1
|
Petruk G, Petrlova J, Samsudin F, Bond PJ, Schmidtchen A. Thrombin-derived C-terminal peptides bind and form aggregates with sulfated glycosaminoglycans. Heliyon 2024; 10:e35703. [PMID: 39229523 PMCID: PMC11369470 DOI: 10.1016/j.heliyon.2024.e35703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Glycosaminoglycans (GAGs) such as heparin and heparan sulfate (HS) play crucial roles in inflammation and wound healing, serving as regulators of growth factors and pro-inflammatory mediators. In this study, we investigated the influence of heparin/HS on thrombin proteolysis and its interaction with the generated 11 kDa thrombin-derived C-terminal peptides (TCPs). Employing various biochemical and biophysical methods, we demonstrated that 11 kDa TCPs aggregate in the presence of GAGs, including heparin, heparan sulfate, and chondroitin sulfate-B. Circular dichroism analysis demonstrated that 11 kDa TCPs, in the presence of GAGs, adopt a β-sheet structure, a finding supported by thioflavin T1 (ThT) fluorescence measurements and visualization of 11 kDa TCP-heparin complexes using transmission electron microscopy (TEM). Furthermore, our investigations revealed a stronger binding affinity between 11 kDa TCPs and GAGs with higher sulfate group contents. Congruently, in silico simulations showed that interactions between 11 kDa TCPs and heparin/HS are predominantly electrostatic in nature. Collectively, our study suggests that 11 kDa TCPs have the capacity to aggregate in the presence of GAGs, shedding light on their potential roles in inflammation and wound healing.
Collapse
Affiliation(s)
- Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22241, Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22241, Lund, Sweden
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06, Malmö, Sweden
| | - Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Peter J. Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, 22241, Lund, Sweden
- Dermatology, Skane University Hospital, 22185, Lund, Sweden
| |
Collapse
|
2
|
Koenekoop L, Åqvist J. Computational Analysis of Heat Capacity Effects in Protein-Ligand Binding. J Chem Theory Comput 2024; 20:5708-5716. [PMID: 38870420 PMCID: PMC11238534 DOI: 10.1021/acs.jctc.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat capacity effects in protein-ligand binding as measured by calorimetric experiments have recently attracted considerable attention, particularly in the field of enzyme inhibitor design. A significant negative heat capacity change upon ligand binding implies a marked temperature dependence of the binding enthalpy, which is of high relevance for attempts to optimize protein-ligand interactions. In this work, we address the question of how well such heat capacity changes can be predicted by computer simulations. We examine a series of human thrombin inhibitors that all bind with ΔCp values of about -0.4 kcal/mol/K and calculate heat capacity changes from plain molecular dynamics simulations of the bound and free states of the enzyme and ligand. The results show that accurate ΔCp estimates within a few tenths of a kcal/mol/K of the experimental values can be obtained with this approach. This allows us to address the structural and energetic origin of the negative heat capacity changes for the thrombin inhibitors, and it is found that conformational equilibria of the free ligands in solution make a major contribution to the observed effect.
Collapse
Affiliation(s)
- Lucien Koenekoop
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Johan Åqvist
- Department of Cell & Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Lu S, Tirloni L, Oliveira MB, Bosio CF, Nardone GA, Zhang Y, Hinnebusch BJ, Ribeiro JM, Andersen JF. Identification of a substrate-like cleavage-resistant thrombin inhibitor from the saliva of the flea Xenopsylla cheopis. J Biol Chem 2021; 297:101322. [PMID: 34688666 PMCID: PMC8573170 DOI: 10.1016/j.jbc.2021.101322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
The salivary glands of the flea Xenopsylla cheopis, a vector of the plague bacterium, Yersinia pestis, express proteins and peptides thought to target the hemostatic and inflammatory systems of its mammalian hosts. Past transcriptomic analyses of salivary gland tissue revealed the presence of two similar peptides (XC-42 and XC-43) having no extensive similarities to any other deposited sequences. Here we show that these peptides specifically inhibit coagulation of plasma and the amidolytic activity of α-thrombin. XC-43, the smaller of the two peptides, is a fast, tight-binding inhibitor of thrombin with a dissociation constant of less than 10 pM. XC-42 exhibits similar selectivity as well as kinetic and binding properties. The crystal structure of XC-43 in complex with thrombin shows that despite its substrate-like binding mode, XC-43 is not detectably cleaved by thrombin and that it interacts with the thrombin surface from the enzyme catalytic site through the fibrinogen-binding exosite I. The low rate of hydrolysis was verified in solution experiments with XC-43, which show the substrate to be largely intact after 2 h of incubation with thrombin at 37 °C. The low rate of XC-43 cleavage by thrombin may be attributable to specific changes in the catalytic triad observable in the crystal structure of the complex or to extensive interactions in the prime sites that may stabilize the binding of cleavage products. Based on the increased arterial occlusion time, tail bleeding time, and blood coagulation parameters in rat models of thrombosis XC-43 could be valuable as an anticoagulant.
