1
|
Wingrove JS, Wimmer J, Saba Echezarreta VE, Piazza A, Spencer GE. Retinoic acid reduces the formation of, and acutely modulates, invertebrate electrical synapses. J Neurophysiol 2024; 131:965-981. [PMID: 38568843 DOI: 10.1152/jn.00057.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Communication between cells in the nervous system is dependent on both chemical and electrical synapses. Factors that can affect chemical synapses have been well studied, but less is known about factors that influence electrical synapses. Retinoic acid, the vitamin A metabolite, is a known regulator of chemical synapses, but few studies have examined its capacity to regulate electrical synapses. In this study, we determine that retinoic acid is capable of rapidly altering the strength of electrical synapses in an isomer- and cell-dependent manner. Furthermore, we provide evidence that this acute effect might be independent of either the retinoid receptors or the activation of a protein kinase. In addition to the rapid modulatory effects of retinoic acid, we provide data to suggest that retinoic acid is also capable of regulating the formation of electrical synapses. Long-term exposure to both all-trans-retinoic acid or 9-cis-retinoic acid reduced the proportion of cell pairs forming electrical synapses, as well as reduced the strength of electrical synapses that did form. In summary, this study provides insights into the role that retinoids might play in both the formation and modulation of electrical synapses in the central nervous system.NEW & NOTEWORTHY Retinoids are known modulators of chemical synapses and mediate synaptic plasticity in the nervous system, but little is known of their effects on electrical synapses. Here, we show that retinoids selectively reduce electrical synapses in a cell- and isomer-dependent manner. This modulatory action on existing electrical synapses was rapid and nongenomic in nature. We also showed for the first time that longer retinoid exposures inhibit the formation of electrical synapses.
Collapse
Affiliation(s)
- Joel S Wingrove
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Justin Wimmer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | | - Alicia Piazza
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
2
|
Goggans KR, Belyaeva OV, Klyuyeva AV, Studdard J, Slay A, Newman RB, VanBuren CA, Everts HB, Kedishvili NY. Epidermal retinol dehydrogenases cyclically regulate stem cell markers and clock genes and influence hair composition. Commun Biol 2024; 7:453. [PMID: 38609439 PMCID: PMC11014975 DOI: 10.1038/s42003-024-06160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The hair follicle (HF) is a self-renewing adult miniorgan that undergoes drastic metabolic and morphological changes during precisely timed cyclic organogenesis. The HF cycle is known to be regulated by steroid hormones, growth factors and circadian clock genes. Recent data also suggest a role for a vitamin A derivative, all-trans-retinoic acid (ATRA), the activating ligand of transcription factors, retinoic acid receptors, in the regulation of the HF cycle. Here we demonstrate that ATRA signaling cycles during HF regeneration and this pattern is disrupted by genetic deletion of epidermal retinol dehydrogenases 2 (RDHE2, SDR16C5) and RDHE2-similar (RDHE2S, SDR16C6) that catalyze the rate-limiting step in ATRA biosynthesis. Deletion of RDHEs results in accelerated anagen to catagen and telogen to anagen transitions, altered HF composition, reduced levels of HF stem cell markers, and dysregulated circadian clock gene expression, suggesting a broad role of RDHEs in coordinating multiple signaling pathways.
