1
|
Jimenez-Armijo A, Morkmued S, Ahumada JT, Kharouf N, de Feraudy Y, Gogl G, Riet F, Niederreither K, Laporte J, Birling MC, Selloum M, Herault Y, Hernandez M, Bloch-Zupan A. The Rogdi knockout mouse is a model for Kohlschütter-Tönz syndrome. Sci Rep 2024; 14:445. [PMID: 38172607 PMCID: PMC10764811 DOI: 10.1038/s41598-023-50870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) is a rare autosomal recessive disorder characterized by severe intellectual disability, early-onset epileptic seizures, and amelogenesis imperfecta. Here, we present a novel Rogdi mutant mouse deleting exons 6-11- a mutation found in KTS patients disabling ROGDI function. This Rogdi-/- mutant model recapitulates most KTS symptoms. Mutants displayed pentylenetetrazol-induced seizures, confirming epilepsy susceptibility. Spontaneous locomotion and circadian activity tests demonstrate Rogdi mutant hyperactivity mirroring patient spasticity. Object recognition impairment indicates memory deficits. Rogdi-/- mutant enamel was markedly less mature. Scanning electron microscopy confirmed its hypomineralized/hypomature crystallization, as well as its low mineral content. Transcriptomic RNA sequencing of postnatal day 5 lower incisors showed downregulated enamel matrix proteins Enam, Amelx, and Ambn. Enamel crystallization appears highly pH-dependent, cycling between an acidic and neutral pH during enamel maturation. Rogdi-/- teeth exhibit no signs of cyclic dental acidification. Additionally, expression changes in Wdr72, Slc9a3r2, and Atp6v0c were identified as potential contributors to these tooth acidification abnormalities. These proteins interact through the acidifying V-ATPase complex. Here, we present the Rogdi-/- mutant as a novel model to partially decipher KTS pathophysiology. Rogdi-/- mutant defects in acidification might explain the unusual combination of enamel and rare neurological disease symptoms.
Collapse
Affiliation(s)
- Alexandra Jimenez-Armijo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Supawich Morkmued
- Pediatrics Division, Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - José Tomás Ahumada
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Naji Kharouf
- Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Université de Strasbourg, Strasbourg, France
| | - Yvan de Feraudy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Gergo Gogl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Karen Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
| | - Marie Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Mohammed Selloum
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France
- CNRS, INSERM, CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Université de Strasbourg, Illkirch, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Competence Center for Rare Oral and Dental Diseases, Université de Lorraine, Nancy, France
| | - Agnès Bloch-Zupan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS- UMR7104, Université de Strasbourg, Illkirch, France.
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France.
- Institut d'études Avancées (USIAS), Université de Strasbourg, Strasbourg, France.
- Pôle de Médecine et Chirurgie Bucco-Dentaires, Hôpital Civil, Centre de Référence des Maladies Rares Orales et Dentaires, O-Rares, Filière Santé Maladies Rares TETE COU, European Reference Network ERN CRANIO, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg, France.
- Eastman Dental Institute, University College London, London, UK.
| |
Collapse
|
2
|
Mu H, Dong Z, Wang Y, Chu Q, Gao Y, Wang A, Wang Y, Liu X, Gao Y. Odontogenesis-Associated Phosphoprotein (ODAPH) Overexpression in Ameloblasts Disrupts Enamel Formation via Inducing Abnormal Mineralization of Enamel in Secretory Stage. Calcif Tissue Int 2022; 111:611-621. [PMID: 36163390 DOI: 10.1007/s00223-022-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
Odontogenesis-associated phosphoprotein (ODAPH) is a recently discovered enamel matrix protein. Our previous study demonstrated that knockouting out Odaph in mice resulted in enamel hypomineralization. To further investigate the effect of Odaph on enamel mineralization, we constructed an Odaph overexpression mouse model, controlled by an amelogenin promoter. Our histological analysis of OdaphTg mice revealed that the enamel layer was thinner than in WT mice. An uneven, thinner enamel layer was confirmed using micro-computed tomography (uCT). It was subsequently found that the Tomes' processes lost their normal morphology, resulting in the loss of the enamel prism structure. These results indicate that Odaph overexpression in ameloblasts led to enamel dysplasia. In conjunction with this, Odaph overexpression hindered Amelx secretion, and may result in endoplasmic reticulum stress. Interestingly, uCT revealed that enamel had higher mineral density at the secretory stage; due to this, we did the histological staining for the mineralization-related proteins Alkaline phosphatase (ALPL) and Runt-related transcription factor 2 (RUNX2). It was observed that these proteins were up-regulated in OdaphTg mice versus WT mice, indicating that Odaph overexpression led to abnormal enamel mineralization. To confirm this, we transfected ameloblast-like cell line (ALC) with Odaph overexpression lentivirus in vitro and identified that both Alpl and Runx2 were strikingly upregulated in OE-mus-Odaph versus OE-NC cells. We concluded that the ectopic overexpression of Odaph in ameloblasts led to abnormal enamel mineralization. In summary, Odaph profoundly influences amelogenesis by participating in enamel mineralization.
Collapse
Affiliation(s)
- Haiyu Mu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Zhiheng Dong
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| | - Yumin Wang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qing Chu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yan Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yu Wang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoying Liu
- Department of Cell Biology, College of Life Science and Technology, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| |
Collapse
|
3
|
Mohabatpour F, Al-Dulaymi M, Lobanova L, Scutchings B, Papagerakis S, Badea I, Chen X, Papagerakis P. Gemini surfactant-based nanoparticles T-box1 gene delivery as a novel approach to promote epithelial stem cells differentiation and dental enamel formation. BIOMATERIALS ADVANCES 2022; 137:212844. [PMID: 35929273 DOI: 10.1016/j.bioadv.2022.212844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids. We comparatively assessed the lipoplexes prepared from glycyl-lysine-modified gemini surfactants and commercially available 1,2-dioleoyl-3-trimethylammonium-propane lipids at three nitrogen-to phosphate (N/P) ratios of 2.5, 5 and 10. Our findings revealed that physico-chemical characteristics and biological activities of the gemini surfactant-based lipoplexes with a N/P ratio of 5 provide the most optimal outcomes among those examined. HAT-7 cells were transfected with T-box1 gene using the optimal formulation then cultured in conventional 2D cell culture systems. Ameloblast differentiation, mineralization, bio-enamel interface and structure were assessed at different time points over 28 days. Our results showed that our gemini transfection system provides superior gene expression compared to the benchmark agent, while keeping low cytotoxicity levels. T-box1-transfected HAT-7 cells strongly expressed markers of secretory and maturation stages of the ameloblasts, deposited minerals, and produced enamel-like crystals when compared to control cells. Taken together, our gemini surfactant-based T-box1 gene delivery system is effective to accelerate and guide ameloblastic differentiation of dental epithelial stem cells and promote enamel-like tissue formation. This study would represent a significant advance towards the tissue engineering and regeneration of dental enamel.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Mays Al-Dulaymi
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Liubov Lobanova
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada
| | - Brittany Scutchings
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0W8, SK, Canada; Department of Otolaryngology, College of Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, S7N 5E5, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada.
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9 SK, Canada; College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, S7N 5E4, SK, Canada.
| |
Collapse
|
4
|
Neshatian M, Holcroft J, Kishen A, De Souza G, Ganss B. Promoting mineralization at biological interfaces Ex vivo with novel amelotin-based bio-nano complexes. Mater Today Bio 2022; 14:100255. [PMID: 35464740 PMCID: PMC9020105 DOI: 10.1016/j.mtbio.2022.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Conclusion
AMTN/AMTN-Col functionalized HANP are potent mineral-promoting bio-nano complexes. AMTN/AMTN-Col coated HANP promote collagen mineralization. AMTN/AMTN-Col coated HANP enhance resin-dentin bond strength. AMTN/AMTN-Col coated HANP are potential candidates for clinical application.
