muiesan P, Schlegel A. Preventing Tumour Recurrence after Liver Transplantation: The Role of Machine Perfusion. Int J Mol Sci 2020; 21:E5791. [PMID: 32806712 PMCID: PMC7460879 DOI: 10.3390/ijms21165791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour recurrence is currently a hot topic in liver transplantation. The basic mechanisms are increasingly discussed, and, for example, recurrence of hepatocellular carcinoma is often described in pre-injured donor livers, which frequently suffer from significant ischemia/reperfusion injury. This review article highlights the underlying mechanisms and describes the specific tissue milieu required to promote tumour recurrence after liver transplantation. We summarise the current literature in this field and show risk factors that contribute to a pro-tumour-recurrent environment. Finally, the potential role of new machine perfusion technology is discussed, including the most recent data, which demonstrate a protective effect of hypothermic oxygenated perfusion before liver transplantation.
Collapse
Affiliation(s)
- Yuri Boteon
- Liver Unit, Albert Einstein Hospital, 05652–900 São Paulo, Brazil;
- Albert Einstein Jewish Institute for Education and Research, 05652–900 São Paulo, Brazil
| | - Mauricio Alfredo Flores Carvalho
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Rebecca Panconesi
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| | - Paolo Muiesan
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
- The Liver Unit, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham B15 2TH, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham B15 2TT, UK
| | - Andrea Schlegel
- Hepatobiliary Unit, Department of Clinical and Experimental Medicine, University of Florence, AOU Careggi, 50134 Florence, Italy; (M.A.F.C.); (R.P.); (P.M.)
| |
Collapse
|
8
|
Chen JL, Wang L, Li R, Jiao YF, Yu WF. High expression of endothelial progenitor cell-induced angiogenic markers is associated with bile acid levels in HCC. Oncol Lett 2020; 20:2729-2738. [PMID: 32782589 PMCID: PMC7400775 DOI: 10.3892/ol.2020.11815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 01/18/2023] Open
Abstract
Endothelial progenitor cell (EPC)-induced angiogenesis activity is enhanced in hepatocellular carcinoma (HCC); however, the contributing factors remain unknown. The present study aimed to investigate the factors influencing the number of EPCs and circulating progenitor cells (CPCs), as well as the expression levels of vascular endothelial growth factor receptor 2 (VEGFR-2) and CD34, in patients with HCC. The expression levels of VEGFR-2 and CD34 were assessed in 72 HCC tumor and matched adjacent tissue microarrays by immunohistochemistry. The associations between VEGFR-2 or CD34 expression in tumors, clinicopathological characteristics and overall survival rates were analyzed. The number of EPCs and CPCs were analyzed in the peripheral blood of patients with HCC. In this study, high expression levels of VEGFR-2 and CD34 were detected in the tumor tissues of 41 (56.9%) and 44 (61.1%) patients, respectively. VEGFR-2 expression was significantly associated with tumor size (P<0.001), bile acid level (P=0.014) and α-fetoprotein level (P=0.011). However, CD34 expression was associated with tumor size (P=0.009), recrudescence (P<0.001) and bile acid (P=0.009). Next, the expression levels of VEGFR-2 and CD34 in tumor and adjacent tissues were compared according to the bile acid level. VEGFR-2 and CD34 expression levels were both higher in the high bile acid group, whereas expression levels of the markers were higher in adjacent tissues compared with tumor tissues. Kaplan-Meier curve analysis identified that patients with low CD34 expression had a longer overall survival compared with patients with high CD34 expression (P=0.029). Multivariate analysis also indicated that both VEGFR-2 (P=0.020) and CD34 (P=0.035) were independent prognostic risk factors. Moreover, flow cytometry demonstrated that the number of EPCs and CPCs was negatively related with the bile acid levels in patients with HCC. In conclusion, in patients with HCC, bile acid promotes EPC-induced angiogenesis. Furthermore, EPCs and CPCs may be activated by bile acid in tumors but are more so in adjacent tissues.
Collapse
Affiliation(s)
- Jiang-Long Chen
- Department of General Surgery, Children's Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Long Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Rong Li
- Department of Pathology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ying-Fu Jiao
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Wei-Feng Yu
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
9
|
Li CX, Yang XX, Wang HW, Li XC, Ng KTP, Lo CM, Man K. FTY720 Suppresses Liver Tumor Growth and Metastasis by Reducing Circulating Regulating T Cells and Enhancing the Anti-Tumor Effect of Rapamycin. Onco Targets Ther 2020; 13:4743-4754. [PMID: 32547103 PMCID: PMC7262652 DOI: 10.2147/ott.s234394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/25/2020] [Indexed: 01/13/2023] Open
Abstract
Background In this study, we aimed to study the effect of FTY720 treatment in reducing circulating Tregs level and then suppressing liver tumor metastasis after hepatectomy and I/R injury in animal models. Furthermore, we also investigated the synergistic anti-tumor effect of FTY720 combined with rapamycin on hepatocellular carcinoma. Methods The effect of FTY720 on suppressing Tregs mobilization and tumor metastasis after hepatectomy was investigated in an orthotopic liver tumor rat model with hepatectomy and hepatic ischemia/reperfusion (I/R) injury. The synergistic anti-tumor effect of FTY720 combined with rapamycin was further explored both in in vitro functional study and in orthotopic liver tumor mouse model. Results In rat model, hepatic I/R promoted tumor metastasis and increased circulating Tregs after hepatectomy. The treatment of FTY720 reduced liver tumor metastasis and the number of circulating Tregs. Furthermore, FTY720 enhanced the anti-tumor capacity of rapamycin by inhibiting tumor cell proliferation and migration in vitro and reducing tumor growth in vivo through suppressing hepatic stellate cell activation and tumor angiogenesis. Conclusion FTY720 suppressed liver tumor growth and metastasis by reducing the population of circulating Tregs and enhancing the anti-tumor effect of rapamycin. It was suggested that FTY720 single or combined with rapamycin might provide novel insight for suppressing tumor growth and metastasis for HCC patients.
Collapse
Affiliation(s)
- Chang Xian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, People's Republic of China
| | - Xin Xiang Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hong Wei Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiang Cheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Liver Transplantation, Nanjing, Jiangsu Province, People's Republic of China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Iwazu Y, Muto S, Ioka T, Watanabe Y, Iwazu K, Kusano E, Nagata D. Multiple Sclerosis Drug Fingolimod Induces Thrombotic Microangiopathy in Deoxycorticosterone Acetate/Salt Hypertension. Hypertension 2019; 72:776-784. [PMID: 30354753 DOI: 10.1161/hypertensionaha.117.10655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We examined whether fingolimod (FTY720), an S1PR (sphingosine-1-phosphate receptor) modulator, has beneficial or harmful effects on mineralocorticoid/salt-induced renal injury. Uninephrectomized rats on 0.9% NaCl/0.3% KCl drinking solution were randomly divided into control, control+FTY720, deoxycorticosterone acetate (DOCA), and DOCA+FTY720 groups and administered vehicle, vehicle+FTY720, DOCA+vehicle, and DOCA+FTY720 for 4 weeks, respectively. Only the DOCA+FTY720 group had reduced survival rates and showed hemolysis because of intravascular mechanical fragmentation of erythrocytes and thrombocytopenia. Both the DOCA+FTY720 and DOCA groups developed malignant hypertension, which was more severe in the DOCA+FTY720 group. In the DOCA+FTY720 group only, thrombotic microangiopathy involving severe renal arteriole endothelial cell injury was observed and was characterized by fibrinoid necrosis and onion-skin lesions in arterioles. There were fewer circulating endothelial progenitor cells in the DOCA+FTY720 group but more in the DOCA group compared with the control group. Expression levels of VEGF (vascular endothelial growth factor), S1PR1, and S1PR3 in renal arteriole endothelial cells were significantly greater in the DOCA+FTY720 and DOCA groups compared with the control group, with levels being similar between the 2 groups. Expression levels of endothelial nitric oxide synthase in renal arteriole endothelial cells were significantly lower in the DOCA+FTY720 group only. The control+FTY720 group showed reduced circulating endothelial progenitor cells but no significant functional or pathological changes in kidneys or changes in blood pressure. Exposure of uninephrectomized rats to DOCA/salt+FTY720 for 4 weeks induced renal arteriolar endothelial cell injury, resulting in the development of thrombotic microangiopathy. Consideration of this possibility is recommended when prescribing FTY720.