Collapse
Affiliation(s)
- Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Studdard
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Regina B Newman
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Christine A VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Bioinformatics approach to identify the core ontologies, pathways, signature genes and drug molecules of prostate cancer. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
4
|
Solan JL, Lampe PD. Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover. Biomolecules 2020; 10:biom10121596. [PMID: 33255329 PMCID: PMC7759836 DOI: 10.3390/biom10121596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
Collapse
Affiliation(s)
- Joell L. Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
5
|
Francisco V, Lino M, Ferreira L. A near infrared light-triggerable modular formulation for the delivery of small biomolecules. J Nanobiotechnology 2019; 17:97. [PMID: 31526377 PMCID: PMC6747754 DOI: 10.1186/s12951-019-0530-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
Background Externally triggered drug delivery systems hold considerable promise for improving the treatment of many diseases, in particular, diseases where the spatial–temporal release of the drug is critical to maximize their biological effect whilst minimizing undesirable, off-target, side effects. Results Herein, we developed a light-triggerable formulation that takes advantage of host–guest chemistry to complex drugs functionalized with a guest molecule and release it after exposure to near infrared (NIR) light due to the disruption of the non-covalent host–guest interactions. The system is composed by a gold nanorod (AuNR), which generates plasmonic heat after exposure to NIR, a thin layer of hyaluronic acid immobilized to the AuNR upon functionalization with a macrocycle, cucurbit[6]uril (CB[6]), and a drug functionalized with a guest molecule that interacts with the macrocycle. For proof of concept, we have used this formulation for the intracellular release of a derivative of retinoic acid (RA), a molecule known to play a key role in tissue development and homeostasis as well as during cancer treatment. We showed that the formulation was able to conjugate approximately 65 μg of RA derivative per mg of CB[6] @AuNR and released it within a few minutes after exposure to a NIR laser. Importantly, the bioactivity of RA released from the formulation was demonstrated in a reporter cell line expressing luciferase under the control of the RA receptor. Conclusions This NIR light-triggered supramolecular-based modular platform holds great promise for theranostic applications.
Collapse
Affiliation(s)
- Vitor Francisco
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Miguel Lino
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
6
|
Direct Intercellular Communications and Cancer: A Snapshot of the Biological Roles of Connexins in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11091370. [PMID: 31540089 PMCID: PMC6770088 DOI: 10.3390/cancers11091370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tissue homeostasis is the result of a complex intercellular network controlling the behavior of every cell for the survival of the whole organism. In mammalian tissues, cells do communicate via diverse long- and short-range communication mechanisms. While long-range communication involves hormones through blood circulation and neural transmission, short-range communication mechanisms include either paracrine diffusible factors or direct interactions (e.g., gap junctions, intercellular bridges and tunneling nanotubes) or a mixture of both (e.g., exosomes). Tumor growth represents an alteration of tissue homeostasis and could be the consequence of intercellular network disruption. In this network, direct short-range intercellular communication seems to be particularly involved. The first type of these intercellular communications thought to be involved in cancer progression were gap junctions and their protein subunits, the connexins. From these studies came the general assumption that global decreased connexin expression is correlated to tumor progression and increased cell proliferation. However, this assumption appeared more complicated by the fact that connexins may act also as pro-tumorigenic. Then, the concept that direct intercellular communication could be involved in cancer has been expanded to include new forms of intercellular communication such as tunneling nanotubes (TNTs) and exosomes. TNTs are intercellular bridges that allow free exchange of small molecules or even mitochondria depending on the presence of gap junctions. The majority of current research shows that such exchanges promote cancer progression by increasing resistance to hypoxia and chemotherapy. If exosomes are also involved in these mechanisms, more studies are needed to understand their precise role. Prostate cancer (PCa) represents a type of malignancy with one of the highest incidence rates worldwide. The precise role of these types of direct short-range intercellular communication has been considered in the progression of PCa. However, even though data are in favor of connexins playing a key role in PCa progression, a clear understanding of the role of TNTs and exosomes is needed to define their precise role in this malignancy. This review article summarizes the current view of the main mechanisms involved in short-range intercellular communication and their implications in cancer and delves into the biological, predictive and therapeutic role of connexins in PCa.