Collapse
|
5
|
Amelotin Promotes Mineralization and Adhesion in Collagen-Based Systems. Cell Mol Bioeng 2022; 15:245-254. [PMID: 35611164 PMCID: PMC9124263 DOI: 10.1007/s12195-022-00722-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 01/10/2023] Open
Abstract
Introduction Periodontitis is characterized by the destruction of tooth-supporting tissues including the alveolar bone. Barrier membranes are used in dentistry for tissue regenerative therapy. Nevertheless, conventional membranes have issues related to membrane stability and direct induction of bone mineralization. Amelotin (AMTN), an enamel matrix protein, regulates hydroxyapatite crystal nucleation and growth. To apply an AMTN membrane in clinical practice, we investigated the mineralizing and adhesive effects of recombinant human (rh) AMTN in vitro using a collagen-based system. Methods Collagen hydrogel incorporated with rhAMTN (AMTN gel) and rhAMTN-coated dentin slices were prepared. AMTN gel was then applied on a commercial membrane (AMTN membrane). Samples were incubated for up to 24 h in mineralization buffer, and the structures were observed. The peak adhesive tensile strength between the dentin and AMTN membrane was measured. Using an enzyme-linked immunosorbent assay, the release kinetics of rhAMTN from the membrane were investigated. Results The AMTN gel resulted in the formation of hydroxyapatite deposits both onto and within the collagen matrix. Furthermore, coating the dentin surface with rhAMTN promoted the precipitation of mineral deposits on the surface. Interestingly, site-specific mineralization was observed in the AMTN membrane. Only 1% of rhAMTN was released from the membrane. Hence, the AMTN membrane adhered to the dentin surface with more than twofold greater tensile strength than that detected for a rhAMTN-free barrier membrane. Conclusions RhAMTN can accelerate mineralization and adhesion in collagen-based systems. Furthermore, the AMTN membrane could inform the optimal design of calcified tissue regenerative materials. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-022-00722-2.
Collapse
|
6
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
7
|
Tanaka D, Ikeda Y, Ikeda E, Yokose M, Ganss B, Iwata T. Effect of Amelotin on Bone Growth in the Murine Calvarial Defect Model. Ann Biomed Eng 2021; 49:3676-3684. [PMID: 34608582 DOI: 10.1007/s10439-021-02867-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Amelotin (AMTN) is a protein that is expressed during the maturation of dental enamel and has important role in enamel hydroxyapatite mineralization. However, it is not well understood whether AMTN has a strong mineral-promoting ability in bone. In this study, the effect of AMTN on bone healing was investigated using mice calvarial defect model in vivo, and the expression of bone marker genes and cell proliferation were investigated to clarify the role of AMTN in bone mineralization using mouse osteogenic cells (MC3T3-E1) in vitro. Collagen membranes, with or without recombinant human (rh) AMTN, were applied to calvarial defects created on the parietal bones of C57BL/6N mice. Microcomputed tomography and histological observation revealed that the defect largely filled with mineralized tissue by the rhAMTN-containing membrane in eight weeks. Moreover, CD31 positive cells were observed in the newly formed mineralized tissue and around the rhAMTN-containing membrane. In the presence of rhAMTN, the expression of the Spp1 gene in MC3T3-E1 cells significantly increased within ten days in an osteoinductive medium. Moreover, rhAMTN significantly enhanced MC3T3-E1 cell proliferation. These findings indicate that AMTN positively influences bone repair by promoting hydroxyapatite mineralization.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Yuichi Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan.
| | - Eri Ikeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mako Yokose
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Bernhard Ganss
- Faculty of Dentistry and Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| |
Collapse
|
8
|
Danesi AL, Athanasiadou D, Mansouri A, Phen A, Neshatian M, Holcroft J, Bonde J, Ganss B, Carneiro KMM. Uniaxial Hydroxyapatite Growth on a Self-Assembled Protein Scaffold. Int J Mol Sci 2021; 22:12343. [PMID: 34830225 PMCID: PMC8620880 DOI: 10.3390/ijms222212343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Biomineralization is a crucial process whereby organisms produce mineralized tissues such as teeth for mastication, bones for support, and shells for protection. Mineralized tissues are composed of hierarchically organized hydroxyapatite crystals, with a limited capacity to regenerate when demineralized or damaged past a critical size. Thus, the development of protein-based materials that act as artificial scaffolds to guide hydroxyapatite growth is an attractive goal both for the design of ordered nanomaterials and for tissue regeneration. In particular, amelogenin, which is the main protein that scaffolds the hierarchical organization of hydroxyapatite crystals in enamel, amelogenin recombinamers, and amelogenin-derived peptide scaffolds have all been investigated for in vitro mineral growth. Here, we describe uniaxial hydroxyapatite growth on a nanoengineered amelogenin scaffold in combination with amelotin, a mineral promoting protein present during enamel formation. This bio-inspired approach for hydroxyapatite growth may inform the molecular mechanism of hydroxyapatite formation in vitro as well as possible mechanisms at play during mineralized tissue formation.
Collapse
Affiliation(s)
- Alexander L. Danesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Dimitra Athanasiadou
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Ahmad Mansouri
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Alina Phen
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - James Holcroft
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
| | - Johan Bonde
- Division of Pure and Applied Biochemistry, Center of Applied Life Sciences, Lund University, 223 62 Lund, Sweden;
| | - Bernhard Ganss
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Karina M. M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada; (A.L.D.); (D.A.); (A.M.); (A.P.); (M.N.); (J.H.); (B.G.)
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
9
|
Ramadoss R, Padmanaban R, Subramanian B. Role of bioglass in enamel remineralization: Existing strategies and future prospects-A narrative review. J Biomed Mater Res B Appl Biomater 2021; 110:45-66. [PMID: 34245107 DOI: 10.1002/jbm.b.34904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Enamel, once formed, loses the ability to regenerate due to the loss of the formative ameloblasts. It is subjected to constant damaging events due to exposure to external agents and oral microbiomes. An enamel remineralization process targets to replenish the lost ionic component of the enamel through a multitude of methods. Enamel remineralization is highly challenging as it has a complex organized hierarchical microstructure. Hydroxyapatite nanocrystals of the enamel vary in size and orientation along alignment planes inside the enamel rod. The inability of the enamel to remodel unlike other mineralized tissues is another substantial deterrent. One of the well-known biomaterials, bioglass (BG) induces apatite formation on the external surface of the enamel in the presence of saliva or other physiological fluids. Calcium, sodium, phosphate, and silicate ions in BG become responsive in the presence of body fluids, leading to the precipitation of calcium phosphate. Studies have also demonstrated the bactericidal potential of BG against Streptococcus mutans biofilms. The anticariogenicity and antibacterial activity were found to be enhanced when BG was doped with inorganic ions such as F, Ag, Mg, Sr, and Zn. Due to the versatility of BG, it has been combined with a variety of agents such as chitosan, triclosan, and amelogenin to biomimic remineralization process. Key strategies that can aid in the development of contemporary enamel remineralization agents are also included in this review.