Collapse
Affiliation(s)
- Yoshitaka Iwazu
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.).,Clinical Laboratory Medicine (Y.I.), Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeaki Muto
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| | - Takashi Ioka
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| | - Yuko Watanabe
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| | - Kana Iwazu
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| | - Eiji Kusano
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| | - Daisuke Nagata
- From the Department of Nephrology (Y.I., S.M., T.I., Y.W., K.I., E.K., D.N.)
| |
Collapse
|
11
|
Maceyka M, Rohrbach T, Milstien S, Spiegel S. Role of Sphingosine Kinase 1 and Sphingosine-1-Phosphate Axis in Hepatocellular Carcinoma. Handb Exp Pharmacol 2019; 259:3-17. [PMID: 31321542 DOI: 10.1007/164_2019_217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is primarily diagnosed in the latter stages of disease progression and is the third leading cause of cancer deaths worldwide. Thus, there is a need to find biomarkers of early HCC as well as the development of more effective treatments for the disease. Sphingosine-1-phosphate (S1P) is a pleiotropic lipid signaling molecule produced by two isoforms of sphingosine kinase (SphK1 and SphK2) that is involved in regulation of many aspects of mammalian physiology and pathophysiology, including inflammation, epithelial and endothelial barrier function, cancer, and metastasis, among many others. Abundant evidence indicates that SphK1 and S1P promote cancer progression and metastasis in multiple types of cancers. However, the role of SphK/S1P in HCC is less well studied. Here, we review the current state of knowledge of SphKs and S1P in HCC, including evidence for the correlation of SphK1 expression and S1P levels with progression of HCC and negative outcomes, and discuss how this information could lead to the design of more effective diagnostic and treatment modalities for HCC.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Timothy Rohrbach
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
12
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Wu W, Cao J, Ji Z, Wang J, Jiang T, Ding H. Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget 2018; 7:81144-81155. [PMID: 27835894 PMCID: PMC5348382 DOI: 10.18632/oncotarget.13214] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/26/2016] [Indexed: 12/11/2022] Open
Abstract
Therapies designed to target cancer stem cells (CSCs) in colorectal cancer (CRC) may improve treatment outcomes. Different markers have been used to identify CSCs or CSC-like cells in CRC, but the enrichment of CSCs using these markers has yet to be optimized. We recently reported the importance of Lgr5-positive CRC cells in cancer growth. Here, we studied the possibility of using Lgr5 and CXCR4 as CSC markers for CRC. We detected high Lgr5 and CXCR4 levels in stage IV CRC specimens. Both high Lgr5 and CXCR4 levels were associated with poor prognosis in stage IV CRC patients. In vitro, Lgr5+CXCR4-, CXCR4+Lgr5- and Lgr5+CXCR4+ cells were purified in human CRC cell lines and examined for their CSC properties. We found that compared to the unsorted cells, CXCR4+Lgr5-, Lgr5+CXCR4-, and Lgr5+/CXCR4+ cells showed significantly greater cancer mass after subcutaneous transplantation, greater tumor sphere formation, higher resistance to chemotherapy, and higher incidence of tumor formation after serial adoptive transplantation into NOD/SCID mice. Taken together, our data suggest that the combined use of Lgr5 and CXCR4 may facilitate the enrichment of CSCs in CRC, and that treating Lgr5+/CXCR4+ CRC cells may improve the outcome of CRC therapy.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jun Cao
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhengyi Ji
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jingjue Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Honghua Ding
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
14
|
Li CX, Lo CM, Lian Q, Ng KTP, Liu XB, Ma YY, Qi X, Yeung OWH, Tergaonkar V, Yang XX, Liu H, Liu J, Shao Y, Man K. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response. Oncotarget 2017; 7:27711-23. [PMID: 27050284 PMCID: PMC5053682 DOI: 10.18632/oncotarget.8509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022] Open
Abstract
Repressor and activator protein (Rap1) directly regulates nuclear factor-κB (NF-κB) dependent signaling, which contributes to hepatic IRI. We here intended to investigate the effect of Rap1 in hepatic ischemia reperfusion injury (IRI) and to explore the underlying mechanisms. The association of Rap1 expression with hepatic inflammatory response were investigated in both human and rat liver transplantation. The effect of Rap1 in hepatic IRI was studied in Rap1 knockout mice IRI model in vivo and primary cells in vitro. Our results showed that over expression of Rap1 was associated with severe liver graft inflammatory response, especially in living donor liver transplantation. The results were also validated in rat liver transplantation model. In mice hepatic IRI model, the knockout of Rap1 reduced hepatic damage and hepatic inflammatory response. In primary cells, the knockout of Rap1 suppressed neutrophils migration activity and adhesion in response to liver sinusoidal endothelial cells through down-regulating neutrophils F-Actin expression and CXCL2/CXCR2 pathway. In addition, the knockout of Rap1 also decreased production of pro-inflammatory cytokines/chemokines in primary neutrophils and neutrophils-induced hepatocyte damage. In conclusion, Rap1 may induce hepatic IRI through promoting neutrophils inflammatory response. Rap1 may be the potential therapeutic target of attenuating hepatic IRI.
Collapse
Affiliation(s)
- Chang Xian Li
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak-Pan Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yuen Yuen Ma
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiang Qi
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Oscar Wai Ho Yeung
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology, Biopolis, Singapore
| | - Xin Xiang Yang
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Hui Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Yan Shao
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Abstract
Liver transplantation is the most effective treatment for selected patients with hepatocellular carcinoma. However, cancer recurrence, posttransplantation, remains to be the critical issue that affects the long-term outcome of hepatocellular carcinoma recipients. In addition to tumor biology itself, increasing evidence demonstrates that acute-phase liver graft injury is a result of hepatic ischemia reperfusion injury (which is an inevitable consequence during liver transplantation) and may promote cancer recurrence at late phase posttransplantation. The liver grafts from living donors, donors after cardiac death, and steatotic donors have been considered as promising sources of organs for liver transplantation and are associated with high incidence of liver graft injury. The acute-phase liver graft injury will trigger a series of inflammatory cascades, which may not only activate the cell signaling pathways regulating the tumor cell invasion and migration but also mobilize the circulating progenitor and immune cells to facilitate tumor recurrence and metastasis. The injured liver graft may also provide the favorable microenvironment for tumor cell growth, migration, and invasion through the disturbance of microcirculatory barrier function, induction of hypoxia and angiogenesis. This review aims to summarize the latest findings about the role and mechanisms of liver graft injury resulted from hepatic ischemia reperfusion injury on tumor recurrence posttransplantation, both in clinical and animal cohorts.
