1
|
Sultana M, Tayyab M, Parveen S, Hussain M, Shafique L. Genetic characterization, structural analysis, and detection of positive selection in small heat shock proteins of Cypriniformes and Clupeiformes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:843-864. [PMID: 38587724 DOI: 10.1007/s10695-024-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
In the current investigation, a total of 42 full-length, non-redundant small heat shock proteins (sHsp) were detected in Cyprinus carpio, Labeo rohita, Danio rerio, Salmo salar, Oncorhynchus mykiss, and Clupea harengus. The sHsp genes were classified into three groups based on phylogenetic analysis. All the sHsps were shown to have higher aliphatic index values, which is an indication that these proteins are more thermally stable. The hydrophilic nature of sHsps was deduced from the fact that all fish species had negative GRAVY scores. In all of the representative fish species, sHsp genes were assigned to distinct chromosomes in an inconsistent and unequal manner. Segmental duplications are the main events that have contributed to the expansion of the sHsp genes in all species. We were also able to determine the selective pressure that was placed on particular codons and discovered several significant coding sites within the coding region of sHsps. Eventually, diversifying positive selection was found to be connected with evolutionary changes in sHsp proteins, which showed that gene evolution controlled the fish adaption event in response to environmental conditions. Clarification of the links between sHsps and environmental stress in fish will be achieved through rigorous genomic comparison, which will also yield substantial new insights.
Collapse
Affiliation(s)
- Mehwish Sultana
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Tayyab
- Department of Zoology, Wildlife & Fisheries, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Shakeela Parveen
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, 63100, Punjab, Pakistan.
- Department of Zoology, Wildlife & Fisheries, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Hussain
- Department of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Laiba Shafique
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Guangxi, 535011, People's Republic of China.
| |
Collapse
|
2
|
Fangrui L, Jiaoli Z, Schunter C, Lin W, Yongzheng T, Zhiqiang H, Bin K. How Oratosquilla oratoria compound eye response to the polarization of light: In the perspective of vision genes and related proteins. Int J Biol Macromol 2024; 259:129053. [PMID: 38161015 DOI: 10.1016/j.ijbiomac.2023.129053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The special rhabdom structure of the mid-band ommatidium in compound eye contributes to the mantis shrimp being the only animal species known to science that can recognize circularly polarized light (CPL). Although the number of mid-band ommatidium of Oratosquilla oratoria is reduced, the mid-band ommatidium still has orthogonal geometric interleaved rhabdom and short oval distal rhabdom, which may mean that the O. oratoria has weakened circular polarized light vision (CPLV). Here we explored the molecular mechanisms of how O. oratoria response to the polarization of light. Based on the specific expression patterns of vision-related functional genes and proteins, we suggest that the order of light response by O. oratoria compound eye was first natural light, then left-circularly polarized light (LCPL), linearly polarized light, right-circularly polarized light (RCPL) and dark. Meanwhile, we found that the expression levels of vision-related functional genes and proteins in O. oratoria compound eye under RCPL were not significantly different from those in DL, which may imply that O. oratoria cannot respond to RCPL. Furthermore, the response of LCPL is likely facilitated by the differential expression of opsin and microvilli - related functional genes and proteins (arrestin and sodium-coupled neutral amino acid transporter). In conclusion, this study systematically illustrated for the first time how O. oratoria compound eye response to the polarization of light at the genetic level, and it can improve the visual ecological theory behind polarized light vision evolution.