Collapse
Affiliation(s)
- Ramya Ramadoss
- Department of Oral & Maxillofacial Pathology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Rajashree Padmanaban
- CAS Biophysics & Crystallography, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - Balakumar Subramanian
- Center for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Bates M, Spillane CD, Gallagher MF, McCann A, Martin C, Blackshields G, Keegan H, Gubbins L, Brooks R, Brooks D, Selemidis S, O’Toole S, O’Leary JJ. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS One 2020; 15:e0243715. [PMID: 33370338 PMCID: PMC7769460 DOI: 10.1371/journal.pone.0243715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the use of front-line anticancer drugs such as paclitaxel for ovarian cancer treatment, mortality rates have remained almost unchanged for the past three decades and the majority of patients will develop recurrent chemoresistant disease which remains largely untreatable. Overcoming chemoresistance or preventing its onset in the first instance remains one of the major challenges for ovarian cancer research. In this study, we demonstrate a key link between senescence and inflammation and how this complex network involving the biomarkers MAD2, TLR4 and MyD88 drives paclitaxel resistance in ovarian cancer. This was investigated using siRNA knockdown of MAD2, TLR4 and MyD88 in two ovarian cancer cell lines, A2780 and SKOV-3 cells and overexpression of MyD88 in A2780 cells. Interestingly, siRNA knockdown of MAD2 led to a significant increase in TLR4 gene expression, this was coupled with the development of a highly paclitaxel-resistant cell phenotype. Additionally, siRNA knockdown of MAD2 or TLR4 in the serous ovarian cell model OVCAR-3 resulted in a significant increase in TLR4 or MAD2 expression respectively. Microarray analysis of SKOV-3 cells following knockdown of TLR4 or MAD2 highlighted a number of significantly altered biological processes including EMT, complement, coagulation, proliferation and survival, ECM remodelling, olfactory receptor signalling, ErbB signalling, DNA packaging, Insulin-like growth factor signalling, ion transport and alteration of components of the cytoskeleton. Cross comparison of the microarray data sets identified 7 overlapping genes including MMP13, ACTBL2, AMTN, PLXDC2, LYZL1, CCBE1 and CKS2. These results demonstrate an important link between these biomarkers, which to our knowledge has never before been shown in ovarian cancer. In the future, we hope that triaging patients into alterative treatment groups based on the expression of these three biomarkers or therapeutic targeting of the mechanisms they are involved in will lead to improvements in patient outcome and prevent the development of chemoresistance.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Cathy D. Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Michael F. Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Luke Gubbins
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Doug Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Sharon O’Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Bapat RA, Su J, Moradian-Oldak J. Co-Immunoprecipitation Reveals Interactions Between Amelogenin and Ameloblastin via Their Self-Assembly Domains. Front Physiol 2020; 11:622086. [PMID: 33424645 PMCID: PMC7786100 DOI: 10.3389/fphys.2020.622086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/04/2020] [Indexed: 01/28/2023] Open
Abstract
Macromolecular assembly of extracellular enamel matrix proteins (EMPs) is intimately associated with the nucleation, growth, and maturation of highly organized hydroxyapatite crystals giving rise to healthy dental enamel. Although the colocalization of two of the most abundant EMPs amelogenin (Amel) and ameloblastin (Ambn) in molar enamel has been established, the evidence toward their interaction is scarce. We used co-immunoprecipitation (co-IP) to show evidence of direct molecular interactions between recombinant and native Amel and Ambn. Ambn fragments containing Y/F-x-x-Y/L/F-x-Y/F self-assembly motif were isolated from the co-IP column and characterized by mass spectroscopy. We used recombinant Ambn (rAmbn) mutants with deletion of exons 5 and 6 as well as Ambn derived synthetic peptides to demonstrate that Ambn binds to Amel via its previously identified Y/F-x-x-Y/L/F-x-Y/F self-assembly motif at the N-terminus of its exon 5 encoded region. Using an N-terminal specific anti-Ambn antibody, we showed that Ambn N-terminal fragments colocalized with Amel from secretory to maturation stages of enamel formation in a single section of developing mouse incisor, and closely followed mineral patterns in enamel rod interrod architecture. We conclude that Ambn self-assembly motif is involved in its interaction with Amel in solution and that colocalization between the two proteins persists from secretory to maturation stages of amelogenesis. Our in vitro and in situ data support the notion that Amel and Ambn may form heteromolecular assemblies that may perform important physiological roles during enamel formation.
Collapse
Affiliation(s)
| | | | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Kondo S, Ota A, Ono T, Karnan S, Wahiduzzaman M, Hyodo T, Lutfur Rahman M, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. Discovery of novel molecular characteristics and cellular biological properties in ameloblastoma. Cancer Med 2020; 9:2904-2917. [PMID: 32096304 PMCID: PMC7163100 DOI: 10.1002/cam4.2931] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Ameloblastoma is a rare odontogenic benign tumor accounting for less than 1% of head and neck tumors. Advanced next generation sequencing (NGS) analyses identified high frequency of BRAF V600E and SMO L412F mutations in ameloblastoma. Despite the existence of whole genomic sequence information from patients with ameloblastoma, entire molecular signature of and the characteristics of ameloblastoma cells are still obscure. In this study, we sought to uncover the molecular basis of ameloblastoma and to determine the cellular phenotype of ameloblastoma cells with BRAF mutations. Our comparative cDNA microarray analysis and gene set enrichment analysis (GSEA) showed that ameloblastoma exhibited a distinct gene expression pattern from the normal tissues: KRAS-responsive gene set is significantly activated in ameloblastoma. Importantly, insulin like growth factor 2 (IGF2), a member of KRAS-responsive genes, enhances the proliferation of an ameloblastoma cell line AMU-AM1 with BRAF mutation. In addition, Toll-like receptor 2 (TLR2) knockdown readily inactivated KRAS-responsive gene sets as well as increases caspase activities, suggesting that TLR2 signaling may mediate cell survival signaling in ameloblastoma cells. Collectively, the findings may help to further clarify the pathophysiology of ameloblastoma and lead to the development of precision medicine for patients with ameloblastoma.
Collapse
Affiliation(s)
- Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
13
|
Shin NY, Yamazaki H, Beniash E, Yang X, Margolis SS, Pugach MK, Simmer JP, Margolis HC. Amelogenin phosphorylation regulates tooth enamel formation by stabilizing a transient amorphous mineral precursor. J Biol Chem 2020; 295:1943-1959. [PMID: 31919099 DOI: 10.1074/jbc.ra119.010506] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/30/2019] [Indexed: 11/06/2022] Open
Abstract
Dental enamel comprises interwoven arrays of extremely long and narrow crystals of carbonated hydroxyapatite called enamel rods. Amelogenin (AMELX) is the predominant extracellular enamel matrix protein and plays an essential role in enamel formation (amelogenesis). Previously, we have demonstrated that full-length AMELX forms higher-order supramolecular assemblies that regulate ordered mineralization in vitro, as observed in enamel rods. Phosphorylation of the sole AMELX phosphorylation site (Ser-16) in vitro greatly enhances its capacity to stabilize amorphous calcium phosphate (ACP), the first mineral phase formed in developing enamel, and prevents apatitic crystal formation. To test our hypothesis that AMELX phosphorylation is critical for amelogenesis, we generated and characterized a hemizygous knockin (KI) mouse model with a phosphorylation-defective Ser-16 to Ala-16 substitution in AMELX. Using EM analysis, we demonstrate that in the absence of phosphorylated AMELX, KI enamel lacks enamel rods, the hallmark component of mammalian enamel, and, unlike WT enamel, appears to be composed of less organized arrays of shorter crystals oriented normal to the dentinoenamel junction. KI enamel also exhibited hypoplasia and numerous surface defects, whereas heterozygous enamel displayed highly variable mosaic structures with both KI and WT features. Importantly, ACP-to-apatitic crystal transformation occurred significantly faster in KI enamel. Secretory KI ameloblasts also lacked Tomes' processes, consistent with the absence of enamel rods, and underwent progressive cell pathology throughout enamel development. In conclusion, AMELX phosphorylation plays critical mechanistic roles in regulating ACP-phase transformation and enamel crystal growth, and in maintaining ameloblast integrity and function during amelogenesis.
Collapse
Affiliation(s)
- Nah-Young Shin
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Hajime Yamazaki
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Elia Beniash
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Xu Yang
- Department of Oral Biology, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213
| | - Seth S Margolis
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - James P Simmer
- Department of Biologic and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48108
| | - Henry C Margolis
- The Forsyth Institute, Cambridge, Massachusetts 02142; Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115; Department of Periodontics and Preventive Dentistry, Center for Craniofacial Regeneration, University of Pittsburgh, School of Dental Medicine, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
14
|
Gao J, Gao Z, Dang F, Li X, Liu H, Liu X, Gao M, Ruan J. Calcium promotes differentiation in ameloblast-like LS8 cells by downregulation of phosphatidylinositol 3 kinase /protein kinase B pathway. Arch Oral Biol 2019; 109:104579. [PMID: 31634727 DOI: 10.1016/j.archoralbio.2019.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/13/2019] [Accepted: 09/25/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the effect and mechanism of calcium on LS8 cell differentiation, especially on phosphatidylinositol 3 kinase (PI3K) /protein kinase B(AKT) pathway. MATERIALS AND METHODS Ameloblast-like LS8 cell line was used and additional 0-3.5 mmol/L calcium chloride was treated for 24 h, 48 h. Cell viability and morphological changes, cell cycle and associated regulatory proteins were analyzed. RESULTS No significant effects on morphological changes were observed. Decreased cell viability and increased S phase cells were accompanied by the significant decrease of cyclin A and cyclin B proteins, and significant increase of cyclin D protein in LS8 cells. Additionally, kallikrein-4 and amelotin expressions were significantly increased. Finally, the levels of PI3K, AKT, p-AKT and forkhead box O3 (FOXO3) significantly downregulated after calcium treatment in LS8 cells. CONCLUSIONS Calcium inhibit proliferation and promotes differentiation in LS8 cells, this is closely related to the downregulation of PI3K/AKT signal in LS8 cells.