Collapse
|
16
|
Wang S, Yang FJ, Wang X, Zhou Y, Dai B, Han B, Ma HC, Ding YT, Shi XL. PARP-1 promotes tumor recurrence after warm ischemic liver graft transplantation via neutrophil recruitment and polarization. Oncotarget 2017; 8:88918-88933. [PMID: 29179487 PMCID: PMC5687657 DOI: 10.18632/oncotarget.21493] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/26/2017] [Indexed: 12/21/2022] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP-1) is a crucial contributor to exacerbate ischemia and reperfusion (IR) injury and cancer process. However, there is little research into whether PARP-1 affects the hepatocellular carcinoma (HCC) recurrence after liver transplantation. In this study, we investigated the influence of PARP-1 on hepatic neutrophil mobilizing and phenotype shifting which may lead to HCC recurrence after liver transplantation. We found that rats received the grafts with warm ischemic injury had higher risk of HCC recurrence, which was markedly prevented by pharmacological inhibition of PARP-1 after liver transplantation. In mouse models, the up-regulation of PARP-1 was closely related to the greater tumor burden and increased hepatic susceptibility to recurrence after IR injury. The reason was that high hepatic PARP-1 led to increased liver CXCL1 levels, which in turn promoted recruitment of neutrophils. Both blocking CXCL1/CXCR2 signaling pathway and depleting neutrophils decreased tumor burden. Moreover, these infiltrating neutrophils were programmed to a proangiogenic phenotype under the influence of PARP-1 in vivo after hepatic IR injury. In conclusion, IR-induced PARP-1 up-regulation increased the hepatic recruitment of neutrophils through regulation of CXCL1/CXCR2 signaling and polarized hepatic neutrophils to proangiogenic phenotype, which further promoted HCC recurrence after transplantation.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fa-Ji Yang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu-Cheng Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yi-Tao Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
17
|
Man K. Recurrent malignancy: Are we pushing the envelope? Liver Transpl 2017; 23:S81-S84. [PMID: 28834148 DOI: 10.1002/lt.24853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kwan Man
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
18
|
Deoxyarbutin displays antitumour activity against melanoma in vitro and in vivo through a p38-mediated mitochondria associated apoptotic pathway. Sci Rep 2017; 7:7197. [PMID: 28775302 PMCID: PMC5543205 DOI: 10.1038/s41598-017-05416-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/30/2017] [Indexed: 02/05/2023] Open
Abstract
Deoxyarbutin (DeoxyArbutin, dA), a natural compound widely used in skin lighting, displayed selectively cytotoxicity in vitro. In the study, we found that dA significantly inhibited viability/proliferation of B16F10 melanoma cells, induced tumour cell arrest and apoptosis. Furthermore, dA triggered its pro-apoptosis through damaging the mitochondrial function (membrane potential loss, ATP depletion and ROS overload generation etc.) and activating caspase-9, PARP, caspase-3 and the phosphorylation of p38. Treatment with p38 agonist confirmed the involvement of p38 pathway triggered by dA in B16F10 cells. The in vivo finding also revealed that administration of dA significantly decreased the tumour volume and tumour metastasis in B16F10 xenograft model by inhibiting tumour proliferation and inducing tumour apoptosis. Importantly, the results indicated that dA was specific against tumour cell lines and had no observed systemic toxicity in vivo. Taken together, our study demonstrated that dA could combate tumour in vitro and in vivo by inhibiting the proliferation and metastasis of tumour via a p38-mediated mitochondria associated apoptotic pathway.
Collapse
|
19
|
Li CX, Yu B, Shi L, Geng W, Lin QB, Ling CC, Yang M, Ng KTP, Huang JD, Man K. 'Obligate' anaerobic Salmonella strain YB1 suppresses liver tumor growth and metastasis in nude mice. Oncol Lett 2016; 13:177-183. [PMID: 28123538 PMCID: PMC5245073 DOI: 10.3892/ol.2016.5453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/04/2016] [Indexed: 11/05/2022] Open
Abstract
The antitumor properties of bacteria have been demonstrated over the past decades. However, the efficacy is limited and unclear. Furthermore, systemic infection remains a serious concern in bacteria treatment. In this study, the effect of YB1, a rationally designed 'obligate' anaerobic Salmonella typhimurium strain, on liver tumor growth and metastasis in a nude mouse orthotopic liver tumor model was investigated. The orthotopic liver tumor model was established in nude mice using the hepatocellular carcinoma cell line MHCC-97L. Two weeks after orthotopic liver tumor implantation, YB1, SL7207 and saline were respectively administered through the tail vein of the mice. Longitudinal monitoring of tumor growth and metastasis was performed using Xenogen IVIS, and direct measurements of tumor volume were taken 3 weeks after treatment. In vitro, MHCC-97L and PLC cells were incubated with YB1 or SL7207 under anaerobic conditions. YB1 was observed to invade tumor cells and induce tumor cell apoptosis and death. The results revealed that all mice in the YB1 group were alive 3 weeks after YB1 injection while all mice in the SL7207 group died within 11 days of the SL7207 injection. The body weight decreased by ~9% on day 1 after YB1 injection and but subsequently recovered. Liver tumor growth and metastases were significantly inhibited following YB1 treatment. By contrast to the control group, a large number of Gr1-positive cells were detected on days 1 to 21 following YB1 treatment. Furthermore, YB1 also effectively invaded tumor cells and induced tumor cell apoptosis and death. In conclusion, YB1 suppressed liver tumor growth and metastasis in a nude mice liver tumor model. The potential mechanism may be through enhancing innate immune response and inducing tumor cell apoptosis and cell death.
Collapse
Affiliation(s)
- Chang-Xian Li
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Bin Yu
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P.R. China
| | - Lei Shi
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Wei Geng
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Qiu-Bin Lin
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Chang-Chun Ling
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Mei Yang
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Kevin T P Ng
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jian-Dong Huang
- Department of Biochemistry and Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong 999077, SAR, P.R. China; Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Kwan Man
- Department of Surgery and Centre for Cancer Research, University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
20
|
Kalhori V, Magnusson M, Asghar MY, Pulli I, Törnquist K. FTY720 (Fingolimod) attenuates basal and sphingosine-1-phosphate-evoked thyroid cancer cell invasion. Endocr Relat Cancer 2016; 23:457-68. [PMID: 26935838 DOI: 10.1530/erc-16-0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/12/2022]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is a potent inducer of ML-1 thyroid cancer cell migration and invasion. It evokes migration and invasion by activating S1P receptor 1 and 3 (S1P1,3) and downstream signaling intermediates as well as through cross-communication with vascular endothelial growth factor receptor 2 (VEGFR2). However, very little is known about the role of S1P receptors in thyroid cancer. Furthermore, the currently used treatments for thyroid cancer have proven to be rather unsuccessful. Thus, due to the insufficiency of the available treatments for thyroid cancer, novel and targeted therapies are needed. The S1P receptor functional antagonist FTY720, an immunosuppressive drug currently used for treatment of multiple sclerosis, has shown promising effects as an inhibitor of cancer cell proliferation and invasion. In this study, we investigated the effect of FTY720 on invasion and proliferation of several thyroid cancer cell lines. We present evidence that FTY720 attenuated basal as well as S1P-evoked invasion of these cell lines. Furthermore, FTY720 potently downregulated S1P1, protein kinase Cα(PKCα), PKCβI, and VEGFR2. It also attenuated S1P-evoked phosphorylation of ERK1/2. Our results also showed that FTY720 attenuated S1P-induced MMP2 intracellular expression, S1P-induced secretion of MMP2 and MMP9, and decreased basal MMP2 and MMP9 activity. Moreover, in FTY720-treated cells, proliferation was attenuated, p21 and p27 were upregulated, and the cells were arrested in the G1 phase of the cell cycle. FTY720 attenuated cancer cell proliferation in the chick embryo chorioallantoic membrane assay. Thus, we suggest that FTY720 could be beneficial in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Veronica Kalhori
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| | - Melissa Magnusson
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| | | | - Ilari Pulli
- Department of BiosciencesÅbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Department of BiosciencesÅbo Akademi University, Turku, Finland The Minerva Foundation Institute for Medical ResearchBiomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Wang Y, Yu H, Shan Y, Tao C, Wu F, Yu Z, Guo P, Huang J, Li J, Zhu Q, Yu F, Song Q, Shi H, Zhou M, Chen G. EphA1 activation promotes the homing of endothelial progenitor cells to hepatocellular carcinoma for tumor neovascularization through the SDF-1/CXCR4 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:65. [PMID: 27066828 PMCID: PMC4827226 DOI: 10.1186/s13046-016-0339-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) can migrate to the tumor tissue and enhance the angiogenesis of hepatocellular carcinoma (HCC); thus, they are associated with a poor prognosis. However, the specific molecular mechanism underlying the homing of EPCs to the HCC neovasculature remains unrevealed. METHODS Co-culture experiments of endothelial progenitor cells with HCC cells with modulation of EphA1 were performed in vitro. Using EPCs as angiogenic promoters by injecting them into HCC xenograft-bearing nude mice via their tail veins to test homing ability of EPCs changed according to different EphA1 level in HCC xenograft. RESULTS In this study, we found that the up-regulation of EphA1 expression in HCC cells could affect not only the chemotaxis of EPCs to tumor cells and endothelial cells (ECs) but also the tube formation ability of EPCs in a paracrine fashion. Further, we revealed that the increased expression of EphA1 in HCC cells led to an increased SDF-1 concentration in the tumor microenvironment, which in turn activated the SDF-1/CXCR4 axis and enhanced the recruitment of EPCs to HCC. In addition, the EphA1-activated SDF-1 expression and secretion was partially mediated by the PI3K and mTOR pathways. In vivo experiments demonstrated that blocking EphA1/SDF-1/CXCR4 signaling significantly inhibited the growth of HCC xenografts. Using immunohistochemistry and immunofluorescence assays, we verified that the inhibition of tumor angiogenesis was at least partially caused by the decreased number of EPCs homing to tumor tissue. CONCLUSIONS Our findings indicate that targeting the EphA1/SDF-1 signaling pathway might be a therapeutic anti-angiogenesis approach for treating HCC.