Collapse
|
7
|
Boucher J, Monvoisin A, Vix J, Mesnil M, Thuringer D, Debiais F, Cronier L. Connexins, important players in the dissemination of prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:202-215. [PMID: 28693897 DOI: 10.1016/j.bbamem.2017.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022]
Abstract
Over the past 50years, increasing experimental evidences have established that connexins (Cxs) and gap junctional intercellular communication (GJIC) ensure an important role in both the onset and development of cancerous processes. In the present review, we focus on the impact of Cxs and GJIC during the development of prostate cancer (PCa), from the primary growth mainly localized in acinar glands and ducts to the distant metastasis mainly concentrated in bone. As observed in several other types of solid tumours, Cxs and especially Cx43 exhibit an ambivalent role with a tumour suppressor effect in the early stages and, conversely, a rather pro-tumoural profile for most of invasion and dissemination steps to secondary sites. We report here the current knowledge on the function of Cxs during PCa cells migration, cytoskeletal dynamics, proteinases activities and the cross talk with the surrounding stromal cells in the microenvironment of the tumour and the bones. In addition, we discuss the role of Cxs in the bone tropism even if the prostate model is rarely used to study the complete sequence of cancer dissemination compared to breast cancer or melanoma. Even if not yet fully understood, these recent findings on Cxs provide new insights into their molecular mechanisms associated with progression and bone targeted behaviour of PCa. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Jonathan Boucher
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Arnaud Monvoisin
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | - Justine Vix
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Marc Mesnil
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France
| | | | - Françoise Debiais
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France; Department of Rheumatology, C.H.U. la Milétrie, Poitiers, France
| | - Laurent Cronier
- Laboratory Signalisation et Transports Ioniques Membranaires (STIM), ERL7368 - CNRS, University of Poitiers, Poitiers, France.
| |
Collapse
|
8
|
Abstract
Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. Although many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Trond Aasen
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences
Fondamentales et Appliquées, Université de Poitiers, Poitiers,
France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, The Life
Sciences Institute, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research
Center, Seattle, United States
| | - Dale W. Laird
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| |
Collapse
|
9
|
Wang Y, Zhang S, Zhang C, Zhao Z, Zheng X, Xue L, Liu J, Yuan XC. Investigation of an SPR biosensor for determining the influence of connexin 43 expression on the cytotoxicity of cisplatin. Analyst 2016; 141:3411-3420. [DOI: 10.1039/c6an00264a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The real-time and label free detection abilities of surface plasmon resonance (SPR) biosensors provide a way of evaluating the influence of some genes’ expression on anti-tumor drug cytotoxicity.
Collapse
Affiliation(s)
- Yijia Wang
- Tianjin Union Medical Center
- Tianjin
- China
| | | | | | | | | | - Lihua Xue
- Tianjin Union Medical Center
- Tianjin
- China
| | - Jun Liu
- Tianjin Union Medical Center
- Tianjin
- China
| | - X.-C. Yuan
- Institute of Micro & Nano Optics
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen
| |
Collapse
|
10
|
Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair. Semin Cell Dev Biol 2015; 50:40-8. [PMID: 26706150 DOI: 10.1016/j.semcdb.2015.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing.
Collapse
|
11
|
Katoch P, Mitra S, Ray A, Kelsey L, Roberts BJ, Wahl JK, Johnson KR, Mehta PP. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J Biol Chem 2015; 290:4647-4662. [PMID: 25548281 PMCID: PMC4335205 DOI: 10.1074/jbc.m114.586057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size.
Collapse
Affiliation(s)
- Parul Katoch
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shalini Mitra
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Anuttoma Ray
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Kelsey
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brett J Roberts
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James K Wahl
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Parmender P Mehta
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
12
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
13
|
Chen MC, Hsu SL, Lin H, Yang TY. Retinoic acid and cancer treatment. Biomedicine (Taipei) 2014; 4:22. [PMID: 25520935 PMCID: PMC4265016 DOI: 10.7603/s40681-014-0022-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid which belongs to the retinoid class of chemical compounds is an important metabolite of vitamin A in diets. It is currently understood that retinoic acid plays important roles in cell development and differentiation as well as cancer treatment. Lung, prostate, breast, ovarian, bladder, oral, and skin cancers have been demonstrated to be suppressed by retinoic acid. Our results also show that low doses and high doses of retinoic acid may respectively cause cell cycle arrest and apoptosis of cancer cells. Also, the common cell cycle inhibiting protein, p27, and the new cell cycle regulator, Cdk5, are involved in retinoic acid’s effects. These results provide new evidence indicating that the molecular mechanisms of/in retinoic acid may control cancer cells’ fates. Since high doses of retinoic acid may lead to cytotoxicity, it is probably best utilized as a potential supplement in one’s daily diet to prevent or suppress cancer progression. In this review, we have collected numerous references demonstrating the findings of retinoic acid in melanoma, hepatoma, lung cancer, breast cancer, and prostate cancer. We hope these observations will shed light on the future investigation of retinoic acid in cancer prevention and therapy.