Collapse
Affiliation(s)
- Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China
| | - Zhen Gao
- Department of first clinic, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinmei Li
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hao Liu
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaojing Liu
- Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Meili Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jianping Ruan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China; Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, China.
| |
Collapse
|
15
|
Canine models of human amelogenesis imperfecta: identification of novel recessive ENAM and ACP4 variants. Hum Genet 2019; 138:525-533. [PMID: 30877375 PMCID: PMC6536466 DOI: 10.1007/s00439-019-01997-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Amelogenesis imperfecta (AI) refers to a genetically and clinically heterogeneous group of inherited disorders affecting the structure, composition, and quantity of tooth enamel. Both non-syndromic and syndromic forms of AI have been described and several genes affecting various aspects of the enamel physiology have been reported. Genetically modified murine models of various genes have provided insights into the complex regulation of proper amelogenesis. Non-syndromic AI occurs spontaneously also in dogs with known recessive variants in ENAM and SLC24A4 genes. Unlike rodents with a reduced dentition and continuously erupting incisors, canine models are valuable for human AI due to similarity in the dental anatomy including deciduous and permanent teeth. We have performed a series of clinical and genetic analyses to investigate AI in several breeds of dogs and describe here two novel recessive variants in the ENAM and ACP4 genes. A fully segregating missense variant (c.716C>T) in exon 8 of ENAM substitutes a well-conserved proline to leucine, p.(Pro239Leu), resulting in a clinical hypomineralization of teeth. A 1-bp insertion in ACP4 (c.1189dupG) is predicted to lead to a frameshift, p.(Ala397Glyfs), resulting in an abnormal C-terminal part of the protein, and hypoplastic AI. The ENAM variant was specific for Parson Russell Terriers with a carrier frequency of 9%. The ACP4 variant was found in two breeds, Akita and American Akita with a carrier frequency of 22%. These genetic findings establish novel canine models of human AI with a particular interest in the case of the ACP4-deficient model, since ACP4 physiology is poorly characterized in human AI. The affected dogs could also serve as preclinical models for novel treatments while the breeds would benefit from genetic tests devised here for veterinary diagnostics and breeding programs.
Collapse
|
16
|
Nakayama Y, Kobayashi R, Iwai Y, Noda K, Yamazaki M, Kurita-Ochiai T, Yoshimura A, Ganss B, Ogata Y. C/EBPβ and YY1 bind and interact with Smad3 to modulate lipopolysaccharide-induced amelotin gene transcription in mouse gingival epithelial cells. FEBS Open Bio 2019; 9:276-290. [PMID: 30761253 PMCID: PMC6356155 DOI: 10.1002/2211-5463.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/21/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Junctional epithelium (JE) develops from reduced enamel epithelium during tooth formation and is critical for the maintenance of healthy periodontal tissue through ensuring appropriate immune responses and the rapid turnover of gingival epithelial cells. We have previously shown a relationship between inflammatory cytokines and expression of JE‐specific genes, such as amelotin (AMTN), in gingival epithelial cells. Here, we elucidated the effects of Porphyromonas gingivalis‐derived lipopolysaccharide (PgLPS) on Amtn gene transcription and the interaction of transcription factors. To determine the molecular basis of transcriptional regulation of the Amtn gene by PgLPS, we performed real‐time PCR and carried out luciferase assays using a mouse Amtn gene promoter linked to a luciferase reporter gene in mouse gingival epithelial GE1 cells. Gel mobility shift and chromatin immunoprecipitation assays were performed to identify response elements bound to LPS‐induced transcription factors. Next, we analyzed protein levels of the LPS‐induced transcription factors and the interaction of transcription factors by western blotting and immunoprecipitation. LPS increased Amtn mRNA levels and elevated luciferase activities of constructs containing regions between −116 and −238 of the mouse Amtn gene promoter. CCAAT/enhancer‐binding protein (C/EBP) 1–, C/EBP2– and Ying Yang 1 (YY1)–nuclear protein complexes were increased by LPS treatment. Furthermore, we identified LPS‐modulated interactions with C/EBPβ, YY1 and Smad3. These results demonstrate that PgLPS regulates Amtn gene transcription via binding of C/EBPβ–Smad3 and YY1–Smad3 complexes to C/EBP1, C/EBP2 and YY1 response elements in the mouse Amtn gene promoter.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Ryoki Kobayashi
- Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan.,Department of Oral Immunology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Yasunobu Iwai
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Keisuke Noda
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Mizuho Yamazaki
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Tomoko Kurita-Ochiai
- Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan.,Department of Oral Immunology Nihon University School of Dentistry at Matsudo Chiba Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology Nagasaki University Graduate School of Biomedical Sciences Japan
| | - Bernhard Ganss
- Matrix Dynamics Group Faculty of Dentistry University of Toronto Canada
| | - Yorimasa Ogata
- Department of Periodontology Nihon University School of Dentistry at Matsudo Chiba Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Chiba Japan
| |
Collapse
|
17
|
Ikeda Y, Neshatian M, Holcroft J, Ganss B. The enamel protein ODAM promotes mineralization in a collagen matrix. Connect Tissue Res 2018; 59:62-66. [PMID: 29745811 DOI: 10.1080/03008207.2017.1408603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/aim of the study: Odontogenic ameloblast-associated protein (ODAM) is predominantly expressed during the maturation stage of enamel formation and interacts strongly with amelotin (AMTN). AMTN is involved in enamel mineralization, but the effect of ODAM on mineralization has not been investigated. This study determined whether ODAM was able to induce hydroxyapatite (HA) mineralization in modified simulated body fluid (SBF) and in a collagen matrix in vitro. MATERIALS AND METHODS To monitor the kinetics of calcium phosphate mineralization, recombinant human (rh) ODAM protein in SBF buffer was incubated at 37°C and a light-scattering assay was conducted at intervals. To investigate the nucleation of ODAM in collagen matrix, the ODAM-impregnated collagen hydrogel was incubated in SBF buffer for 24 hours. Bovine serum albumin (BSA) was used as negative control. Mineral deposits were visualized using electron microscopy. RESULTS The presence of rh-ODAM protein in SBF resulted in higher light-scattering values after 18-24 hours. Calcium phosphate precipitates were observed on the surface of the ODAM-treated, but not BSA-treated collagen hydrogel after 24 hours in SBF. TEM and SAED analyses showed that these crystals consisted of needle-like HA. CONCLUSION Similar to AMTN, ODAM is able to promote HA nucleation in a dose-dependent manner in SBF, and even outside of its biological context in vitro.