Collapse
Affiliation(s)
- Stephen Lu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lucas Tirloni
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA; Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Markus Berger Oliveira
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Christopher F Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Glenn A Nardone
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yixiang Zhang
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - B Joseph Hinnebusch
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
6
|
Calisto BM, Ripoll-Rozada J, Dowman LJ, Franck C, Agten SM, Parker BL, Veloso RC, Vale N, Gomes P, de Sanctis D, Payne RJ, Pereira PJB. Sulfotyrosine-Mediated Recognition of Human Thrombin by a Tsetse Fly Anticoagulant Mimics Physiological Substrates. Cell Chem Biol 2020; 28:26-33.e8. [PMID: 33096052 DOI: 10.1016/j.chembiol.2020.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/22/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Despite possessing only 32 residues, the tsetse thrombin inhibitor (TTI) is among the most potent anticoagulants described, with sub-picomolar inhibitory activity against thrombin. Unexpectedly, TTI isolated from the fly is 2000-fold more active and 180 Da heavier than synthetic and recombinant variants. We predicted the presence of a tyrosine O-sulfate post-translational modification of TTI, prompting us to investigate the effect of the modification on anticoagulant activity. A combination of chemical synthesis and functional assays was used to reveal that sulfation significantly improved the inhibitory activity of TTI against thrombin. Using X-ray crystallography, we show that the N-terminal sulfated segment of TTI binds the basic exosite II of thrombin, establishing interactions similar to those of physiologic substrates, while the C-terminal segment abolishes the catalytic activity of thrombin. This non-canonical mode of inhibition, coupled with its potency and small size, makes TTI an attractive scaffold for the design of novel antithrombotics.
Collapse
Affiliation(s)
- Bárbara M Calisto
- ESRF - The European Synchrotron, Structural Biology Group, 38000 Grenoble, France; ALBA Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - Jorge Ripoll-Rozada
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Luke J Dowman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stijn M Agten
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rita Carvalho Veloso
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno Vale
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Daniele de Sanctis
- ESRF - The European Synchrotron, Structural Biology Group, 38000 Grenoble, France
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
7
|
Xiao J, Salsbury FR. Na +-binding modes involved in thrombin's allosteric response as revealed by molecular dynamics simulations, correlation networks and Markov modeling. Phys Chem Chem Phys 2019; 21:4320-4330. [PMID: 30724273 PMCID: PMC6993936 DOI: 10.1039/c8cp07293k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The monovalent sodium ion (Na+) is a critical modulator of thrombin. However, the mechanism of thrombin's activation by Na+ has been widely debated for more than twenty years. Details of the linkage between thrombin and Na+ remain vague due to limited temporal and spatial resolution in experiments. In this work, we combine microsecond scale atomic-detailed molecular dynamics simulations with correlation network analyses and hidden Markov modeling to probe the detailed thermodynamic and kinetic picture of Na+-binding events and their resulting allosteric responses in thrombin. We reveal that ASP189 and ALA190 comprise a stable Na+-binding site (referred as "inner" Na+-binding site) along with the previously known one (referred as "outer" Na+-binding site). The corresponding newly identified Na+-binding mode introduces significant allosteric responses in thrombin's regulatory regions by stabilizing selected torsion angles of residues responsive to Na+-binding. Our Markov model indicates that the bound Na+ prefers to transfer between the two Na+-binding sites when an unbinding event takes place. These results suggest a testable hypothesis of a substrate-driven Na+ migration (ΔG ∼ 1.7 kcal mol-1) from the "inner" Na+-binding site to the "outer" one during thrombin's catalytic activities. The binding of a Na+ ion at the "inner" Na+-binding site should be inferred as a prerequisite for thrombin's efficient recognition to the substrate, which opens a new angle for our understanding of Na+-binding's allosteric activation on thrombin and sheds light on detailed processes in thrombin's activation.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston Salem, NC, USA.