Collapse
Affiliation(s)
- Yi Wang
- Environmental and Public Health School of Wenzhou Medical University, Wenzhou, 325000, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chonglin Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Pengyi Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Junjian Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiandong Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Fuxiang Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qitong Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongqi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Mengtao Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
22
|
Xu Y, Dong B, Huang J, Kong W, Xue W, Zhu Y, Zhang J, Huang Y. Sphingosine kinase 1 is overexpressed and promotes adrenocortical carcinoma progression. Oncotarget 2016; 7:3233-44. [PMID: 26673009 PMCID: PMC4823102 DOI: 10.18632/oncotarget.6564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/21/2015] [Indexed: 01/01/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine tumor with a very poor prognosis. Sphingosine kinase 1 (SphK1), an oncogenic kinase, has previously been found to be upregulated in various cancers. However, the role of the SphK1 in ACC has not been investigated. In this study, SphK1 mRNA and protein expression levels as well as clinicopathological significance were evaluated in ACC samples. In vitro siRNA knockdown of SphK1 in two ACC cell lines (H295R and SW13) was used to determine its effect on cellular proliferation and invasion. In addition, we further evaluated the effect of SphK1 antagonist fingolimod (FTY720) in ACC in vitro and in vivo, as a single agent or in combination with mitotane, and attempted to explore its anticarcinogenic mechanisms. Our results show a significant over-expression of SphK1 mRNA and protein expression in the carcinomas compared with adenomas (P < 0.01 for all comparisons). Functionally, knockdown of SphK1 gene expression in ACC cell lines significantly decreased cell proliferation and invasion. FTY720 could result in a decreased cell proliferation and induction of apoptosis, and the combination of mitotane and FTY720 resulted in a greater anti-proliferative effect over single agent treatment in SW13 cells. Furthermore, FTY720 could markedly inhibit tumor growth in ACC xenografts. SphK1 expression is functionally associated to cellular proliferation, apoptosis, invasion and mitotane sensitivity of ACC. Our data suggest that SphK1 might be a potential therapeutic target for the treatment of ACC.
Collapse
Affiliation(s)
- Yunze Xu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen Kong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
23
|
Kornberg A, Witt U, Kornberg J, Friess H, Thrum K. Treating ischaemia-reperfusion injury with prostaglandin E1 reduces the risk of early hepatocellular carcinoma recurrence following liver transplantation. Aliment Pharmacol Ther 2015; 42:1101-10. [PMID: 26282466 DOI: 10.1111/apt.13380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/10/2015] [Accepted: 08/01/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Surgical stress by hepatic ischaemia-reperfusion (I/R) is supposed to promote intra- and extrahepatic tumour recurrence. Treatment with prostaglandin E1 (PGE1) has been shown to attenuate hepatic I/R injury in liver transplant patients, but the potential anti-cancer effects have not been analysed. AIM To evaluate the impact of PGE1 therapy on risk of hepatocellular carcinoma (HCC) recurrence in liver transplant patients. METHODS A retrospective review of 106 liver transplant patients with HCC was conducted. Fifty-nine patients underwent early post-liver transplantation (LT) treatment with the stable PGE1 analogue alprostadil. Administration of alprostadil was correlated with outcome in uni- and multivariate analysis. Subgroup analysis focused on patients with HCC beyond the Milan criteria (Milan Out) on radiographic imaging. RESULTS Three- and 5-year recurrence-free survival rates were 87.9% and 85.7% in the PGE1-group, but only 65.3% and 63.1% in the non-PGE1-population (P = 0.003). Multivariate Cox regression analysis identified absence of PGE1-treatment (HR = 11.42), along with presence of poor tumour grading (HR = 2.69) and microvascular tumour invasion (HR = 35.8) to be independently associated with early (within 12 months) HCC recurrence. In Milan Out-patients, only therapy with PGE1 (HR = 5.09) and well/moderate tumour differentiation (HR = 6.51) were independent promoters of recurrence-free survival. CONCLUSIONS Treating hepatic ischaemia-reperfusion injury with alprostadil reduces the risk of early HCC recurrence following LT. In particular patients with HCC exceeding the Milan criteria seem to benefit from PGE1-treatment. The molecular mechanisms of the anti-tumour effects need to be further assessed.
Collapse
Affiliation(s)
- A Kornberg
- Department of Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - U Witt
- Department of Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - J Kornberg
- Department of Anaesthesiology, Klinikum Großhadern, LMU Munich, Munich, Germany
| | - H Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany
| | - K Thrum
- Institute of Pathology, Helios Klinikum, Berlin, Germany
| |
Collapse
|
24
|
Ahmed D, de Verdier PJ, Ryk C, Lunqe O, Stål P, Flygare J. FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol Res Perspect 2015; 3:e00171. [PMID: 26516583 PMCID: PMC4618642 DOI: 10.1002/prp2.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The multityrosine kinase inhibitor sorafenib is used in the therapy of advanced disease. However, the effects of sorafenib are limited, and combination treatments aiming at improved survival are encouraged. The sphingosine analog FTY720 (Fingolimod), which is approved for treatment of multiple sclerosis, has shown tumor suppressive effects in cell lines and animal models of HCC. In the present study, we combined sorafenib with FTY720 in order to sensitize the HCC cell lines Huh7 and HepG2 to sorafenib treatment. Using the XTT assay we show that noncytotoxic doses of FTY720 synergistically enhanced the decrease in viability caused by treatment of both cell lines with increasing doses of sorafenib. Further studies in Huh7 revealed that combined treatment with FTY720 and sorafenib resulted in G1 arrest and enhanced cell death measured using flow cytometry analysis of cells labeled with propidium iodide (PI)/Annexin-V and PI and 4′,6-diamidino-2-phenylindole-staining of nuclei. In addition, signs of both caspase-dependent and – independent apoptosis were observed, as cotreatment with FTY720 and sorafenib caused cytochrome c release and poly-ADP ribose polymerase-cleavage as well as translocation of Apoptosis-inducing factor into the cytosol. We also detected features of autophagy blockage, as the protein levels of LC3-II and p62 were affected by combined treatment with FTY720 and sorafenib. Together, our results suggest that FTY720 sensitizes HCC cells to cytotoxic effects induced by treatment with sorafenib alone. These findings warrant further investigations of combined treatment with sorafenib and FTY720 in vivo in order to develop more effective treatment of HCC.