Collapse
Affiliation(s)
- Mei-Chih Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, No. 250, Kuokuang Rd., Taichung 402, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Chest Medicine, Taichung Veterans General Hospital, No. 160, Taichung Harbor Rd., Sec. 3, Taichung 407, Taichung, Taiwan
| |
Collapse
|
14
|
Characterization of mixed organic compounds extracted from Rhodobacter sphaeroides and applications to enhance the physiological responses of fermenting microorganisms. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0034-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Kelsey L, Katoch P, Ray A, Mitra S, Chakraborty S, Lin MF, Mehta PP. Vitamin D3 regulates the formation and degradation of gap junctions in androgen-responsive human prostate cancer cells. PLoS One 2014; 9:e106437. [PMID: 25188420 PMCID: PMC4154685 DOI: 10.1371/journal.pone.0106437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
Abstract
1α-25(OH)2 vitamin D3 (1-25D), an active hormonal form of Vitamin D3, is a well-known chemopreventive and pro-differentiating agent. It has been shown to inhibit the growth of several prostate cancer cell lines. Gap junctions, formed of proteins called connexins (Cx), are ensembles of cell-cell channels, which permit the exchange of small growth regulatory molecules between adjoining cells. Cell-cell communication mediated by gap junctional channels is an important homeostatic control mechanism for regulating cell growth and differentiation. We have investigated the effect of 1-25D on the formation and degradation of gap junctions in an androgen-responsive prostate cancer cell line, LNCaP, which expresses retrovirally-introduced Cx32. Connexin32 is expressed by the luminal and well-differentiated cells of normal prostate and prostate tumors. Our results document that 1-25D enhances the expression of Cx32 and its subsequent assembly into gap junctions. Our results further show that 1-25D prevents androgen-regulated degradation of Cx32, post-translationally, independent of androgen receptor (AR)-mediated signaling. Finally, our findings document that formation of gap junctions sensitizes Cx32-expressing LNCaP cells to the growth inhibitory effects of 1-25D and alters their morphology. These findings suggest that the growth-inhibitory effects of 1-25D in LNCaP cells may be related to its ability to modulate the assembly of Cx32 into gap junctions.
Collapse
Affiliation(s)
- Linda Kelsey
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shalini Mitra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Souvik Chakraborty
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Parmender P. Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
16
|
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 2014; 588:1423-9. [PMID: 24508467 DOI: 10.1016/j.febslet.2014.01.049] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially "unzip" and be internalized/endocytosed into the cell that produced each connexin.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
17
|
Chang WW, Liu JJ, Liu CF, Liu WS, Lim YP, Cheng YJ, Lee CH. An extract of Rhodobacter sphaeroides reduces cisplatin-induced nephrotoxicity in mice. Toxins (Basel) 2013; 5:2353-65. [PMID: 24335753 PMCID: PMC3873690 DOI: 10.3390/toxins5122353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/18/2013] [Accepted: 11/25/2013] [Indexed: 01/29/2023] Open
Abstract
Cisplatin is used as a treatment for various types of solid tumors. Renal injury severely limits the use of cisplatin. Renal cell apoptosis, oxidative stress, and inflammation contribute to cisplatin-induced nephrotoxicity. Previously, we found that an extract of Rhodobacter sphaeroides (Lycogen™) inhibited proinflammatory cytokines and the production of nitric oxide in activated macrophages in a dextran sodium sulfate (DSS)-induced colitis model. Here, we evaluated the effect of Lycogen™, a potent anti-inflammatory agent, in mice with cisplatin-induced renal injury. We found that attenuated renal injury correlated with decreased apoptosis due to a reduction in caspase-3 expression in renal cells. Oral administration of Lycogen™ significantly reduced the expression of tumor necrosis factor-α and interleukin-1β in mice with renal injury. Lycogen™ reduces renal dysfunction in mice with cisplatin-induced renal injury. The protective effects of the treatment included blockage of the cisplatin-induced elevation in serum urea nitrogen and creatinine. Meanwhile, Lycogen™ attenuated body weight loss and significantly prolonged the survival of mice with renal injury. We propose that Lycogen™ exerts anti-inflammatory activities that represent a promising strategy for the treatment of cisplatin-induced renal injury.