| | | |
Collapse
|
8
|
Oliva R, Del Vecchio P, Grimaldi A, Notomista E, Cafaro V, Pane K, Schuabb V, Winter R, Petraccone L. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation. Phys Chem Chem Phys 2019; 21:3989-3998. [PMID: 30706924 DOI: 10.1039/c8cp06280c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) are membrane-active peptides with a broad spectrum of activity against different pathogenic organisms and they represent promising new drugs to overcome the emergence of resistance to antibiotics in bacteria. (P)GKY20 is an antimicrobial peptide with a low hemolytic effect on eukaryotic cells and a strong antimicrobial activity especially against Gram-negative bacteria. However, its mechanism of action is still unknown. Here, we use fluorescence spectroscopy and differential scanning calorimetry combined with atomic force microscopy to characterise the binding of (P)GKY20 with model biomembranes and its effect on the membrane's microstructure and thermotropic properties. We found that (P)GKY20 selectively perturbs the bacterial-like membrane via a carpet-like mechanism employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. These results shed a first light on the action mechanism of (P)GKY20 and could represent an important contribution to the development of new peptides serving as antimicrobial agents.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Graham SE, Smith RD, Carlson HA. Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics. J Chem Inf Model 2018; 58:305-314. [PMID: 29286658 PMCID: PMC6190669 DOI: 10.1021/acs.jcim.7b00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.
Collapse
Affiliation(s)
- Sarah E. Graham
- Department of Biophysics, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| | - Richard D. Smith
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| | - Heather A. Carlson
- Department of Biophysics, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church St., Ann Arbor, Michigan, 48109-1065
| |
Collapse
|
10
|
Xiao J, Salsbury FR. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. J Biomol Struct Dyn 2017; 35:3354-3369. [PMID: 27794633 PMCID: PMC6876308 DOI: 10.1080/07391102.2016.1254682] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/21/2016] [Indexed: 01/11/2023]
Abstract
Thrombin is an attractive target for antithrombotic therapy due to its central role in thrombosis and hemostasis as well as its role in inducing tumor growth, metastasis, and tumor invasion. The thrombin-binding DNA aptamer (TBA), is under investigation for anticoagulant drugs. Although aptamer binding experiments have been revealed various effects on thrombin's enzymatic activities, the detailed picture of the thrombin's allostery from TBA binding is still unclear. To investigate thrombin's response to the aptamer-binding at the molecular level, we compare the mechanical properties and free energy landscapes of the free and aptamer-bound thrombin using microsecond-scale all-atom GPU-based molecular dynamics simulations. Our calculations on residue fluctuations and coupling illustrate the allosteric effects of aptamer-binding at the atomic level, highlighting the exosite II, 60s, γ and the sodium loops, and the alpha helix region in the light chains involved in the allosteric changes. This level of details clarifies the mechanisms of previous experimentally demonstrated phenomena, and provides a prediction of the reduced autolysis rate after aptamer-binding. The shifts in thrombin's ensemble of conformations and free energy surfaces after aptamer-binding demonstrate that the presence of bound-aptamer restricts the conformational freedom of thrombin suggesting that conformational selection, i.e. generalized allostery, is the dominant mechanism of thrombin-aptamer binding. The profound perturbation on thrombin's mechanical and thermodynamic properties due to the aptamer-binding, which was revealed comprehensively as a generalized allostery in this work, may be exploited in further drug discovery and development.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
11
|
Pirone L, Ripoll-Rozada J, Leone M, Ronca R, Lombardo F, Fiorentino G, Andersen JF, Pereira PJB, Arcà B, Pedone E. Functional analyses yield detailed insight into the mechanism of thrombin inhibition by the antihemostatic salivary protein cE5 from Anopheles gambiae. J Biol Chem 2017; 292:12632-12642. [PMID: 28592490 DOI: 10.1074/jbc.m117.788042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/23/2017] [Indexed: 11/06/2022] Open
Abstract