Collapse
Affiliation(s)
- Lou Fangrui
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Zhou Jiaoli
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong Hong Kong SAR, China
| | - Wang Lin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Tang Yongzheng
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Han Zhiqiang
- Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Kang Bin
- Fisheries College, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
3
|
Kumar PV, Rasal KD, Acharya A, Dey D, Sonwane AA, Reang D, Rajeshkannan R, Pawar SS, Kurade NP, Bhendarkar MP, Krishnani KK, Nagpure NS, Brahmane MP. Muscle Transcriptome Sequencing Revealed Thermal Stress-Responsive Regulatory Genes in Farmed Rohu, Labeo rohita (Hamilton, 1822). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1057-1075. [PMID: 37878212 DOI: 10.1007/s10126-023-10259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Rohu, Labeo rohita, is one of the most important aquaculture species in the Indian subcontinent. Understanding the molecular-level physiological responses to thermal stress or climate change is essential. In the present work, transcriptome sequencing was carried out in the muscle tissue of the rohu in response to heat stress (35 °C) in comparison with the control (28 °C). A total of 125 Gb of sequence data was generated, and the raw-reads were filtered and trimmed, which resulted in 484 million quality reads. Reference-based assembly of reads was performed using L. rohita genome, and a total of 90.17% of reads were successfully mapped. A total of 37,462 contigs were assembled with an N50 value of 1854. The differential expression analysis revealed a total of 107 differentially expressed genes (DEGs) (15 up-, 37 down-, and 55 neutrally regulated) as compared to the control group (Log2FC > 2, P < 0.05). Gene enrichment analysis of DEGs indicates that transcripts were associated with molecular, biological, and cellular activities. The randomly selected differentially expressed transcripts were validated by RT-qPCR and found consistent expression patterns in line with the RNA-seq data. Several transcripts such as SERPINE1(HSP47), HSP70, HSP90alpha, Rano class II histocompatibility A beta, PGC-1 and ERR-induced regulator, proto-oncogene c-Fos, myozenin2, alpha-crystallin B chain-like protein, angiopoietin-like protein 8, and acetyl-CoA carboxylases have been identified in muscle tissue of rohu that are associated with stress/immunity. This study identified the key biomarker SERPINE1 (HSP47), which showed significant upregulation (~ 2- to threefold) in muscle tissue of rohu exposed to high temperature. This study can pave a path for the identification of stress-responsive biomarkers linked with thermal adaptations in the farmed carps.
Collapse
Affiliation(s)
- Pokanti Vinay Kumar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Diganta Dey
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Arvind A Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Dhalongsaih Reang
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - R Rajeshkannan
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Sachin S Pawar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Nitin P Kurade
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Mukesh P Bhendarkar
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Kishore K Krishnani
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Naresh S Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj P Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
- School of Atmospheric Stress Management, ICAR - National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| |
Collapse
|
4
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Sprague-Piercy MA, Rocha MA, Kwok AO, Martin RW. α-Crystallins in the Vertebrate Eye Lens: Complex Oligomers and Molecular Chaperones. Annu Rev Phys Chem 2021; 72:143-163. [PMID: 33321054 PMCID: PMC8062273 DOI: 10.1146/annurev-physchem-090419-121428] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-Crystallins are small heat-shock proteins that act as holdase chaperones. In humans, αA-crystallin is expressed only in the eye lens, while αB-crystallin is found in many tissues. α-Crystallins have a central domain flanked by flexible extensions and form dynamic, heterogeneous oligomers. Structural models show that both the C- and N-terminal extensions are important for controlling oligomerization through domain swapping. α-Crystallin prevents aggregation of damaged β- and γ-crystallins by binding to the client protein using a variety of binding modes. α-Crystallin chaperone activity can be compromised by mutation or posttranslational modifications, leading to protein aggregation and cataract. Because of their high solubility and their ability to form large, functional oligomers, α-crystallins are particularly amenable to structure determination by solid-state nuclear magnetic resonance (NMR) and solution NMR, as well as cryo-electron microscopy.
Collapse
Affiliation(s)
- Marc A Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
| | - Megan A Rocha
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ashley O Kwok
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA;
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
6
|
Wang JD, Qu CT, Song SF. Temperature-induced changes in the proteome of Pseudomonas aeruginosa during petroleum hydrocarbon degradation. Arch Microbiol 2021; 203:2463-2473. [PMID: 33677632 DOI: 10.1007/s00203-021-02211-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Petroleum hydrocarbon contaminants, which are among the most serious pollutants in the petroleum industry, can be degraded sufficiently by Pseudomonas aeruginosa. However, temperature-induced stress will severely inhibit this biodegradation. In this study, the proteome of P. aeruginosa P6 at 25 °C, 43 °C and 37 °C was used to examine the impact of temperature on the molecular mechanism of biodegradation of petroleum hydrocarbon by P. aeruginosa P6. Differentially expressed proteins were identified by iTRAQ technology, and the functions of these proteins were identified by bioinformatic analysis. The impact of 25 °C and 43 °C on cellular processes has also been discussed. The results showed that the expression of proteins in chemotaxis toward petroleum hydrocarbons, terminal oxidation of aromatic rings in petroleum hydrocarbons and trans-membrane transport of fatty acids and nutriments were clearly inhibited under 25 °C condition. The expression of proteins in chemotaxis, emulsification, adhesion and terminal oxidation of petroleum hydrocarbons; catalysis of fatty alcohols and fatty aldehydes; trans-membrane transport of nutriments and β-oxidation were clearly inhibited under 43 °C condition.
