1
|
Zhou S, Zhang W, Zhang Y, Ni X, Li Z. Bifurcation and oscillatory dynamics of delayed CDK1-APC feedback loop. IET Syst Biol 2020; 14:297-306. [PMID: 33095751 PMCID: PMC8687261 DOI: 10.1049/iet-syb.2020.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/20/2022] Open
Abstract
Extensive experimental evidence has been demonstrated that the dynamics of CDK1-APC feedback loop play crucial roles in regulating cell cycle processes, but the dynamical mechanisms underlying the regulation of this loop are still not completely understood. Here, the authors systematically investigated the stability and bifurcation criteria for a delayed CDK1-APC feedback loop. They showed that the maximum reaction rate of CDK1 inactivation by APC can drive sustained oscillations of CDK1 activity ([inline-formula removed]) and APC activity ([inline-formula removed]), and the amplitude of these oscillations is increasing with the increase of the reaction rate over a wide range; a certain range of the self-activation rate for CDK1 is also significant for generating these oscillations, for too high or too low rates the oscillations cannot be generated. Moreover, they derived the sufficient conditions to determine the stability and Hopf bifurcations, and found that the sum of time delays required for activating CDK1 and APC can induce [inline-formula removed] and [inline-formula removed] to be oscillatory, even when the [inline-formula removed] and [inline-formula removed] settle in a definite stable steady state. Furthermore, they presented an explicit algorithm for the properties of periodic oscillations. Finally, numerical simulations have been presented to justify the validity of theoretical analysis.
Collapse
Affiliation(s)
- Shenshuang Zhou
- Department of Mathematics, Yuxi Normal University, Yuxi 653100, People's Republic of China
| | - Wei Zhang
- Department of Mathematics, Yuxi Normal University, Yuxi 653100, People's Republic of China
| | - Yuan Zhang
- Department of Mathematics, Yuxi Normal University, Yuxi 653100, People's Republic of China.
| | - Xuan Ni
- Department of Mathematics, Yuxi Normal University, Yuxi 653100, People's Republic of China
| | - Zhouhong Li
- Department of Mathematics, Yuxi Normal University, Yuxi 653100, People's Republic of China
| |
Collapse
|
2
|
Afonso O, Castellani CM, Cheeseman LP, Ferreira JG, Orr B, Ferreira LT, Chambers JJ, Morais-de-Sá E, Maresca TJ, Maiato H. Spatiotemporal control of mitotic exit during anaphase by an aurora B-Cdk1 crosstalk. eLife 2019; 8:e47646. [PMID: 31424385 PMCID: PMC6706241 DOI: 10.7554/elife.47646] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 11/13/2022] Open
Abstract
According to the prevailing 'clock' model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a function of chromosome separation during anaphase, assisted by a midzone Aurora B phosphorylation gradient - the 'ruler' model. Here we found that Cdk1 remains active during anaphase due to ongoing APC/CCdc20- and APC/CCdh1-mediated degradation of B-type Cyclins in Drosophila and human cells. Failure to degrade B-type Cyclins during anaphase prevented mitotic exit in a Cdk1-dependent manner. Cyclin B1-Cdk1 localized at the spindle midzone in an Aurora B-dependent manner, with incompletely separated chromosomes showing the highest Cdk1 activity. Slowing down anaphase chromosome motion delayed Cyclin B1 degradation and mitotic exit in an Aurora B-dependent manner. Thus, a crosstalk between molecular 'rulers' and 'clocks' licenses mitotic exit only after proper chromosome separation.