Collapse
Affiliation(s)
- Yuichi Ikeda
- a Matrix Dynamics Group, Faculty of Dentistry , University of Toronto , Toronto , Ontario , Canada.,b Department of Periodontology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University , Tokyo , Japan
| | - Mehrnoosh Neshatian
- a Matrix Dynamics Group, Faculty of Dentistry , University of Toronto , Toronto , Ontario , Canada
| | - James Holcroft
- a Matrix Dynamics Group, Faculty of Dentistry , University of Toronto , Toronto , Ontario , Canada
| | - Bernhard Ganss
- a Matrix Dynamics Group, Faculty of Dentistry , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
18
|
Nakayama Y, Tsuruya Y, Noda K, Yamazaki-Takai M, Iwai Y, Ganss B, Ogata Y. Negative feedback by SNAI2 regulates TGFβ1-induced amelotin gene transcription in epithelial-mesenchymal transition. J Cell Physiol 2018; 234:11474-11489. [PMID: 30488439 DOI: 10.1002/jcp.27804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
Junctional epithelium (JE) demonstrates biological responses with the rapid turnover of gingival epithelial cells. The state occurs in inflammation of gingiva and wound healing after periodontal therapy. To understand the underlying mechanisms and to maintain homeostasis of JE, it is important to investigate roles of JE-specific genes. Amelotin (AMTN) is localized at JE and regulated by inflammatory cytokines and apoptotic factors that represent a critical role of AMTN in stabilizing the dentogingival attachment, which is an entrance of oral bacteria. In this study, we demonstrated that the AMTN gene expression was regulated by SNAI2 and transforming growth factor β1 (TGFβ1)-induced epithelial-mesenchymal transition (EMT) that occurs in wound healing and fibrosis during chronic inflammation. SNAI2 downregulated AMTN gene expression via SNAI2 bindings to E-boxes (E2 and E4) in the mouse AMTN gene promoter in EMT of gingival epithelial cells. Meanwhile, TGFβ1-induced AMTN gene expression was attenuated by SNAI2 and TGFβ1-induced SNAI2, without inhibition of the TGFβ1-Smad3 signaling pathway. Moreover, SNAI2 small interfering RNA (siRNA) rescued SNAI2-induced downregulation of AMTN gene expression, and TGFβ1-induced AMTN gene expression was potentiated by SNAI2 siRNA. Taken together, these data demonstrated that AMTN gene expression in the promotion of EMT was downregulated by SNAI2. The inhibitory effect of AMTN gene expression was an independent feedback on the TGFβ1-Smad3 signaling pathway, suggesting that the mechanism can be engaged in maintaining homeostasis of gingival epithelial cells at JE and the wound healing phase.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yuto Tsuruya
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Mizuho Yamazaki-Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
19
|
Noda K, Yamazaki M, Iwai Y, Matsui S, Kato A, Takai H, Nakayama Y, Ogata Y. IL-1β and TNF-α regulate mouse amelotin gene transcription in gingival epithelial cells. J Oral Sci 2018; 60:388-398. [PMID: 30158339 DOI: 10.2334/josnusd.17-0388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amelotin (AMTN) is an enamel protein expressed in maturation-stage ameloblasts and junctional epithelium. To clarify the transcriptional regulation of the AMTN gene by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), we conducted real-time PCR, Western blotting, transient transfection analyses with luciferase constructs including various lengths of the mouse AMTN gene promoter, and gel shift and chromatin immunoprecipitation assays using mouse gingival epithelial GE1 cells. The levels of AMTN mRNA and protein in GE1 cells were increased after 6 h of stimulation with IL-1β (1 ng/mL) and TNF-α (10 ng/mL). IL-1β and TNF-α induced luciferase activities of the constructs between -116AMTN and -705AMTN including the mouse AMTN gene promoter. Transcriptional activation by IL-1β and TNF-α was partially inhibited in -460AMTN including 3-bp mutations in the CCAAT-enhancer-binding protein 1 (C/EBP1), C/EBP2 and Yin Yang 1 (YY1) elements. Transcriptional activities induced by IL-1β and TNF-α were inhibited by tyrosine kinase, MEK1/2 and PI3-kinase inhibitors. Results of ChIP assays showed that IL-1β and TNF-α increased C/EBPβ and YY1 binding to the C/EBP1, C/EBP2 and YY1 elements. These results demonstrate that IL-1β and TNF-α increase AMTN gene transcription via the C/EBP1, C/EBP2 and YY1 elements in the mouse AMTN gene promoter.
Collapse
Affiliation(s)
- Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Ayako Kato
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
20
|
Yamazaki M, Mezawa M, Noda K, Iwai Y, Matsui S, Takai H, Nakayama Y, Ogata Y. Transcriptional regulation of human amelotin gene by interleukin-1β. FEBS Open Bio 2018; 8:974-985. [PMID: 29928577 PMCID: PMC5986040 DOI: 10.1002/2211-5463.12434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 04/02/2018] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
One of the major causes of tooth loss is chronic inflammation of the periodontium, the tissues surrounding the tooth. Amelotin (AMTN) is a tooth enamel protein which is expressed in maturation‐stage ameloblasts and also in the internal basal lamina of junctional epithelium, a unique epithelial structure attached to the tooth surface which protects against the constant microbiological challenge to the periodontium. Localization of AMTN suggests that its function could be involved in the dentogingival attachment. The purpose of this study was to investigate the effect of interleukin‐1β (IL‐1β) on AMTN gene transcription in human gingival epithelial Ca9‐22 cells. IL‐1β increased AMTN mRNA and protein levels at 3 h, and the levels reached maximum at 6 and 12 h. IL‐1β induced luciferase activities of human AMTN gene promoter constructs (−211, −353, −501, −769, and −950AMTN), but these activities were partially inhibited in −353AMTN constructs that included 3‐bp mutations in CCAAT/enhancer binding protein 1 (C/EBP1), C/EBP2, and Ying Yang 1 (YY1) elements. Transcriptional activities induced by IL‐1β were abrogated by protein kinase A (PKA), tyrosine kinase, mitogen‐activated protein kinase kinase (MEK1/2), and phosphatidylinositol 3‐kinase (PI3K) inhibitors. Gel shift and ChIP assays showed that IL‐1β increased C/EBPβ binding to C/EBP1 and C/EBP2, and YY1 binding to YY1 elements after 3 h, and that these DNA–protein interactions were inhibited by PKA, tyrosine kinase, MEK1/2, and PI3K inhibitors. These results demonstrated that IL‐1β increases AMTN gene transcription in human gingival epithelial cells mediated through C/EBP1, C/EBP2, and YY1 elements in the human AMTN gene promoter.