Saliva of blood-feeding arthropods carries several antihemostatic compounds whose physiological role is to facilitate successful acquisition of blood. The identification of novel natural anticoagulants and the understanding of their mechanism of action may offer opportunities for designing new antithrombotics disrupting blood clotting. We report here an in-depth structural and functional analysis of the anophelin family member cE5, a salivary protein from the major African malaria vector Anopheles gambiae that specifically, tightly, and quickly binds and inhibits thrombin. Using calorimetry, functional assays, and complementary structural techniques, we show that the central region of the protein, encompassing amino acids Asp-31-Arg-62, is the region mainly responsible for α-thrombin binding and inhibition. As previously reported for the Anopheles albimanus orthologue anophelin, cE5 binds both thrombin exosite I with segment Glu-35-Asp-47 and the catalytic site with the region Pro-49-Arg-56, which includes the highly conserved DPGR tetrapeptide. Moreover, the N-terminal Ala-1-Ser-30 region of cE5 (which includes an RGD tripeptide) and the additional C-terminal serine-rich Asn-63-Glu-82 region (absent in orthologues from anophelines of the New World species A. albimanus and Anopheles darlingi) also played some functionally relevant role. Indeed, we observed decreased thrombin binding and inhibitory properties even when using the central cE5 fragment (Asp-31-Arg-62) alone. In summary, these results shed additional light on the mechanism of thrombin binding and inhibition by this family of salivary anticoagulants from anopheline mosquitoes.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Jorge Ripoll-Rozada
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy
| | - Raffaele Ronca
- Department of Biology, Universita' degli Studi di Napoli Federico II, Via Cinthia, 80126 Naples, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Gabriella Fiorentino
- Department of Biology, Universita' degli Studi di Napoli Federico II, Via Cinthia, 80126 Naples, Italy
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland 20852
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council, Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
12
|
Bufadienolides from Kalanchoe daigremontiana as thrombin inhibitors— In vitro and in silico study. Int J Biol Macromol 2017; 99:141-150. [DOI: 10.1016/j.ijbiomac.2017.02.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/03/2017] [Indexed: 11/22/2022]
|
13
|
Tyrosine sulfation modulates activity of tick-derived thrombin inhibitors. Nat Chem 2017; 9:909-917. [DOI: 10.1038/nchem.2744] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/02/2017] [Indexed: 01/05/2023]
|
14
|
Dabigatran and Argatroban Diametrically Modulate Thrombin Exosite Function. PLoS One 2016; 11:e0157471. [PMID: 27305147 PMCID: PMC4909201 DOI: 10.1371/journal.pone.0157471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/31/2016] [Indexed: 11/23/2022] Open
Abstract
Thrombin is a highly plastic molecule whose activity and specificity are regulated by exosites 1 and 2, positively-charged domains that flank the active site. Exosite binding by substrates and cofactors regulates thrombin activity by localizing thrombin, guiding substrates, and by inducing allosteric changes at the active site. Although inter-exosite and exosite-to-active-site allostery have been demonstrated, the impact of active site ligation on exosite function has not been examined. To address this gap, we used surface plasmon resonance to determine the effects of dabigatran and argatroban, active site-directed inhibitors, on thrombin binding to immobilized γA/γA-fibrin or glycoprotein Ibα peptide via exosite 1 and 2, respectively, and thrombin binding to γA/γ′-fibrin or factor Va, which is mediated by both exosites. Whereas dabigatran attenuated binding, argatroban increased thrombin binding to γA/γA- and γA/γ′-fibrin and to factor Va. The results with immobilized fibrin were confirmed by examining the binding of radiolabeled thrombin to fibrin clots. Thus, dabigatran modestly accelerated the dissociation of thrombin from γA/γA-fibrin clots, whereas argatroban attenuated dissociation. Dabigatran had no effect on thrombin binding to glycoprotein Ibα peptide, whereas argatroban promoted binding. These findings not only highlight functional effects of thrombin allostery, but also suggest that individual active site-directed thrombin inhibitors uniquely modulate exosite function, thereby identifying potential novel mechanisms of action.