Collapse
Affiliation(s)
- Dilruba Ahmed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Petra J de Verdier
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Charlotta Ryk
- Urology Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet 171 76, Stockholm, Sweden
| | - Oscar Lunqe
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Per Stål
- Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge Stockholm, Sweden
| | - Jenny Flygare
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| |
Collapse
|
25
|
Patmanathan SN, Yap LF, Murray PG, Paterson IC. The antineoplastic properties of FTY720: evidence for the repurposing of fingolimod. J Cell Mol Med 2015; 19:2329-40. [PMID: 26171944 PMCID: PMC4594675 DOI: 10.1111/jcmm.12635] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Xiao W, Xu GT, Zhang J, Zhang J, Zhang Y, Ye W. FTY720 ameliorates Dry Eye Disease in NOD mice: Involvement of leukocytes inhibition and goblet cells regeneration in ocular surface tissue. Exp Eye Res 2015; 138:145-52. [PMID: 26187517 DOI: 10.1016/j.exer.2015.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/06/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED FTY720 is a promising drug in attenuating multiple sclerosis, prolonging survival of organ allograft, and many other protective effects. Its mechanism of action is considered to be mediated by the internalization of sphingosine 1-phosphate receptors (S1PRs). In the current study, we investigated the efficacy of FTY720 in Non-Obese Diabetic (NOD) mice, serving as a model of Dry Eye Disease (DED). NOD mice were divided into six study groups, i.e., FTY720-treated groups with 3 concentrations of FTY720 (0.05%, 0.005%, and 0.001%), 0.05% Cyclosporin A (CsA) treated group, normal saline treated group, and no treatment control group. FTY720 was reconstituted with normal saline and prepared as eye drop. The stability and production of tear film was measured by Tear Break up Time test (TBUT) and phenol red cotton thread test (PRCTT), respectively. Tear fluid washings were collected and assessed by ELISA. Cytokines were detected in lacrimal glands by RT-PCR. Inflammation in conjunctiva was assessed by immunohistochemistry, goblet cells and conjunctival epithelia were examined and evaluated by impression cytology. Our results indicated that FTY720 had a significantly therapeutic effect in NOD mice. After FTY720 intervention, TBUT and PRCTT data were greatly improved (p < 0.01), the interleukin 1β (IL-1β) level was markedly decreased in tear fluid washings compared to control and normal saline groups after 2 weeks ( CONTROL 1.06 ± 0.12, Normal saline:0.97 ± 0.09 pg/ml, CsA:0.22 ± 0.02 pg/ml, 0.001% FTY720:0.23 ± 0.02 pg/ml, 0.005% FTY720:0.14 ± 0.03 pg/ml, 0.05% FTY720: 0.18 ± 0.03 pg/ml. CsA group and 3 FTY720 groups VS. control group and normal saline groups: p < 0.01). Proinflammatory factors were greatly decreased in lacrimal glands (p < 0.01). Leukocytes were identified and markedly decreased in conujnctiva (p < 0.01), inflammatory reaction of DED was greatly relieved. More importantly, the goblet cells were largely restored and ocular surface lesions were significantly ameliorated (p < 0.01). Thus, we observed FTY720 alleviated DED in NOD mice by inhibiting leukocytes, the function of ocular surface tissue in NOD mice was partially restored via inhibiting ocular surface inflammation and increasing the density of goblet cells and conjunctival epithelia. FTY720 may offer a novel strategy for the treatment of inflammatory disorders in the ocular surface.
Collapse
Affiliation(s)
- Weibao Xiao
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Buiding 3, Room 802, Shanghai 200040, China
| | - Guo-Tong Xu
- Tongji Eye Institute and Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Medical School Building, Room 521, Shanghai 200092, China
| | - Jingfa Zhang
- Tongji Eye Institute and Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Medical School Building, Room 521, Shanghai 200092, China
| | - Jiaying Zhang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Buiding 3, Room 802, Shanghai 200040, China
| | - Yu Zhang
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Buiding 3, Room 802, Shanghai 200040, China
| | - Wen Ye
- Department of Ophthalmology, Huashan Hospital Affiliated to Fudan University, 12 Middle Wulumuqi Road, Buiding 3, Room 802, Shanghai 200040, China.
| |
Collapse
|
27
|
Shih YT, Wang MC, Zhou J, Peng HH, Lee DY, Chiu JJ. Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21. Gut 2015; 64:1132-47. [PMID: 24939570 DOI: 10.1136/gutjnl-2013-306302] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/27/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Endothelial progenitor cells (EPCs) circulate with increased numbers in the peripheral blood of patients with highly-vascularised hepatocellular carcinoma (HCC) and contribute to angiogenesis and neovascularisation. We hypothesised that angiogenic EPCs, that is, colony forming unit-endothelial cells (CFU-ECs), and outgrowth EPCs, that is, endothelial colony-forming cells, may exert paracrine effects on the behaviours and metastatic capacities of human hepatoma cells. DESIGN Various molecular and functional approaches ranging from in vitro cell culture studies on molecular signalling to in vivo investigations on cell invasion and orthotropic transplantation models in mice and clinical specimens from patients with HCC were used. RESULTS Monocyte chemotactic protein-1 (MCP-1) was identified as a critical mediator released from CFU-ECs to contribute to the chemotaxis of Huh7 and Hep3B cells by inducing their microRNA-21 (miR-21) biogenesis through the C-C chemokine receptor-2/c-Jun N-terminal kinase/activator protein-1 signalling cascade. CFU-EC-induction of miR-21 in these cells activated their Rac1 and matrix metallopeptidase-9 by silencing Rho GTPase-activating protein-24 and tissue inhibitor of metalloproteinase-3, respectively, leading to increased cell mobility. MCP-1-induction of miR-21 induced epithelial-mesenchymal transformation of Huh7 cells in vitro and their intrahepatic metastatic capability in vivo. Moreover, increased numbers of MCP-1(+) EPCs and their positive correlations with miR-21 induction and metastatic stages in human HCC were found. CONCLUSIONS Our results provide new insights into the complexity of EPC-HCC interactions and indicate that anticancer therapies targeting either the MCP-1 released from angiogenic EPCs or the miR-21 biogenesis in HCC cells may prevent the malignant progression of primary tumours.
Collapse
Affiliation(s)
- Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Cun Wang
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jing Zhou
- Department of Physiology and Pathophysiology, Basic Medical College, Peking University, Beijing, China Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Ding-Yu Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
28
|
Wang ZY, Geng L, Zheng SS. Current strategies for preventing the recurrence of hepatocellular carcinoma after liver transplantation. Hepatobiliary Pancreat Dis Int 2015; 14:145-9. [PMID: 25865686 DOI: 10.1016/s1499-3872(15)60345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver transplantation is the optimal treatment for a selected group of patients with moderate to severe cirrhosis and hepatocellular carcinoma (HCC). Despite the strict selection of candidates, post-transplant recurrence often occurs and markedly reduces the long-term survival of patients with HCC. The present review focuses on the current strategies on preventing the recurrence of HCC after liver transplantation. DATA SOURCES Relevant articles were identified by extensive searching of PubMed using the keywords "hepatocellular carcinoma", "recurrence" and "liver transplantation" between January 1996 and January 2014. Additional papers were searched manually from the references in key articles. RESULTS The current theories of HCC recurrence after liver transplantation are: (i) the growth of pre-transplant occult metastases; (ii) the engraftment of circulating tumor cells released at the time of transplantation. Pre-transplant treatment aims to control local tumor by radiofrequency ablation, transarterial embolization and transarterial chemoembolization. The main objective during the operation is to prevent tumor cell dissemination. Post-transplant treatment includes systemic anticancer therapy, antiviral therapy, and most recently, immunotherapy. These strategies concentrate on the control of the tumor when the patients are waiting for transplant, to reduce the release of HCC cells during surgical procedures and to clear the occult HCC cells after transplantation. CONCLUSIONS Much can be done to prevent HCC recurrence after liver transplantation. In future, effort is likely to be directed towards combining multidisciplinary approaches and various treatment modalities.