Collapse
Affiliation(s)
- Mizuho Yamazaki
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan
| | - Masaru Mezawa
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Japan
| | - Keisuke Noda
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan
| | - Yasunobu Iwai
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan
| | - Sari Matsui
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan
| | - Hideki Takai
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Japan
| | - Yohei Nakayama
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Japan
| | - Yorimasa Ogata
- Departments of Periodontology Nihon University School of Dentistry at Matsudo Japan.,Research Institute of Oral Science Nihon University School of Dentistry at Matsudo Japan
| |
Collapse
|
21
|
Nakayama Y, Matsui S, Noda K, Yamazaki M, Iwai Y, Ganss B, Ogata Y. TGFβ1-induced Amelotin gene expression is downregulated by Bax expression in mouse gingival epithelial cells. J Oral Sci 2018; 60:232-241. [PMID: 29657250 DOI: 10.2334/josnusd.17-0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amelotin (AMTN) is induced upon initiation of apoptosis by transforming growth factor beta1 (TGFβ1) and is mediated by Smad3 in gingival epithelial cells (GE1 cells). This upregulation of AMTN gene expression is temporary, and the mechanism responsible is still unclear. The present study investigated the transcriptional downregulation of TGFβ1-induced AMTN gene expression in GE1 cells during the progression of apoptosis. To examine time-dependent changes in the levels of AMTN, Smad3 and Bax mRNA induced by TGFβ1, real-time PCR analyses were performed. Immunocytochemistry was carried out to detect the expression of Smad3 and Bax. Transient transfection analyses were performed using mouse AMTN gene promoter constructs of various lengths including Smad response elements (SBEs), in the presence or absence of TGFβ1. Changes in Smad3 binding to SBEs resulting from overexpression of Bax were examined using ChIP assays. Overexpression of Bax dramatically downregulated the levels of TGFβ1-induced AMTN mRNA and transcription of the AMTN gene. Smad3 binding to SBEs in the mouse AMTN gene promoter was induced by overexpression of Smad3 or TGFβ1, and this was inhibited by Bax overexpression. These results show that the levels of AMTN mRNA induced by TGFβ1 and Smad3 are decreased by robust expression of Bax in gingival epithelial cells.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
22
|
Nakayama Y, Matsui S, Noda K, Yamazaki M, Iwai Y, Matsumura H, Izawa T, Tanaka E, Ganss B, Ogata Y. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells. Apoptosis 2018; 21:1057-70. [PMID: 27502207 DOI: 10.1007/s10495-016-1279-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | - Sari Matsui
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Keisuke Noda
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Mizuho Yamazaki
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yasunobu Iwai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Hiroyoshi Matsumura
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| |
Collapse
|
23
|
Liu X, Wang Y, Zhang L, Xu Z, Chu Q, Xu C, Sun Y, Gao Y. Combination of Runx2 and Cbfβ upregulates Amelotin gene expression in ameloblasts by directly interacting with cis‑enhancers during amelogenesis. Mol Med Rep 2018; 17:6068-6076. [PMID: 29436627 DOI: 10.3892/mmr.2018.8564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 11/05/2022] Open
Abstract
Amelotin (Amtn) is a recently identified enamel protein secreted by ameloblasts at late stage of enamel development. Runt‑related transcription factor 2 (Runx2) in combination with the coactivator core‑binding factor β (Cbfβ) regulates the early stages of tooth development. The aim of the present study was to investigate the role of Runx2 in the regulation of Amtn gene expression in ameloblasts. Immunohistochemistry was performed and the results revealed that Runx2 protein was predominantly expressed in the nuclei of ameloblasts during the transition stage and the maturation stage of enamel development, whereas Cbfβ was expressed in ameloblasts from the secretory stage to the maturation stage. Reverse transcription‑quantitative polymerase chain reaction results demonstrated that Runx2 knockdown decreased Amtn expression in ameloblast‑lineage cells and co‑expression of Runx2 and Cbfβ in ameloblast lineage cells induced an upregulation in Amtn gene expression. Two putative Runx2‑binding sites within the Amtn promoter were identified using bioinformatics analysis. Results of an electrophoretic mobility shift assay and chromatin immunoprecipitation indicated that Runx2/Cbfβ bound to specific DNA sequences. Site‑directed mutagenesis of the Runx2 binding sites within the Amtn promoter resulted in decreased basal promoter activity and did not affect the overexpressed Runx2/Cbfβ. The results of the present study suggest that Runx2 upregulates Amtn gene expression via binding directly to Runx2 sites within the Amtn promoter during amelogenesis.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yumin Wang
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Li Zhang
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhenzhen Xu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qing Chu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Chang Xu
- Department of Pediatric Dentistry, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Sun
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuguang Gao
- Department of Oral Biology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
24
|
Tumor necrosis factor-α stimulates human amelotin gene transcription in gingival epithelial cells. Inflamm Res 2017; 67:351-361. [PMID: 29282478 DOI: 10.1007/s00011-017-1126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/25/2017] [Accepted: 12/21/2017] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Amelotin (AMTN) is an enamel protein that is localized in the basal lamina of ameloblasts in their maturation stage and the internal basal lamina of junctional epithelium (JE) and it is suggested that AMTN could be involved in the dentogingival attachment. To elucidate the transcriptional regulation of human AMTN gene in inflamed gingiva, we have analyzed the effect of tumor necrosis factor-α (TNF-α) on the expression of AMTN gene in Ca9-22 and Sa3 human gingival epithelial cells. MATERIALS AND METHODS Total RNAs were extracted from Ca9-22 and Sa3 cells after stimulation by TNF-α (10 ng/ml). AMTN mRNA and protein levels were measured by real-time PCR and Western blotting. Transient transfection analyses were completed using the various lengths of human AMTN gene promoter constructs with or without TNF-α. Gel mobility shift and chromatin immunoprecipitation assays were performed to investigate the transcription factors bindings to the human AMTN gene promoter by TNF-α. RESULTS TNF-α (10 ng/ml) increased AMTN mRNA and protein levels after 12 h. TNF-α induced luciferase activities of human AMTN gene promoter constructs (- 211AMTN, - 353AMTN, and - 501AMTN). TNF-α-induced luciferase activities were partially inhibited in the mutation - 353AMTN constructs that included 3-bp mutations in CCAAT enhancer-binding protein 1 (C/EBP1), C/EBP2 and Ying Yang 1 (YY1) elements. Transcriptional activities induced by TNF-α were inhibited by protein kinase A, Src-tyrosine kinase, MEK1/2, p38 kinase, NF-κB, and PI3-kinase inhibitors. Gel shift assays showed that TNF-α increased nuclear proteins binding to two types of C/EBP elements (C/EBP1 and C/EBP2) and YY1 element. The results of the chromatin immunoprecipitation assays showed that C/EBPβ binding to C/EBP1 and C/EBP2, and YY1 binding to YY1 were increased by TNF-α. CONCLUSIONS These findings demonstrated that TNF-α stimulates AMTN gene transcription in human gingival epithelial cells via C/EBP1, C/EBP2, and YY1 elements in the human AMTN gene promoter.
Collapse
|
25
|
Jinping Z, Qing C, Wenying S, Chunyan Y, Lili X, Yao S, Yumin W, Zhenzhen X, Li Z, Yuguang G. Overexpression of constitutively active MAP3K7 in ameloblasts causes enamel defects of mouse teeth. Arch Oral Biol 2017; 84:169-175. [PMID: 29024853 DOI: 10.1016/j.archoralbio.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/05/2017] [Accepted: 09/24/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Compelling evidence suggests that mitogen-activated protein kinases (Mapks) play an important role in amelogenesis. However, the role of transforming growth factor (TGF)-β-activating kinase 1 (Tak1, Map3k7), which is a known upstream kinase of Mapks, during amelogenesis remains to be determined. The aim of this study was to investigate the possible involvement of Map3k7 in amelogenesis. DESIGN We generated transgenic mice that produced constitutively active human MAP3K7 (caMAP3K7) under the control of amelogenin (Amelx) gene promoter. Radiography and micro-computed tomography (μCT) analysis was used to detect the radio-opacity and density of the teeth. The enamel microstructure was observed with a scanning electron microscope. Histological analysis was used to observe the adhesion between ameloblasts and residual organic matrix of the enamel. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of enamel matrix protein. RESULTS The enamel of mandibular molars in caMAP3K7-overexpressing mice displayed pigmentation and a highly irregular structure compared with the wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. The gross histological appearances of ameloblasts and supporting cellular structures, as well as the expression of the enamel protein amelotin (Amtn) were altered by the overexpression of caMAP3K7. CONCLUSIONS Our data demonstrated that protein expression, processing and secretion occurred abnormally in transgenic mice overexpressing caMAP3K7. The overexpression of caMAP3K7 had a profound effect on enamel structure by disrupting the orderly growth of enamel prisms.
Collapse
Affiliation(s)
- Zhao Jinping
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Chu Qing
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Song Wenying
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Yang Chunyan
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Xiang Lili
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Shi Yao
- Oral and Maxillofacial Surgery, Central Hospital of Zibo, Zibo, Shandong Province 255000, People's Republic of China
| | - Wang Yumin
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Xu Zhenzhen
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China
| | - Zhang Li
- Institute of Stomatology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Gao Yuguang
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou City, Shandong Province 256603, People's Republic of China.
| |
Collapse
|
26
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
27
|
Yin K, Guo J, Lin W, Robertson SYT, Soleimani M, Paine ML. Deletion of Slc26a1 and Slc26a7 Delays Enamel Mineralization in Mice. Front Physiol 2017; 8:307. [PMID: 28559854 PMCID: PMC5432648 DOI: 10.3389/fphys.2017.00307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Amelogenesis features two major developmental stages—secretory and maturation. During maturation stage, hydroxyapatite deposition and matrix turnover require delicate pH regulatory mechanisms mediated by multiple ion transporters. Several members of the Slc26 gene family (Slc26a1, Slc26a3, Slc26a4, Slc26a6, and Slc26a7), which exhibit bicarbonate transport activities, have been suggested by previous studies to be involved in maturation-stage amelogenesis, especially the key process of pH regulation. However, details regarding the functional role of these genes in enamel formation are yet to be clarified, as none of the separate mutant animal lines demonstrates any discernible enamel defects. Continuing with our previous investigation of Slc26a1−/− and Slc26a7−/− animal models, we generated a double-mutant animal line with the absence of both Slc26a1 and Slc26a7. We showed in the present study that the double-mutant enamel density was significantly lower in the regions that represent late maturation-, maturation- and secretory-stage enamel development in wild-type mandibular incisors. However, the “maturation” and “secretory” enamel microstructures in double-mutant animals resembled those observed in wild-type secretory and/or pre-secretory stages. Elemental composition analysis revealed a lack of mineral deposition and an accumulation of carbon and chloride in double-mutant enamel. Deletion of Slc26a1 and Slc26a7 did not affect the stage-specific morphology of the enamel organ. Finally, compensatory expression of pH regulator genes and ion transporters was detected in maturation-stage enamel organs of double-mutant animals when compared to wild-type. Combined with the findings from our previous study, these data indicate the involvement of SLC26A1and SLC26A7 as key ion transporters in the pH regulatory network during enamel maturation.