Collapse
Affiliation(s)
- Olga Afonso
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | | | - Liam P Cheeseman
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Jorge G Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| | - Bernardo Orr
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Luisa T Ferreira
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - James J Chambers
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstUnited States
| | - Eurico Morais-de-Sá
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Epithelial Polarity & Cell Division Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
| | - Thomas J Maresca
- Biology DepartmentUniversity of MassachusettsAmherstUnited States
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstUnited States
| | - Helder Maiato
- Chromosome Instability & Dynamics Group, i3S - Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Cell Division Group, Experimental Biology Unit, Department of Biomedicine, Faculdade de MedicinaUniversidade do PortoPortoPortugal
| |
Collapse
|
3
|
Zhang T, Si-Hoe SL, Hudson DF, Surana U. Condensin recruitment to chromatin is inhibited by Chk2 kinase in response to DNA damage. Cell Cycle 2016; 15:3454-3470. [PMID: 27792460 DOI: 10.1080/15384101.2016.1249075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.
Collapse
Affiliation(s)
- Tao Zhang
- a Institute of Molecular and Cell Biology, Agency for Science Technology and Research , Singapore.,b Murdoch Childrens Research Institute, Royal Children's Hospital , Melbourne , Australia.,c Department of Pediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia
| | - San Ling Si-Hoe
- a Institute of Molecular and Cell Biology, Agency for Science Technology and Research , Singapore
| | - Damien F Hudson
- b Murdoch Childrens Research Institute, Royal Children's Hospital , Melbourne , Australia.,c Department of Pediatrics , University of Melbourne, Royal Children's Hospital , Melbourne , Australia
| | - Uttam Surana
- a Institute of Molecular and Cell Biology, Agency for Science Technology and Research , Singapore.,d Department of Pharmacology , National University of Singapore , Singapore.,e Bioprocessing Technology Institute, Agency for Science Technology and Research , Singapore
| |
Collapse
|
4
|
Yaswen P, MacKenzie KL, Keith WN, Hentosh P, Rodier F, Zhu J, Firestone GL, Matheu A, Carnero A, Bilsland A, Sundin T, Honoki K, Fujii H, Georgakilas AG, Amedei A, Amin A, Helferich B, Boosani CS, Guha G, Ciriolo MR, Chen S, Mohammed SI, Azmi AS, Bhakta D, Halicka D, Niccolai E, Aquilano K, Ashraf SS, Nowsheen S, Yang X. Therapeutic targeting of replicative immortality. Semin Cancer Biol 2015; 35 Suppl:S104-S128. [PMID: 25869441 PMCID: PMC4600408 DOI: 10.1016/j.semcancer.2015.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy.
Collapse
Affiliation(s)
- Paul Yaswen
- Life Sciences Division, Lawrence Berkeley National Lab, Berkeley, CA, United States.
| | - Karen L MacKenzie
- Children's Cancer Institute Australia, Kensington, New South Wales, Australia.
| | | | | | | | - Jiyue Zhu
- Washington State University College of Pharmacy, Pullman, WA, United States.
| | | | | | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, HUVR, Consejo Superior de Investigaciones Cientificas, Universdad de Sevilla, Seville, Spain.
| | | | | | | | | | | | | | - Amr Amin
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| | | | - Gunjan Guha
- SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust, Guildford, Surrey, United Kingdom
| | | | - Asfar S Azmi
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | | | | | | | | | - S Salman Ashraf
- United Arab Emirates University, Al Ain, United Arab Emirates; Cairo University, Cairo, Egypt
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
5
|
Yuan X, Srividhya J, De Luca T, Lee JHE, Pomerening JR. Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset. Mol Biol Cell 2013; 25:441-56. [PMID: 24356446 PMCID: PMC3923637 DOI: 10.1091/mbc.e13-08-0480] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Premature S-phase entry due to Cdh1 ablation results from premature loss of the CDK inhibitor p27 and a reduced requirement for cyclin E1. This prolonged S phase coincides with slowed replication fork elongation and fewer replication terminations, both of which could contribute to genome instability. Cdh1, a coactivator of the anaphase-promoting complex (APC), is a potential tumor suppressor. Cdh1 ablation promotes precocious S-phase entry, but it was unclear how this affects DNA replication dynamics while contributing to genomic instability and tumorigenesis. We find that Cdh1 depletion causes early S-phase onset in conjunction with increase in Rb/E2F1-mediated cyclin E1 expression, but reduced levels of cyclin E1 protein promote this transition. We hypothesize that this is due to a weakened cyclin-dependent kinase inhibitor (CKI)–cyclin-dependent kinase 2 positive-feedback loop, normally generated by APC-Cdh1–mediated proteolysis of Skp2. Indeed, Cdh1 depletion increases Skp2 abundance while diminishing levels of the CKI p27. This lowers the level of cyclin E1 needed for S-phase entry and delays cyclin E1 proteolysis during S-phase progression while corresponding to slowed replication fork movement and reduced frequency of termination events. In summary, using both experimental and computational approaches, we show that APC-Cdh1 establishes a stimulus–response relationship that promotes S phase by ensuring that proper levels of p27 accumulate during G1 phase, and defects in its activation accelerate the timing of S-phase onset while prolonging its progression.