Collapse
Affiliation(s)
- Zhuo-Yi Wang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health; Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | |
Collapse
|
29
|
Pfarr K, Danciu C, Arlt O, Neske C, Dehelean C, Pfeilschifter JM, Radeke HH. Simultaneous and dose dependent melanoma cytotoxic and immune stimulatory activity of betulin. PLoS One 2015; 10:e0118802. [PMID: 25756279 PMCID: PMC4355578 DOI: 10.1371/journal.pone.0118802] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022] Open
Abstract
Conventional cytostatic cancer treatments rarely result in the complete eradication of tumor cells. Therefore, new therapeutic strategies focus on antagonizing the immunosuppressive activity of established tumors. In particular, recent studies of antigen-loaded dendritic cells (DCs) eliciting a specific antitumor immune response has raised the hopes of achieving the complete elimination of tumor tissue. Genistein, fingolimod and betulin have already been described as active compounds in different types of cancer. Herein, we applied an integrated screening approach to characterize both their cytostatic and their immune-modulating properties side-by-side. As will be described in detail, our data confirmed that all three compounds exerted proapoptotic and antiproliferative activity in different B16 melanoma cell lines to a given extent, as revealed by an MTT assay, CFSE and DAPI staining. However, while genistein and fingolimod also affected the survival of primary bone marrow (BM) derived DCs of C57BL/6 mice, betulin exhibited a lower cytotoxicity for BMDCs in comparison to the melanoma cells. Moreover, we could show for the first time, that only betulin caused a simultaneous, highly specific immune-stimulating activity, as measured by the IL-12p70 release of Toll-like receptor 4-stimulated BMDCs by ELISA, which was due to increased IL-12p35 mRNA expression. Interestingly, the activation of DCs resulted in enhanced T lymphocyte stimulation, indicated by increased IL-2 and IFN-γ production of cytotoxic T cells in spleen cell co-culture assays which led to a decreased viability of B16 cells in an antigen specific model system. This may overcome the immunosuppressive environment of a tumor and destroy tumor cells more effectively in vivo if the immune response is specific targeted against the tumor tissue by antigen-loaded dendritic cells. In summary, cytostatic agents, such as betulin, that simultaneously exhibit immune stimulatory activity may serve as lead compounds and hold great promise as a novel approach for an integrated cancer therapy.
Collapse
Affiliation(s)
- Kathrin Pfarr
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Corina Danciu
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Olga Arlt
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Christina Neske
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Cristina Dehelean
- Departments of Pharmacognosy and Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy Victor Babes, Timisoara, Romania
| | - Josef M. Pfeilschifter
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
| | - Heinfried H. Radeke
- pharmazentrum frankfurt/ZAFES, Institute of General Pharmacology and Toxicology, Clinic of the Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
30
|
Zhu L, Zhang W, Wang J, Liu R. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumour Biol 2015; 36:5353-60. [DOI: 10.1007/s13277-015-3196-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 01/30/2015] [Indexed: 01/15/2023] Open
|
31
|
The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response. Ann Surg 2015; 260:317-28. [PMID: 24699020 DOI: 10.1097/sla.0000000000000429] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aim to investigate the role of aldose reductase (AR) in hepatic ischemia-reperfusion injury (IRI) of normal and fatty livers and to explore the underlying mechanisms. BACKGROUND Hepatic IRI is a typical inflammatory response during liver surgery. It contributes to liver graft failure or nonfunction after transplantation. Increasing evidence implicates that AR plays a key role in a number of inflammatory diseases. However, the role of AR in hepatic IRI is still unknown. METHODS Intragraft AR expression profile and the association with liver graft injury were investigated in both human and rat liver transplantation using normal or fatty graft. The direct role of AR in hepatic IRI was studied in the AR knockout mice IRI model with or without fatty liver. They were further validated by the simulated IRI in vitro model using fatty LO2 cells with or without AR inhibitor zopolrestat and primary peritoneal macrophages isolated from AR knockout and wild-type mice. Gene expression of inflammatory cytokines/chemokines, the infiltration of macrophages/neutrophils, and NF-κB pathway activation were compared among different groups. RESULTS AR was overexpressed in liver graft after human and rat liver transplantation and correlated with consequent liver injuries. The knockout of AR significantly attenuated hepatic sinusoidal damage and apoptosis in both normal and fatty livers after IRI. The expression of proinflammatory cytokines/chemokines and neutrophil chemoattractants, infiltration of macrophage and neutrophil, and activation of inflammation-associated NF-κB and JNK pathway were downregulated in AR knockout mice. Furthermore, the inhibition of AR effectively suppressed macrophage migration and decreased lipopolysaccharide (LPS)-induced production of proinflammatory cytokines/chemokines in isolated macrophages. CONCLUSIONS The deficiency of AR attenuated hepatic IRI in both normal and fatty livers by reducing liver inflammatory responses.
Collapse
|
32
|
Lu Z, Wang J, Zheng T, Liang Y, Yin D, Song R, Pei T, Pan S, Jiang H, Liu L. FTY720 inhibits proliferation and epithelial-mesenchymal transition in cholangiocarcinoma by inactivating STAT3 signaling. BMC Cancer 2014; 14:783. [PMID: 25344679 PMCID: PMC4221672 DOI: 10.1186/1471-2407-14-783] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interleukin 6 (IL-6)-mediated signal transducers and activators of transcription 3 (STAT-3) phosphorylation (activation) is aberrantly sustained in cholangiocarcinoma cells resulting in enhanced myeloid cell leukemia 1 (Mcl-1) expression and resistance to apoptosis. FTY720, a new immunosuppressant, derived from ISP-1, has been studied for its putative anti-cancer properties. This study aimed to elucidate the mechanism by which FTY720 mediates antitumor effects in cholangiocarcinoma (CC) cells. METHODS Three CC cell lines were examined, QBC939, TFK-1, and HuCCT1. The therapeutic effects of FTY720 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial- mesenchy-mal transition (EMT) were examined. RESULTS FTY720 greatly inhibited CC cells proliferation and EMT in vitro and in vivo, and this effect was associated with dephosphorylation of STAT3tyr705. FTY720 induced apoptosis and G1 phase arrest in CC cells, and inhibited invasion of CC cells. Western blot analysis showed that FTY720 induced cleavage of caspases 3, 8 and 9, and of PARP, in a dose-dependent manner, consistent with a substantial decrease in p-STAT3, Bcl-xL, Bcl-2, survivin, cyclin D1, cyclin E, N-cadherin, vimentin, VEGF and TWIST1. In vivo studies showed that tumor growth and metastasis were significantly suppressed after FTY720 treatment. CONCLUSIONS These results suggest that FTY720 induces a significant decrease in p-STAT3, which inhibits proliferation and EMT of CC cells, and then induces G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, which shows potential anti-tumor effects on CC via p-STAT3 inhibition. FTY720 merits further investigation and warrants clinical evaluation.