Collapse
Affiliation(s)
- Kaifeng Yin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA.,Department of Orthodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Jing Guo
- Department of Endodontics, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Wenting Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Sarah Y T Robertson
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Research Services, Veterans Affairs Medical CenterCincinnati, OH, USA
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
28
|
Johnson L, Ganss B, Wang A, Zirngibl RA, Johnson DE, Owen C, Bradley G, Voronov I. V-ATPases Containing a3 Subunit Play a Direct Role in Enamel Development in Mice. J Cell Biochem 2017; 118:3328-3340. [PMID: 28295540 DOI: 10.1002/jcb.25986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 12/17/2022]
Abstract
Vacuolar H+ -ATPases (V-ATPases) are ubiquitous multisubunit proton pumps responsible for organellar pH maintenance. Mutations in the a3 subunit of V-ATPases cause autosomal recessive osteopetrosis, a rare disease due to impaired bone resorption. Patients with osteopetrosis also display dental anomalies, such as enamel defects; however, it is not clear whether these enamel abnormalities are a direct consequence of the a3 mutations. We investigated enamel mineralization, spatiotemporal expression of enamel matrix proteins and the a3 protein during tooth development using an osteopetrotic mouse model with a R740S point mutation in the V-ATPase a3 subunit. Histology revealed aberrations in both crown and root development, whereas SEM analysis demonstrated delayed enamel mineralization in homozygous animals. Enamel thickness and mineralization were significantly decreased in homozygous mice as determined by μCT analysis. The expression patterns of the enamel matrix proteins amelogenin, amelotin, and odontogenic ameloblast-associated protein (ODAM) suggested a delay in transition to the maturation stage in homozygous animals. Protein expression of the a3 subunit was detected in ameloblasts in all three genotypes, suggesting that a3-containing V-ATPases play a direct role in amelogenesis, and mutations in a3 delay transition from the secretory to the maturation stage, resulting in hypomineralized and hypoplastic enamel. J. Cell. Biochem. 118: 3328-3340, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisa Johnson
- Faculty of Dentistry, Department of Oral Pathology, University of Toronto, Toronto, Ontario, Canada.,Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Ganss
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada.,Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Wang
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ralph A Zirngibl
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Danielle E Johnson
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Celeste Owen
- Centre for Modeling Human Disease, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Grace Bradley
- Faculty of Dentistry, Department of Oral Pathology, University of Toronto, Toronto, Ontario, Canada
| | - Irina Voronov
- Faculty of Dentistry, Dental Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies. Sci Rep 2017; 7:44118. [PMID: 28287144 PMCID: PMC5347039 DOI: 10.1038/srep44118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.
Collapse
|
30
|
Nakayama Y, Kobayashi R, Matsui S, Matsumura H, Iwai Y, Noda K, Yamazaki M, Kurita-Ochiai T, Yoshimura A, Shinomura T, Ganss B, Ogata Y. Localization and expression pattern of amelotin, odontogenic ameloblast-associated protein and follicular dendritic cell-secreted protein in the junctional epithelium of inflamed gingiva. Odontology 2016; 105:329-337. [PMID: 27807653 DOI: 10.1007/s10266-016-0277-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/29/2016] [Indexed: 12/17/2022]
Abstract
The purpose of this study is to elucidate the localization of amelotin (AMTN), odontogenic ameloblast-associated protein (ODAM) and follicular dendritic cell-secreted protein (FDC-SP) at the junctional epithelium (JE) in Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans infected mice and inflamed and non-inflamed human gingiva. We performed immunostaining to determine the localization and expression pattern of AMTN, ODAM and FDC-SP. AMTN, ODAM and FDC-SP in A. actinomycetemcomitans infected mice did not change dramatically compared with non-infected mice. AMTN and FDC-SP expressions were observed stronger in P. gingivalis infected mice at early stage. However, at the following stage, the coronal part of the AMTN expression disappeared from the JE, and FDC-SP expression decreased due to severe inflammation by P. gingivalis. ODAM expressed internal and external basal lamina, and the expression increased not only at early stage but also at the following stage in the inflammatory JE induced by P. gingivalis. In the human gingival tissues, AMTN was detected at the surface of the sulcular epithelium and JE in the non-inflamed and inflamed gingiva, and the localization did not change the process of inflammation. ODAM and FDC-SP were more widely detected at the sulcular epithelium and JE in the non-inflamed gingiva. In the inflamed gingiva, localization of ODAM and FDC-SP was spread into the gingival epithelium, compared to AMTN. These studies demonstrated that the expression pattern of AMTN, ODAM and FDC-SP at the JE were changed during inflammation process and these three proteins might play an important role in the resistance to inflammation.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Ryoki Kobayashi
- Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Sari Matsui
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Hiroyoshi Matsumura
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Yasunobu Iwai
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Keisuke Noda
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Mizuho Yamazaki
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.,Department of Oral Immunology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Tamayuki Shinomura
- Tissue Regeneration, Department of Bio-Matrix, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yorimasa Ogata
- Department of Periodontology and Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan. .,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan.
| |
Collapse
|
31
|
Nakayama Y, Takai H, Matsui S, Matsumura H, Zhou L, Kato A, Ganss B, Ogata Y. Proinflammatory cytokines induce amelotin transcription in human gingival fibroblasts. J Oral Sci 2016; 56:261-8. [PMID: 25500923 DOI: 10.2334/josnusd.56.261] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Amelotin (AMTN) is a secreted protein transcribed predominantly during the maturation stage of enamel formation and localized in the junctional epithelium. We investigated differences in the levels of AMTN gene expression between non-inflamed gingiva and inflamed gingiva from patients with chronic periodontitis. Total RNAs were isolated from these tissues and their gene expression profiles were monitored by DNA microarray. The observed induction of AMTN mRNA in inflamed gingiva and cultured human gingival fibroblasts (HGF) was confirmed by real-time PCR. Transient transfection assays were performed using chimeric constructs of mouse AMTN gene promoter fragments linked to a luciferase reporter gene. Immunohistochemical localization of AMTN in inflamed and non-inflamed gingiva was assessed by immunohistochemistry. Among many differentially expressed genes, the level of AMTN mRNA was significantly increased in inflamed gingiva. Treatment of HGF with interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) induced the expression of AMTN mRNA, and increased the luciferase activities of the AMTN promoter constructs. AMTN protein was detected in inflamed gingival connective tissue and junctional epithelium. These findings demonstrate that proinflammatory cytokines induce AMTN gene expression in human gingival fibroblasts and suggest a role for AMTN in gingival inflammation.
Collapse
Affiliation(s)
- Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology 2016; 105:1-12. [DOI: 10.1007/s10266-016-0267-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
33
|
Smith CEL, Murillo G, Brookes SJ, Poulter JA, Silva S, Kirkham J, Inglehearn CF, Mighell AJ. Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta. Hum Mol Genet 2016; 25:3578-3587. [PMID: 27412008 PMCID: PMC5179951 DOI: 10.1093/hmg/ddw203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 11/15/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective dental enamel formation. Amelotin (AMTN) is a secreted protein thought to act as a promoter of matrix mineralization in the final stage of enamel development, and is strongly expressed, almost exclusively, in maturation stage ameloblasts. Amtn overexpression and Amtn knockout mouse models have defective enamel with no other associated phenotypes, highlighting AMTN as an excellent candidate gene for human AI. However, no AMTN mutations have yet been associated with human AI. Using whole exome sequencing, we identified an 8,678 bp heterozygous genomic deletion encompassing exons 3-6 of AMTN in a Costa Rican family segregating dominant hypomineralised AI. The deletion corresponds to an in-frame deletion of 92 amino acids, shortening the protein from 209 to 117 residues. Exfoliated primary teeth from an affected family member had enamel that was of a lower mineral density compared to control enamel and exhibited structural defects at least some of which appeared to be associated with organic material as evidenced using elemental analysis. This study demonstrates for the first time that AMTN mutations cause non-syndromic human AI and explores the human phenotype, comparing it with that of mice with disrupted Amtn function.