Collapse
|
15
|
Babinska A, Clement CC, Swiatkowska M, Szymanski J, Shon A, Ehrlich YH, Kornecki E, Salifu MO. Development of new antiatherosclerotic and antithrombotic drugs utilizing F11 receptor (F11R/JAM-A) peptides. Biopolymers 2016; 102:322-34. [PMID: 24801754 DOI: 10.1002/bip.22503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/01/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
Abstract
Peptides with enhanced resistance to proteolysis, based on the amino acid sequence of the F11 receptor molecule (F11R, aka JAM-A/Junctional adhesion molecule-A), were designed, prepared, and examined as potential candidates for the development of anti-atherosclerotic and anti-thrombotic therapeutic drugs. A sequence at the N-terminal of F11R together with another sequence located in the first Ig-loop of this protein, were identified to form a steric active-site operating in the F11R-dependent adhesion between cells that express F11R molecules on their external surface. In silico modeling of the complex between two polypeptide chains with the sequences positioned in the active-site was used to generate peptide-candidates designed to inhibit homophilic interactions between surface-located F11R molecules. The two lead F11R peptides were modified with D-Arg and D-Lys at selective sites, for attaining higher stability to proteolysis in vivo. Using molecular docking experiments we tested different conformational states and the putative binding affinity between two selected D-Arg and D-Lys-modified F11R peptides and the proposed binding pocket. The inhibitory effects of the F11R peptide 2HN-(dK)-SVT-(dR)-EDTGTYTC-CONH2 on antibody-induced platelet aggregation and on the adhesion of platelets to cytokine-inflammed endothelial cells are reported in detail, and the results point out the significant potential utilization of F11R peptides for the prevention and treatment of atherosclerotic plaques and associated thrombotic events.
Collapse
Affiliation(s)
- A Babinska
- Division of Nephrology, Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, 11203; Department of Cell Biology and Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, 11203
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wiencek JR, Hirbawi J, Yee VC, Kalafatis M. The Dual Regulatory Role of Amino Acids Leu480 and Gln481 of Prothrombin. J Biol Chem 2016; 291:1565-1581. [PMID: 26601957 DOI: 10.1074/jbc.m115.691956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473-487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser(478)-Val(479)-Leu(480)-Gln(481)-Val(482). Single, double, and triple point mutations within this stretch of rFII allowed for the identification of Leu(480) and Gln(481) as the two essential amino acids responsible for the enhanced activation of FII by prothrombinase. Unanticipated results demonstrated that although recombinant wild type α-thrombin and rIIa(S478A) were able to induce clotting and activate factor V and factor VIII with rates similar to the plasma-derived molecule, rIIa(SLQ→AAA) with mutations S478A/L480A/Q481A was deficient in clotting activity and unable to efficiently activate the pro-cofactors. This molecule was also impaired in protein C activation. Similar results were obtained with rIIa(ΔSLQ) (where rIIa(ΔSLQ) is recombinant human α-thrombin with amino acids Ser(478)/Leu(480)/Gln(481) deleted). These data provide new evidence demonstrating that amino acid sequence Leu(480)-Gln(481): 1) is crucial for proper recognition of the fVa-dependent site(s) for fXa within prothrombinase on FII, required for efficient initial cleavage of FII at Arg(320); and 2) is compulsory for appropriate tethering of fV, fVIII, and protein C required for their timely activation by IIa.