Collapse
Affiliation(s)
- Zhaoyang Lu
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Jiabei Wang
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Tongsen Zheng
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Yingjian Liang
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Dalong Yin
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Ruipeng Song
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Tiemin Pei
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Shangha Pan
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Hongchi Jiang
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
| | - Lianxin Liu
- />Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, No. 23 Youzheng Street, Harbin, Heilongjiang Province 150001 China
- />Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Zhang M, Li W, Yu L, Wu S. The suppressive effect of resveratrol on HIF-1α and VEGF expression after warm ischemia and reperfusion in rat liver. PLoS One 2014; 9:e109589. [PMID: 25295523 PMCID: PMC4190191 DOI: 10.1371/journal.pone.0109589] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is overexpressed in many human tumors and their metastases, and is closely associated with a more aggressive tumor phenotype. The aim of the present study was to investigate the effect of resveratrol (RES) on the expression of ischemic-induced HIF-1α and vascular endothelial growth factor (VEGF) in rat liver. Methods Twenty-four rats were randomized into Sham, ischemia/reperfusion (I/R), and RES preconditioning groups. I/R was induced by portal pedicle clamping for 60 minutes followed by reperfusion for 60 minutes. The rats in RES group underwent the same surgical procedure as I/R group, and received 20 mg/kg resveratrol intravenously 30 min prior to ischemia. Blood and liver tissue samples were collected and subjected to biochemical assays, RT-PCR, and Western blot assays. Results I/R resulted in a significant (P<0.05) increase in liver HIF-1α and VEGF at both mRNA and protein levels 60 minutes after reperfusion. The mRNA and protein expressions of HIF-1α and VEGF decreased significantly in RES group when compared to I/R group (P<0.05). Conclusion The inhibiting effect of RES on the expressions of HIF-1α and VEGF induced by I/R in rat liver suggested that HIF-1α/VEGF could be a promising drug target for RES in the development of an effective anticancer therapy for the prevention of hepatic tumor growth and metastasis.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Wujun Li
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, Xi'an, P.R. China
| | - Liang Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shengli Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
- * E-mail:
| |
Collapse
|
34
|
Oldani G, Crowe LA, Orci LA, Slits F, Rubbia-Brandt L, de Vito C, Morel P, Mentha G, Berney T, Vallée JP, Lacotte S, Toso C. Pre-retrieval reperfusion decreases cancer recurrence after rat ischemic liver graft transplantation. J Hepatol 2014; 61:278-85. [PMID: 24713189 DOI: 10.1016/j.jhep.2014.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Liver transplantation from marginal donors is associated with ischemia/reperfusion (I/R) lesions, which may increase the risk of post-transplant hepatocellular carcinoma (HCC) recurrence. Graft reperfusion prior to retrieval (as for extracorporeal membrane oxygenation--ECMO) can prevent I/R lesions. The impact of I/R on the risk of cancer recurrence was assessed on a syngeneic Fischer-rat liver transplantation model. METHODS HCC cells were injected into the vena porta of all recipients at the end of an orthotopic liver transplantation (OLT). Control donors were standard heart-beating, ischemic ones (ISC), underwent 10 min or 30 min inflow liver clamping prior to retrieval, and ischemic/reperfused (ISC/R) donors underwent 2h liver reperfusion after the clamping. RESULTS I/R lesions were confirmed in the ISC group, with the presence of endothelial and hepatocyte injury, and increased liver function tests. These lesions were in part reversed by the 2h reperfusion in the ISC/R group. HCC growth was higher in the 10 min and 30 min ISC recipients (p = 0.018 and 0.004 vs. control, as assessed by MRI difference between weeks one and two), and was prevented in the ISC/Rs (p = 0.04 and 0.01 vs. ISC). These observations were associated with a stronger pro-inflammatory cytokine profile in the ISC recipients only, and the expression of hypoxia and HCC growth-enhancer genes, including Hmox1, Hif1a and Serpine1. CONCLUSIONS This experiment suggests that ischemia/reperfusion lesions lead to an increased risk of post-transplant HCC recurrence and growth. This observation can be reversed by graft reperfusion prior to retrieval.
Collapse
Affiliation(s)
- Graziano Oldani
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Surgery, University of Pavia, Italy
| | - Lindsey A Crowe
- Division of Radiology, Department of Medical Imaging, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo A Orci
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio de Vito
- Division of Clinical Pathology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gilles Mentha
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Paul Vallée
- Division of Radiology, Department of Medical Imaging, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Divisions of Transplant and Abdominal Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
35
|
Zhang L, Wang H, Zhu J, Ding K, Xu J. FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway. Tumour Biol 2014; 35:10707-14. [PMID: 25070489 DOI: 10.1007/s13277-014-2386-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
2-Amino-2-[2-(4-octylphenyl)]-1,3-propanediol hydrochloride (FTY720), a synthetic compound from Isaria sinclairii, has been proven to possess various biological benefits including anti-cancer activity. However, the effects and related mechanisms of FTY720 on the migration and invasion of glioblastoma cells are still unclear. In the present study, we utilized U251MG and U87MG human glioblastoma cell lines to assess the effects of FTY720. We found that FTY720 significantly inhibited migration and invasion of glioblastoma cells. The anti-migration and invasion effects of FTY720 were associated with its down-regulation of matrix metalloproteinase-2 (MMP-2) and MMP-9 while up-regulation of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2. Furthermore, FTY720 modulated the expression of roundabouts 1 (ROBO1), Rho-associated kinase-1 (ROCK1), and epithelial-to-mesenchymal transition (EMT)-related factors. In addition, the phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway participated in FTY720-mediated suppression of migration and invasion. Thus, our findings demonstrated that FTY720 reduced glioblastoma cells migration and invasion via multiple signaling pathways, suggesting that FTY720 is a potential therapeutic agent against glioblastoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
36
|
A novel oxygen carrier "YQ23" suppresses the liver tumor metastasis by decreasing circulating endothelial progenitor cells and regulatory T cells. BMC Cancer 2014; 14:293. [PMID: 24766798 PMCID: PMC4006450 DOI: 10.1186/1471-2407-14-293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background Surgical therapies are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor metastasis after liver surgery remains a severe problem. We aim to investigate the roles and the underlying mechanism of YQ23, stabilized non-polymeric diaspirin cross-linked tetrameric hemoglobin, in liver tumor metastasis after major hepatectomy and partial hepatic ischemia reperfusion (I/R) injury. Methods An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Major hepatectomy for tumor-bearing lobe and partial hepatic I/R injury were performed at two weeks after orthotopic liver tumor implantation. YQ23 (0.2 g/kg) was administered at 1 hour before ischemia and immediately after reperfusion. Blood samples were collected at day 0, 1, 7, 14, 21 and 28 for detection of circulating endothelial progenitor cells (EPCs) and regulatory T cells (Tregs). Results Our results showed that YQ23 treatment effectively inhibited intrahepatic and lung metastases together with less tumor angiogenesis at 4 weeks after major hepatectomy and partial hepatic I/R injury. The levels of circulating EPCs and Tregs were significantly decreased in YQ23 treatment group. Furthermore, YQ23 treatment also increased liver tissue oxygenation during hepatic I/R injury. Up-regulation of HO1 and down-regulation of CXCR3, TNF-α and IL6 were detected after YQ23 treatment. Conclusions YQ23 treatment suppressed liver tumor metastasis after major hepatectomy and partial hepatic I/R injury in a rat liver tumor model through increasing liver oxygen and reducing the populations of circulating EPCs and Tregs.