Collapse
Affiliation(s)
- Jun-Di Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, People's Republic of China. .,School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China. .,Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, People's Republic of China. .,State Key Laboratory of Petroleum and Petrochemical Pollution Control and Treatment, Beijing, 102206, People's Republic of China.
| | - Cheng-Tun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, People's Republic of China.,State Key Laboratory of Petroleum and Petrochemical Pollution Control and Treatment, Beijing, 102206, People's Republic of China
| | - Shao-Fu Song
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, People's Republic of China.,Shaanxi Key Laboratory of Environmental Pollution Control Technology and Reservoir Protection of Oilfield, Xi'an Shiyou University, Xi'an, 710065, People's Republic of China.,State Key Laboratory of Petroleum and Petrochemical Pollution Control and Treatment, Beijing, 102206, People's Republic of China
| |
Collapse
|
7
|
Park JC, Kim DH, Lee Y, Lee MC, Kim TK, Yim JH, Lee JS. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100749. [PMID: 33065474 DOI: 10.1016/j.cbd.2020.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/07/2023]
Abstract
Heat shock proteins (Hsp) are class of conserved and ubiquitous stress proteins present in all living organisms from primitive to higher level. Various studies have demonstrated multiple cellular functions of Hsp in living organisms as an important biomarker in response to abiotic and biotic stressors including temperature, salinity, pH, hypoxia, environmental pollutants, and pathogens. However, full understanding on the mechanism and pathway involved in the induction of Hsp still remains challenging, especially in aquatic invertebrates. In this study, the entire Hsp family and subfamily members in the marine rotifers Brachionus spp., one of the cosmopolitan ecotoxicological model organisms, have been genome-widely identified. In Brachionus spp. Hsp family was comprised of Hsp10, small hsp (sHsp), Hsp40, Hsp60, Hsp70/105, and Hsp90, with highest number of genes found within Hsp40 DnaJ homolog subfamily C members. Also, the differences in the orientation of the conserved motifs within Hsp family may have induced differences in transcriptional gene modulation in response to thermal stress in Brachionus koreanus. Overall, Hsp family-specific domains were highly conserved in all three Brachionus spp., relative to Homo sapiens and across other animal taxa and these findings will be helpful for future ecotoxicological studies focusing on Hsps.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoseop Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Tai Kyoung Kim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Joung Han Yim
- Division of Polar Life Science, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
8
|
Janowska MK, Baughman HER, Woods CN, Klevit RE. Mechanisms of Small Heat Shock Proteins. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034025. [PMID: 30833458 DOI: 10.1101/cshperspect.a034025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Hannah E R Baughman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
9
|
Posner M, Murray KL, McDonald MS, Eighinger H, Andrew B, Drossman A, Haley Z, Nussbaum J, David LL, Lampi KJ. The zebrafish as a model system for analyzing mammalian and native α-crystallin promoter function. PeerJ 2017; 5:e4093. [PMID: 29201567 PMCID: PMC5708185 DOI: 10.7717/peerj.4093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/04/2017] [Indexed: 12/24/2022] Open
Abstract
Previous studies have used the zebrafish to investigate the biology of lens crystallin proteins and their roles in development and disease. However, little is known about zebrafish α-crystallin promoter function, how it compares to that of mammals, or whether mammalian α-crystallin promoter activity can be assessed using zebrafish embryos. We injected a variety of α-crystallin promoter fragments from each species combined with the coding sequence for green fluorescent protein (GFP) into zebrafish zygotes to determine the resulting spatiotemporal expression patterns in the developing embryo. We also measured mRNA levels and protein abundance for all three zebrafish α-crystallins. Our data showed that mouse and zebrafish αA-crystallin promoters generated similar GFP expression in the lens, but with earlier onset when using mouse promoters. Expression was also found in notochord and skeletal muscle in a smaller percentage of embryos. Mouse αB-crystallin promoter fragments drove GFP expression primarily in zebrafish skeletal muscle, with less common expression in notochord, lens, heart and in extraocular regions of the eye. A short fragment containing only a lens-specific enhancer region increased lens and notochord GFP expression while decreasing muscle expression, suggesting that the influence of mouse promoter control regions carries over into zebrafish embryos. The two paralogous zebrafish αB-crystallin promoters produced subtly different expression profiles, with the aBa promoter driving expression equally in notochord and skeletal muscle while the αBb