Collapse
Affiliation(s)
- Joesph R Wiencek
- From the Department of Chemistry and; Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115
| | - Jamila Hirbawi
- From the Department of Chemistry and; Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115
| | - Vivien C Yee
- the Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Michael Kalafatis
- From the Department of Chemistry and; Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115,; the Department of Molecular Cardiology, Lerner Research Institute, and; Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
17
|
Towse CL, Hopping G, Vulovic I, Daggett V. Nature versus design: the conformational propensities of D-amino acids and the importance of side chain chirality. Protein Eng Des Sel 2014; 27:447-55. [PMID: 25233851 PMCID: PMC4204638 DOI: 10.1093/protein/gzu037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 11/12/2022] Open
Abstract
D-amino acids are useful building blocks for de novo peptide design and they play a role in aging-related diseases associated with gradual protein racemization. For amino acids with achiral side chains, one should be able to presume that the conformational propensities of L- and D-amino acids are a reflection of one another due to the straightforward geometric inversion at the Cα atom. However, this presumption does not account for the directionality of the backbone dipole and the inverted propensities have never been definitively confirmed in this context. Furthermore, there is little known of how alternative side chain chirality affects the backbone conformations of isoleucine and threonine. Using a GGXGG host-guest pentapeptide system, we have completed exhaustive sampling of the conformational propensities of the D-amino acids, including D-allo-isoleucine and D-allo-threonine, using atomistic molecular dynamics simulations. Comparison of these simulations with the same systems hosting the cognate L-amino acids verifies that the intrinsic backbone conformational propensities of the D-amino acids are the inverse of their cognate L-enantiomers. Where amino acids have a chiral center in their side chain (Thr, Ile) the β-configuration affects the backbone sampling, which in turn can confer different biological properties.
Collapse
Affiliation(s)
- Clare-Louise Towse
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | - Gene Hopping
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | - Ivan Vulovic
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| |
Collapse
|
18
|
Freitas SC, Maia S, Figueiredo AC, Gomes P, Pereira PJ, Barbosa MA, Martins MCL. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomater 2014; 10:1227-37. [PMID: 24316365 DOI: 10.1016/j.actbio.2013.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022]
Abstract
Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to coagulation, which is explained by its capacity to adsorb albumin in a selective and reversible way. This work opens new perspectives to the improvement of the haemocompatibility of blood-contacting medical devices.
Collapse
|
19
|
Forneris F, Burnley BT, Gros P. Ensemble refinement shows conformational flexibility in crystal structures of human complement factor D. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:733-43. [PMID: 24598742 PMCID: PMC3949522 DOI: 10.1107/s1399004713032549] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 11/16/2022]
Abstract
Human factor D (FD) is a self-inhibited thrombin-like serine proteinase that is critical for amplification of the complement immune response. FD is activated by its substrate through interactions outside the active site. The substrate-binding, or `exosite', region displays a well defined and rigid conformation in FD. In contrast, remarkable flexibility is observed in thrombin and related proteinases, in which Na(+) and ligand binding is implied in allosteric regulation of enzymatic activity through protein dynamics. Here, ensemble refinement (ER) of FD and thrombin crystal structures is used to evaluate structure and dynamics simultaneously. A comparison with previously published NMR data for thrombin supports the ER analysis. The R202A FD variant has enhanced activity towards artificial peptides and simultaneously displays active and inactive conformations of the active site. ER revealed pronounced disorder in the exosite loops for this FD variant, reminiscent of thrombin in the absence of the stabilizing Na(+) ion. These data indicate that FD exhibits conformational dynamics like thrombin, but unlike in thrombin a mechanism has evolved in FD that locks the unbound native state into an ordered inactive conformation via the self-inhibitory loop. Thus, ensemble refinement of X-ray crystal structures may represent an approach alternative to spectroscopy to explore protein dynamics in atomic detail.