Collapse
Affiliation(s)
- Xi Yuan
- Department of Biology, Indiana University, Bloomington, IN 47405-7003 Biocomplexity Institute, Department of Physics, Indiana University, Bloomington, IN 47405-7003 Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN 47408-2671 Department of Statistics, Indiana University, Bloomington, IN 47408-3825
| | | | | | | | | |
Collapse
|
6
|
Dual phosphorylation of cdk1 coordinates cell proliferation with key developmental processes in Drosophila. Genetics 2013; 196:197-210. [PMID: 24214341 DOI: 10.1534/genetics.113.156281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild-type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2-phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the premitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1-Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2-phase cells are ready for mitosis.
Collapse
|
7
|
Gravells P, Tomita K, Booth A, Poznansky J, Porter AC. Chemical genetic analyses of quantitative changes in Cdk1 activity during the human cell cycle. Hum Mol Genet 2013; 22:2842-51. [DOI: 10.1093/hmg/ddt133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Parrillas V, Martínez-Muñoz L, Holgado BL, Kumar A, Cascio G, Lucas P, Rodríguez-Frade JM, Malumbres M, Carrera AC, van Wely KHM, Mellado M. Suppressor of cytokine signaling 1 blocks mitosis in human melanoma cells. Cell Mol Life Sci 2013; 70:545-58. [PMID: 23001011 PMCID: PMC11113299 DOI: 10.1007/s00018-012-1145-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 01/05/2023]
Abstract
Hypermethylation of SOCS genes is associated with many human cancers, suggesting a role as tumor suppressors. As adaptor molecules for ubiquitin ligases, SOCS proteins modulate turnover of numerous target proteins. Few SOCS targets identified so far have a direct role in cell cycle progression; the mechanism by which SOCS regulate the cell cycle thus remains largely unknown. Here we show that SOCS1 overexpression inhibits in vitro and in vivo expansion of human melanoma cells, and that SOCS1 associates specifically with Cdh1, triggering its degradation by the proteasome. Cells therefore show a G1/S transition defect, as well as a secondary blockade in mitosis and accumulation of cells in metaphase. SOCS1 expression correlated with a reduction in cyclin D/E levels and an increase in the tumor suppressor p19, as well as the CDK inhibitor p53, explaining the G1/S transition defect. As a result of Cdh1 degradation, SOCS1-expressing cells accumulated cyclin B1 and securin, as well as apparently inactive Cdc20, in mitosis. Levels of the late mitotic Cdh1 substrate Aurora A did not change. These observations comprise a hitherto unreported mechanism of SOCS1 tumor suppression, suggesting this molecule as a candidate for the design of new therapeutic strategies for human melanoma.
Collapse
Affiliation(s)
- Verónica Parrillas
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Laura Martínez-Muñoz
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Borja L. Holgado
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Amit Kumar
- PI3K Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
- Present Address: Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), 20139 Milan, Italy
| | - Graciela Cascio
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Lucas
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Ana C. Carrera
- PI3K Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Karel HM van Wely
- Genetic Instability Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, 28049 Madrid, Spain
| | - Mario Mellado
- Chemokines Group, Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|