promoter resulted primarily in skeletal muscle expression. Messenger RNA for zebrafish αA increased between 1 and 2 days post fertilization (dpf), αBa increased between 4 and 5 dpf, but αBb remained at baseline levels through 5 dpf. Parallel reaction monitoring (PRM) mass spectrometry was used to detect αA, aBa, and αBb peptides in digests of zebrafish embryos. In whole embryos, αA-crystallin was first detected by 2 dpf, peaked in abundance by 4–5 dpf, and was localized to the eye. αBa was detected in whole embryo at nearly constant levels from 1–6 dpf, was also localized primarily to the eye, and its abundance in extraocular tissues decreased from 4–7 dpf. In contrast, due to its low abundance, no αBb protein could be detected in whole embryo, or dissected eye and extraocular tissues. Our results show that mammalian α-crystallin promoters can be efficiently screened in zebrafish embryos and that their controlling regions are well conserved. An ontogenetic shift in zebrafish aBa-crystallin promoter activity provides an interesting system for examining the evolution and control of tissue specificity. Future studies that combine these promoter based approaches with the expanding ability to engineer the zebrafish genome via techniques such as CRISPR/Cas9 will allow the manipulation of protein expression to test hypotheses about lens crystallin function and its relation to lens biology and disease.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Kelly L Murray
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Matthew S McDonald
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Hayden Eighinger
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Brandon Andrew
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Amy Drossman
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Zachary Haley
- Department of Biology/Toxicology, Ashland University, Ashland, OH, United States of America
| | - Justin Nussbaum
- Department of Biology, Lakeland Community College, Kirtland, OH, United States of America
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kirsten J Lampi
- Department of Integrative Biosciences, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
10
|
Voulgaridou GP, Tsochantaridis I, Mantso T, Franco R, Panayiotidis MI, Pappa A. Human aldehyde dehydrogenase 3A1 (ALDH3A1) exhibits chaperone-like function. Int J Biochem Cell Biol 2017; 89:16-24. [PMID: 28526614 DOI: 10.1016/j.biocel.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is a metabolic enzyme that catalyzes the oxidation of various aldehydes. Certain types of epithelial tissues in mammals, especially those continually exposed to environmental stress (e.g., corneal epithelium), express ALDH3A1 at high levels and its abundance in such tissues is perceived to help to maintain cellular homeostasis under conditions of oxidative stress. Metabolic as well as non-metabolic roles for ALDH3A1 have been associated with its mediated resistance to cellular oxidative stress. In this study, we provide evidence that ALDH3A1 exhibits molecular chaperone-like activity further supporting its multifunctional role. Specifically, we expressed and purified the human ALDH3A1 in E. coli and used the recombinant protein to investigate its in vitro ability to protect SmaI and citrate synthase (from precipitation and/or deactivation) under thermal stress conditions. Our results indicate that recombinant ALDH3A1 exhibits significant chaperone function in vitro. Furthermore, over-expression of the fused histidine-tagged ALDH3A1 confers host E. coli cells with enhanced resistance to thermal shock, while ALDH3A1 over-expression in the human corneal cell line HCE-2 was sufficient for protecting them from the cytotoxic effects of both hydrogen peroxide and tert-butyl hydroperoxide. These results further support the chaperone-like function of human ALDH3A1. Taken together, ALDH3A1, in addition to its primary metabolic role in fundamental cellular detoxification processes, appears to play an essential role in protecting cellular proteins against aggregation under stress conditions.
Collapse
Affiliation(s)
- Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece
| | - Theodora Mantso
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece; Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, Dragana, Alexandroupolis 68100, Greece.
| |
Collapse
|
11
|
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 2015; 427:1537-48. [PMID: 25681016 DOI: 10.1016/j.jmb.2015.02.002] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany.
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Science Laboratories, N329 240 Thatcher Road, Amherst, MA 01003-9364, USA.
| |
Collapse
|
12
|
|
13
|
Kingsley CN, Bierma JC, Pham V, Martin RW. γS-crystallin proteins from the Antarctic nototheniid toothfish: a model system for investigating differential resistance to chemical and thermal denaturation. J Phys Chem B 2014; 118:13544-53. [PMID: 25372016 PMCID: PMC4254003 DOI: 10.1021/jp509134d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The γS1- and γS2-crystallins,
structural eye lens proteins
from the Antarctic toothfish (Dissostichus mawsoni), are homologues of the human lens protein γS-crystallin.