Collapse
|
37
|
Sinclair A, Latif AL, Holyoake TL. Targeting survival pathways in chronic myeloid leukaemia stem cells. Br J Pharmacol 2014; 169:1693-707. [PMID: 23517124 DOI: 10.1111/bph.12183] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/11/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- A Sinclair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | | | | |
Collapse
|
38
|
Zhao Y, Yu P, Wu R, Ge Y, Wu J, Zhu J, Jia R. Renal cell carcinoma-adjacent tissues enhance mobilization and recruitment of endothelial progenitor cells to promote the invasion of the neoplasm. Biomed Pharmacother 2013; 67:643-9. [DOI: 10.1016/j.biopha.2013.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/24/2013] [Indexed: 01/18/2023] Open
|
39
|
Rosa R, Marciano R, Malapelle U, Formisano L, Nappi L, D'Amato C, D'Amato V, Damiano V, Marfè G, Del Vecchio S, Zannetti A, Greco A, De Stefano A, Carlomagno C, Veneziani BM, Troncone G, De Placido S, Bianco R. Sphingosine kinase 1 overexpression contributes to cetuximab resistance in human colorectal cancer models. Clin Cancer Res 2012; 19:138-47. [PMID: 23166225 DOI: 10.1158/1078-0432.ccr-12-1050] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Although the anti-EGF receptor (EGFR) monoclonal antibody cetuximab is an effective strategy in colorectal cancer therapy, its clinical use is limited by intrinsic or acquired resistance. Alterations in the "sphingolipid rheostat"-the balance between the proapoptotic molecule ceramide and the mitogenic factor sphingosine-1-phosphate (S1P)-due to sphingosine kinase 1 (SphK1) overactivation have been involved in resistance to anticancer-targeted agents. Moreover, cross-talks between SphK1 and EGFR-dependent signaling pathways have been described. EXPERIMENTAL DESIGN We investigated SphK1 contribution to cetuximab resistance in colorectal cancer, in preclinical in vitro/in vivo models, and in tumor specimens from patients. RESULTS SphK1 was found overexpressed and overactivated in colorectal cancer cells with intrinsic or acquired resistance to cetuximab. SphK1 contribution to resistance was supported by the demonstration that SphK1 inhibition by N,N-dimethyl-sphingosine or silencing via siRNA in resistant cells restores sensitivity to cetuximab, whereas exogenous SphK1 overexpression in sensitive cells confers resistance to these agents. Moreover, treatment of resistant cells with fingolimod (FTY720), a S1P receptor (S1PR) antagonist, resulted in resensitization to cetuximab both in vitro and in vivo, with inhibition of tumor growth, interference with signal transduction, induction of cancer cells apoptosis, and prolongation of mice survival. Finally, a correlation between SphK1 expression and cetuximab response was found in colorectal cancer patients.
Collapse
Affiliation(s)
- Roberta Rosa
- Dipartimenti di Endocrinologia ed Oncologia Molecolare e Clinica, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eveno C, Pocard M. VEGF levels and the angiogenic potential of the microenvironment can affect surgical strategy for colorectal liver metastasis. Cell Adh Migr 2012; 6:569-73. [PMID: 23257830 DOI: 10.4161/cam.23247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypotheses emerging from basic research on colorectal liver metastases must be tested in clinical situations for the adaptation of current treatment strategies. Pre-metastatic niches have been shown to exist in human colorectal synchronous metastases, with the liver parenchyma adjacent to the synchronous liver metastases providing a favorable, angiogenic environment for metastatic tumor growth. The role of the VEGF signaling pathway in liver regeneration and tumor growth remains unclear, but the use of antiangiogenic agents in combination with surgical treatment is almost certainly beneficial.
Collapse
Affiliation(s)
- Clarisse Eveno
- INSERM U965 Angiogenesis and Translational Research; Paris-Diderot Paris 7 University, Hôpital Lariboisière, Paris, France
| | | |
Collapse
|
41
|
Yang JX, Chen B, Pan YY, Han J, Chen F, Hu SJ. Zoledronate attenuates angiogenic effects of angiotensin II-stimulated endothelial progenitor cells via RhoA and MAPK signaling. PLoS One 2012; 7:e46511. [PMID: 23071580 PMCID: PMC3469623 DOI: 10.1371/journal.pone.0046511] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND New vessel formation plays a pivotal role in the pathogenesis of neovascular-related diseases. Endothelial progenitor cells (EPCs) were found to contribute to neovascular-related diseases and interference with EPC neovascularization may be a novel target for these diseases. Zoledronate (Zol) was reported to exhibit anti-angiogenic effect. Basing on these evidences, we proposed that Zol may affect EPC function to exert novel anti-angiogenic effect. In this study, we therefore investigated the effects of Zol on multiple aspects of EPC function and explored the underlying mechanisms involved. METHODOLOGY/PRINCIPAL FINDINGS EPCs were cultured from bone marrow derived mononuclear cells. The potential effects of Zol on Angiotensin II (Ang II)-stimulated EPC proliferation, migration, adhesion, in vitro tube formation were investigated. The results showed that Ang II (1 µM) enhanced EPC migration, adhesion, in vitro tube formation but had no effect on cell proliferation. Zol (75 and 100 µM) inhibited proliferation of EPCs and 50 µM geranylgeranyol (GGOH) could reverse the decrease of EPC proliferation. We found for the first time that Zol (50-100 µM) dose dependently attenuated migration, adhesion, and in vitro tube formation of EPCs stimulated by Ang II. GGOH could reverse the attenuation of EPC function induced by Zol. However, Zol did not induce EPC apoptosis. In addition, the underlying mechanisms were determined. The results revealed that Zol markedly down-regulated active RhoA stimulated by Ang II and inhibited the phosphorylation of Erk1/2 and JNK. Moreover, RhoA silencing resulted in a notable inhibition of EPC in vitro tube formation, suggesting that RhoA suppression played a pivotal role in Zol antiangiogenic effect. CONCLUSIONS/SIGNIFICANCE These findings suggested that Zol attenuated the promotion of EPC function stimulated by Ang II and exhibited novel antiangiogenic effect via RhoA and MAPK signaling. Thus, Zol may be served as a novel therapeutic agent for neovascular-related diseases treatment.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bin Chen
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan-Yun Pan
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Han
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Chen
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
42
|
Yin Z, Fan L, Wei L, Gao H, Zhang R, Tao L, Cao F, Wang H. FTY720 protects cardiac microvessels of diabetes: a critical role of S1P1/3 in diabetic heart disease. PLoS One 2012; 7:e42900. [PMID: 22916176 PMCID: PMC3419247 DOI: 10.1371/journal.pone.0042900] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/13/2012] [Indexed: 01/07/2023] Open
Abstract
Background: Diabetes is associated with an increased risk of cardiac microvascular disease. The mechanisms by which this damage occurs are unknown. However, research suggests that signaling through the sphingosine-1-phosphates receptor 1 and 3 (S1P1/3) by FTY720, a sphiongolipid drug that is structually similar to SIP, may play a role in the treatment on cardiac microvascular dysfunction in diabetes. We hypothesized that FTY720 might exert the cardioprotective effects of S1P1 and S1P3 viaprotein kinase C-beta (PKCβ II) signaling pathway. Methodology/Principal Findings: Transthoracic echocardiography was performed to detect the change of cardiac function. Scanning and transmission electron microscope with lanthanum tracer were used to determine microvascular ultrastructure and permeability in vivo. Apoptosis was detected by TUNEL and CD31 dual labeling in paraffin-embedded sections. Laser capture miscrodissection was used to assess cardiac micovascular endothelial cells (CMECs) in vivo. RT-PCR and Western blot analysis were used to determine the mRNA levels and protein expression of S1P1, S1P3, and PKCβ II. In the diabetic rats vs. controls, cardiac capillaries showed significantly higher density; CD31 positive endothelial cells were significantly reduced; the apoptosis index of cardiac endothlial cells was significantly higher. And FTY720 could increase the expressional level of S1P1 and boost S1P3 trasnslocation from membrane to nuclear, then ameliorate cardiac microvascular barrier impairment and pathologic angiogenesis induced by diabetes. In addition, overexpression of PKCβ II significantly decreased the protective effect of FTY720. Conclusions: Our study represents that the deregulation of S1P1 and S1P3 is an important signalresponsible for cardiac microvascular dysfunction in diabetes. FTY720 might be competent to serve as a potential therapeutic approach for diabetic heart disease through ameliorating cardiac microvascular barrier impairment and pathologic angiogenesis, which might be partly dependent on PKCβII-mediated signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Yin
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Linni Fan
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medicine Center, Tianjin, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Rongqing Zhang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Feng Cao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
| | - Haichang Wang
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an City, Shaanxi Province, China
- * E-mail:
| |
Collapse
|