Collapse
Affiliation(s)
- Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - B. Tom Burnley
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Pica A, Russo Krauss I, Merlino A, Nagatoishi S, Sugimoto N, Sica F. Dissecting the contribution of thrombin exosite I in the recognition of thrombin binding aptamer. FEBS J 2013; 280:6581-8. [PMID: 24128303 DOI: 10.1111/febs.12561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/30/2013] [Accepted: 10/03/2013] [Indexed: 11/29/2022]
Abstract
Thrombin plays a pivotal role in the coagulation cascade; therefore, it represents a primary target in the treatment of several blood diseases. The 15-mer DNA oligonucleotide 5'-GGTTGGTGTGGTTGG-3', known as thrombin binding aptamer (TBA), is a highly potent inhibitor of the enzyme. TBA folds as an antiparallel chair-like G-quadruplex structure, with two G-tetrads surrounded by two TT loops on one side and a TGT loop on the opposite side. Previous crystallographic studies have shown that TBA binds thrombin exosite I by its TT loops, T3T4 and T12T13. In order to get a better understanding of the thrombin-TBA interaction, we have undertaken a crystallographic characterization of the complexes between thrombin and two TBA mutants, TBAΔT3 and TBAΔT12, which lack the nucleobase of T3 and T12, respectively. The structural details of the two complexes show that exosite I is actually split into two regions, which contribute differently to TBA recognition. These results provide the basis for a more rational design of new aptamers with improved therapeutic action.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Figueiredo AC, de Sanctis D, Pereira PJB. The tick-derived anticoagulant madanin is processed by thrombin and factor Xa. PLoS One 2013; 8:e71866. [PMID: 23951260 PMCID: PMC3741208 DOI: 10.1371/journal.pone.0071866] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/10/2013] [Indexed: 01/20/2023] Open
Abstract
The cysteine-less peptidic anticoagulants madanin-1 and madanin-2 from the bush tick Haemaphysalis longicornis are the founding members of the MEROPS inhibitor family I53. It has been previously suggested that madanins exert their functional activity by competing with physiological substrates for binding to the positively charged exosite I (fibrinogen-binding exosite) of α-thrombin. We hereby demonstrate that competitive inhibition of α-thrombin by madanin-1 or madanin-2 involves binding to the enzyme's active site. Moreover, the blood coagulation factors IIa and Xa are shown to hydrolyze both inhibitors at different, although partially overlapping cleavage sites. Finally, the three-dimensional structure of the complex formed between human α-thrombin and a proteolytic fragment of madanin-1, determined by X-ray crystallography, elucidates the molecular details of madanin-1 recognition and processing by the proteinase. Taken together, the current findings establish the mechanism of action of madanins, natural anticoagulants that behave as cleavable competitive inhibitors of thrombin.
Collapse
Affiliation(s)
- Ana C. Figueiredo
- IBMC – Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Daniele de Sanctis
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | |
Collapse
|
22
|
Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc Natl Acad Sci U S A 2012; 109:E3649-58. [PMID: 23223529 DOI: 10.1073/pnas.1211614109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anopheles mosquitoes are vectors of malaria, a potentially fatal blood disease affecting half a billion humans worldwide. These blood-feeding insects include in their antihemostatic arsenal a potent thrombin inhibitor, the flexible and cysteine-less anophelin. Here, we present a thorough structure-and-function analysis of thrombin inhibition by anophelin, including the 2.3-Å crystal structure of the human thrombin·anophelin complex. Anophelin residues 32-61 are well-defined by electron density, completely occupying the long cleft between the active site and exosite I. However, in striking contrast to substrates, the D50-R53 anophelin tetrapeptide occupies the active site cleft of the enzyme, whereas the upstream residues A35-P45 shield the regulatory exosite I, defining a unique reverse-binding mode of an inhibitor to the target proteinase. The extensive interactions established, the disruption of thrombin's active site charge-relay system, and the insertion of residue R53 into the proteinase S(1) pocket in an orientation opposed to productive substrates explain anophelin's remarkable specificity and resistance to proteolysis by thrombin. Complementary biophysical and functional characterization of point mutants and truncated versions of anophelin unambiguously establish the molecular mechanism of action of this family of serine proteinase inhibitors (I77). These findings have implications for the design of novel antithrombotics.
Collapse
|