Although γS1 has the higher thermal stability of the two, it
is more susceptible to chemical denaturation by urea. The lower thermodynamic
stability of both toothfish crystallins relative to human γS-crystallin
is consistent with the current picture of how proteins from organisms
endemic to perennially cold environments have achieved low-temperature
functionality via greater structural flexibility. In some respects,
the sequences of γS1- and γS2-crystallin are typical of
psychrophilic proteins; however, their amino acid compositions also
reflect their selection for a high refractive index increment. Like
their counterparts in the human lens and those of mesophilic fish,
both toothfish crystallins are relatively enriched in aromatic residues
and methionine and exiguous in aliphatic residues. The sometimes contradictory
requirements of selection for cold tolerance and high refractive index
make the toothfish crystallins an excellent model system for further
investigation of the biophysical properties of structural proteins.
Collapse
Affiliation(s)
- Carolyn N Kingsley
- Department of Chemistry, University of California-Irvine , 1102 Natural Sciences 2, Irvine, California, 92697-2025, United States
| | | | | | | |
Collapse
|
14
|
Wang W, Hui JHL, Chan TF, Chu KH. De novo transcriptome sequencing of the snail Echinolittorina malaccana: identification of genes responsive to thermal stress and development of genetic markers for population studies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:547-559. [PMID: 24825364 DOI: 10.1007/s10126-014-9573-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Echinolittorina snails inhabit the upper intertidal rocky shore and face strong selection pressures from thermal extremes and fluctuations. Revealing the molecular processes of adaptive significance is greatly obstructed by the scarcity of genomic resource for these taxa. Here, we reported the first comprehensive transcriptome dataset for the genus Echinolittorina. Using Illumina HiSeq 2000 platform, about 52 M and 54 M paired-end clean reads were, respectively, generated for the control and heat-stressed libraries. Totally, 115,211 unique transcript fragments (unigenes) were assembled, with an average length of 453 bp and a N50 size of 492 bp. Approximately one third of the unigenes could be annotated according to their homology matches against the Nr, Swiss-Prot, COG, or KEGG databases, and they were found to represent 23,098 non-redundant genes. Gene expression comparison revealed that 1,267 and 6,663 annotated genes were, respectively, up- and downregulated with at least twofold changes upon heat stress. Gene Ontology and KEGG pathway analyses indicated that there were overrepresented amount of genes enriched in a broad spectrum of biological processes and pathways, including those associated with cytoskeleton organization, developmental regulation, signaling transduction, infection, and cardiac function. In addition, a transcriptome-wide search for polymorphic loci yielded a total of 11,228 simple sequence repeats (SSRs) from 9,938 unigenes and 138,631 single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites among 22,770 unigenes. The large number of transcript sequences acquired, the biological pathways identified, and the candidate microsatellite and SNP/INDEL loci discovered in the study will serve as valuable resources for further investigations of genetic differentiation and thermal adaptation among populations.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong,
| | | | | | | |
Collapse
|
15
|
Posner M, Skiba J, Brown M, Liang JO, Nussbaum J, Prior H. Loss of the small heat shock protein αA-crystallin does not lead to detectable defects in early zebrafish lens development. Exp Eye Res 2013; 116:227-33. [PMID: 24076322 DOI: 10.1016/j.exer.2013.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022]
Abstract
Alpha crystallins are small heat shock proteins essential to normal ocular lens function. They also help maintain homeostasis in many non-ocular vertebrate tissues and their expression levels change in multiple diseases of the nervous and cardiovascular system and during cancer. The specific roles that α-crystallins may play in eye development are unclear. Studies with knockout mice suggested that only one of the two mammalian α-crystallins is required for normal early lens development. However, studies in two fish species suggested that reduction of αA-crystallin alone could inhibit normal fiber cell differentiation, cause cataract and contribute to lens degeneration. In this study we used synthetic antisense morpholino oligomers to suppress the expression of zebrafish αA-crystallin to directly test the hypothesis that, unlike mammals, the zebrafish requires αA-crystallin for normal early lens development. Despite the reduction of zebrafish αA-crystallin protein to undetectable levels by western analysis through 4 days of development we found no changes in fiber cell differentiation, lens morphology or transparency. In contrast, suppression of AQP0a expression, previously shown to cause lens cataract, produced irregularly shaped lenses, delay in fiber cell differentiation and lens opacities detectable by confocal microscopy. The normal development observed in αA-crystallin deficient zebrafish embryos may reflect similarly non-essential roles for this protein in the early stages of both zebrafish and mammalian lens development. This finding has ramifications for a growing number of researchers taking advantage of the zebrafish's transparent external embryos to study vertebrate eye development. Our demonstration that lens cataracts can be visualized in three-dimensions by confocal microscopy in a living zebrafish provides a new tool for studying the causes, development and prevention of lens opacities.