Collapse
Affiliation(s)
- Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung 402, Taiwan; E-Mail:
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jau-Jin Liu
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
| | - Chi-Fan Liu
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
| | - Wen-Sheng Liu
- Asia-Pacific Biotech Developing, Inc. Kaohsiung 806, Taiwan; E-Mail:
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yun-Ping Lim
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Yu-Jung Cheng
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Che-Hsin Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan; E-Mails: (J.-J.L.); (C.-F.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-3366-2173; Fax: +886-4-2205-3764
| |
Collapse
|
18
|
Retinoids and their biological effects against cancer. Int Immunopharmacol 2013; 18:43-9. [PMID: 24239628 DOI: 10.1016/j.intimp.2013.10.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 12/13/2022]
Abstract
There are more than 4000 natural and synthetic molecules structurally and/or functionally related to vitamin A. Retinoids are a class of these compounds that are structurally associated to vitamin A. The retinoids have a wide spectrum of functions. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation and apoptosis. It suppresses carcinogenesis in tumorigenic animal models for the skin, oral, lung, breast, bladder, ovarian and prostate. It is important how major retinoids may act in cancer treatment or prevention. The reports have indicated that lower levels of vitamin A in humans may be associated with relative type 1 cytokine dominance and a higher proportion of NK cells. In addition, very low vitamin A levels would be undesirable explaining the essential role of vitamin A in epithelial and general cell maturation and function. However, the cytokine shifts associated with moderately low levels of vitamin A may be in some ways beneficial in an environment where HIV infection, M. tuberculosis infection, or other type 1 infections are highly prevalent and/or when acquired immunity is cooperated. In this review, we intend to describe the biochemical and immunological functions of retinoids against cancer.
Collapse
|
19
|
Tong X, Dong S, Yu M, Wang Q, Tao L. Role of heteromeric gap junctions in the cytotoxicity of cisplatin. Toxicology 2013; 310:53-60. [PMID: 23747833 DOI: 10.1016/j.tox.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023]
Abstract
In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pharmacy, Bengbu Medical College, Bengbu 233000, PR China
| | | | | | | | | |
Collapse
|
20
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
21
|
Liu WS, Chen MC, Chiu KH, Wen ZH, Lee CH. Amelioration of dextran sodium sulfate-induced colitis in mice by Rhodobacter sphaeroides extract. Molecules 2012; 17:13622-30. [PMID: 23159923 PMCID: PMC6268583 DOI: 10.3390/molecules171113622] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 01/12/2023] Open
Abstract
Bacteria can produce some compounds in response to their environment. These compounds are widely used in cosmetic and pharmaceutical applications. Some probiotics have immunomodulatory activities and modulate the symptoms of several diseases. Autoimmune diseases represent a complex group of conditions that are thought to be mediated through the development of autoreactive immunoresponses. Inflammatory bowel disease (IBD) is common autoimmune disease that affects many individuals worldwide. Previously, we found that the extracts of Rhodobacter sphaeroides (Lycogen) inhibited nitric oxide production and inducible nitric-oxide synthase expression in activated macrophages. In this study, the effect of Lycogen™, a potent anti-inflammatory agent, was evaluated in mice with dextran sodium sulfate (DSS)-induced colitis. Oral administration of Lycogen™ reduced the expressions of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) in female BABL/c mice. In addition, the increased number of bacterial flora in the colon induced by DSS was amelirated by Lycogen™. The histological score of intestinal inflammation in 5% DSS-treated mice after oral administration of Lycogen™ was lower than that of control mice. Meanwhile, Lycogen™ dramatically prolonged the survival of mice with severe colitis. These findings identified that Lycogen™ is an anti-inflammatory agent with the capacity to ameliorate DSS-induced colitis.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Asia-Pacific Biotech Developing, Inc. Kaohsiung 806, Taiwan
| | - Man-Chin Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 404, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Authors to whom correspondence should be addressed; (Z.-H.W.); (C.-H.L.)
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung 404, Taiwan
- Authors to whom correspondence should be addressed; (Z.-H.W.); (C.-H.L.)
| |
Collapse
|