Collapse
Affiliation(s)
- Mason Posner
- Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Wages P, Horwitz J, Ding L, Corbin RW, Posner M. Changes in zebrafish (Danio rerio) lens crystallin content during development. Mol Vis 2013; 19:408-17. [PMID: 23441112 PMCID: PMC3580975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/15/2013] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The roles that crystallin proteins play during lens development are not well understood. Similarities in the adult crystallin composition of mammalian and zebrafish lenses have made the latter a valuable model for examining lens function. In this study, we describe the changing zebrafish lens proteome during development to identify ontogenetic shifts in crystallin expression that may provide insights into age-specific functions. METHODS Two-dimensional gel electrophoresis and size exclusion chromatography were used to characterize the lens crystallin content of 4.5-day to 27-month-old zebrafish. Protein spots were identified with mass spectrometry and comparisons with previously published proteomic maps, and quantified with densitometry. Constituents of size exclusion chromatography elution peaks were identified with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. RESULTS Zebrafish lens crystallins were expressed in three ontogenetic patterns, with some crystallins produced at relatively constant levels throughout development, others expressed primarily before 10 weeks of age (βB1-, βA1-, and γN2-crystallins), and a third group primarily after 10 weeks (α-, βB3-, and γS-crystallins). Alpha-crystallins comprised less than 1% of total lens protein in 4.5-day lenses and increased to less than 7% in adult lenses. The developmental period between 6 weeks and 4 months contained the most dramatic shifts in lens crystallin expression. CONCLUSIONS These data provide the first two-dimensional gel electrophoresis maps of the developing zebrafish lens, with quantification of changing crystallin abundance and visualization of post-translational modification. Results suggest that some crystallins may play stage specific roles during lens development. The low levels of zebrafish lens α-crystallin relative to mammals may be due to the high concentrations of γ-crystallins in this aquatic lens. Similarities with mammalian crystallin expression continue to support the use of the zebrafish as a model for lens crystallin function.
Collapse
Affiliation(s)
- Phillip Wages
- Department of Biology, Ashland University, Ashland, OH
| | - Joseph Horwitz
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA
| | - Linlin Ding
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA
| | | | - Mason Posner
- Department of Biology, Ashland University, Ashland, OH
| |
Collapse
|
17
|
Chan Z. Proteomic responses of fruits to environmental stresses. FRONTIERS IN PLANT SCIENCE 2013; 3:311. [PMID: 23335934 PMCID: PMC3541545 DOI: 10.3389/fpls.2012.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/24/2012] [Indexed: 05/18/2023]
Abstract
Fruits and vegetables are extremely susceptible to decay and easily lose commercial value after harvest. Different strategies have been developed to control postharvest decay and prevent quality deterioration during postharvest storage, including cold storage, controlled atmosphere (CA), and application of biotic and abiotic stimulus. In this review, mechanisms related to protein level responses of host side and pathogen side were characterized. Protein extraction protocols have been successfully developed for recalcitrant, low protein content fruit tissues. Comparative proteome profiling and functional analysis revealed that defense related proteins, energy metabolism, and antioxidant pathway played important roles in fruits in response to storage conditions and exogenous elicitor treatments. Secretome of pathogenic fungi has been well-investigated and the results indicated that hydrolytic enzymes were the key virulent factors for the pathogen infection. These protein level changes shed new light on interaction among fruits, pathogens, and environmental conditions. Potential postharvest strategies to reduce risk of fruit decay were further proposed based on currently available proteomic data.
Collapse
Affiliation(s)
- Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
18
|
Merzendorfer H. HYDROPHOBICITY COUNTS IN LARGE AMOUNTS. J Exp Biol 2012. [DOI: 10.1242/jeb.064287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|