Collapse
Affiliation(s)
- Claire E L Smith
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK.,Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Gina Murillo
- University of Costa Rica, School of Dentistry, San Pedro, Costa Rica
| | - Steven J Brookes
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - James A Poulter
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Sandra Silva
- University of Costa Rica, Molecular Biology Cellular Centre (CBCM), San Pedro, Costa Rica and
| | - Jennifer Kirkham
- Department of Oral Biology, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chris F Inglehearn
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK, .,School of Dentistry, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
34
|
Núñez SM, Chun YHP, Ganss B, Hu Y, Richardson AS, Schmitz JE, Fajardo R, Yang J, Hu JCC, Simmer JP. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol 2016; 52-54:219-233. [PMID: 26620968 PMCID: PMC4875837 DOI: 10.1016/j.matbio.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (μCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.
Collapse
Affiliation(s)
- Stephanie M Núñez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Yong-Hee P Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78240, USA.
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, Fitzgerald Building, Toronto, ON M5S 3E2, Canada.
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Roberto Fajardo
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Jie Yang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108; Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, 22 South Avenue, Zhongguancun Haidian District, Beijing 100081, PR China.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| |
Collapse
|
35
|
Sawada T. Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ. Histochem Cell Biol 2015; 144:587-96. [PMID: 26357954 DOI: 10.1007/s00418-015-1362-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- Takashi Sawada
- Department of Histology and Developmental Biology, Tokyo Dental College, Misaki-cho 2-9-18, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
36
|
Gasse B, Liu X, Corre E, Sire JY. Amelotin Gene Structure and Expression during Enamel Formation in the Opossum Monodelphis domestica. PLoS One 2015; 10:e0133314. [PMID: 26186457 PMCID: PMC4506066 DOI: 10.1371/journal.pone.0133314] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/24/2015] [Indexed: 11/23/2022] Open
Abstract
Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein family, which also includes the enamel matrix proteins amelogenin, ameloblastin and enamelin. Although AMTN is supposed to play an important role in enamel formation, data were long limited to the rodents, in which it is expressed during the maturation stage. Recent comparative studies in sauropsids and amphibians revealed that (i) AMTN was expressed earlier, i.e. as soon as ameloblasts are depositing the enamel matrix, and (ii) AMTN structure was different, a change which mostly resulted from an intraexonic splicing in the large exon 8 of an ancestral mammal. The present study was performed to know whether the differences in AMTN structure and expression in rodents compared to non-mammalian tetrapods dated back to an early ancestral mammal or were acquired later in mammalian evolution. We sequenced, assembled and screened the jaw transcriptome of a neonate opossum Monodelphis domestica, a marsupial. We found two AMTN transcripts. Variant 1, representing 70.8% of AMTN transcripts, displayed the structure known in rodents, whereas variant 2 (29.2%) exhibited the nonmammalian tetrapod structure. Then, we studied AMTN expression during amelogenesis in a neonate specimen. We obtained similar data as those reported in rodents. These findings indicate that more than 180 million years ago, before the divergence of marsupials and placentals, changes occurred in AMTN function and structure. The spatiotemporal expression was delayed to the maturation stage of amelogenesis and the intraexonic splicing gave rise to isoform 1, encoded by variant 1 and lacking the RGD motif. The ancestral isoform 2, housing the RGD, was initially conserved, as demonstrated here in a marsupial, then secondarily lost in the placental lineages. These findings bring new elements towards our understanding of the non-prismatic to prismatic enamel transition that occurred at the onset of mammals.
Collapse
Affiliation(s)
- Barbara Gasse
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR7138, 75005 Paris, France
- CNRS, IBPS, UMR7138, 75005 Paris, France
| | - Xi Liu
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR7138, 75005 Paris, France
- CNRS, IBPS, UMR7138, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Plateforme ABiMS (Analyses and Bioinformatics for Marine Science), 29680 Roscoff, France
| | - Erwan Corre
- Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, Plateforme ABiMS (Analyses and Bioinformatics for Marine Science), 29680 Roscoff, France
| | - Jean-Yves Sire
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), UMR7138, 75005 Paris, France
- CNRS, IBPS, UMR7138, 75005 Paris, France
- * E-mail:
| |
Collapse
|
37
|
Abbarin N, San Miguel S, Holcroft J, Iwasaki K, Ganss B. The enamel protein amelotin is a promoter of hydroxyapatite mineralization. J Bone Miner Res 2015; 30:775-85. [PMID: 25407797 DOI: 10.1002/jbmr.2411] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 01/29/2023]
Abstract
Amelotin (AMTN) is a recently discovered protein that is specifically expressed during the maturation stage of dental enamel formation. It is localized at the interface between the enamel surface and the apical surface of ameloblasts. AMTN knock-out mice have hypomineralized enamel, whereas transgenic mice overexpressing AMTN have a compact but disorganized enamel hydroxyapatite (HA) microstructure, indicating a possible involvement of AMTN in regulating HA mineralization directly. In this study, we demonstrated that recombinant human (rh) AMTN dissolved in a metastable buffer system, based on light scattering measurements, promotes HA precipitation. The mineral precipitates were characterized by scanning and transmission electron microscopy and electron diffraction. Colloidal gold immunolabeling of AMTN in the mineral deposits showed that protein molecules were associated with HA crystals. The binding affinity of rh-AMTN to HA was found to be comparable to that of amelogenin, the major protein of the forming enamel matrix. Overexpression of AMTN in mouse calvaria cells also increased the formation of calcium deposits in the culture medium. Overexpression of AMTN during the secretory stage of enamel formation in vivo resulted in rapid and uncontrolled enamel mineralization. Site-specific mutagenesis of the potential serine phosphorylation motif SSEEL reduced the in vitro mineral precipitation to less than 25%, revealing that this motif is important for the HA mineralizing function of the protein. A synthetic short peptide containing the SSEEL motif was only able to facilitate mineralization in its phosphorylated form ((P)S(P) SEEL), indicating that this motif is necessary but not sufficient for the mineralizing properties of AMTN. These findings demonstrate that AMTN has a direct influence on biomineralization by promoting HA mineralization and suggest a critical role for AMTN in the formation of the compact aprismatic enamel surface layer during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- Nastaran Abbarin
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
38
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
39
|
Nakayama Y, Holcroft J, Ganss B. Enamel Hypomineralization and Structural Defects in Amelotin-deficient Mice. J Dent Res 2015; 94:697-705. [PMID: 25715379 DOI: 10.1177/0022034514566214] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Amelotin (AMTN) is a relatively recently discovered enamel protein that is predominantly expressed by ameloblasts during the maturation stage of amelogenesis and is present at lower levels in the junctional epithelium of erupted teeth. Previous studies have suggested a function of this protein in enamel mineralization and cell attachment. Genetic mouse models have been instrumental in defining the role of many enamel-related proteins, but a genetic mouse model lacking the Amtn gene has not been reported. Here, we describe the generation of amelotin-deficient mice and the analysis of their enamel phenotype in comparison with that of wild-type animals. Ablation of AMTN expression resulted in mechanically inferior enamel of mandibular incisors that showed chipping and fractures at the incisal edge. Enamel mineralization was delayed, resulting in hypomineralized inner enamel and structural defects in the outer enamel. Erupted enamel close to the gingival margin showed increased surface roughness. The expression levels of the enamel matrix proteins AMEL, AMBN, ENAM, and ODAM and the enamel proteases MMP-20 and KLK-4 were not significantly altered, although the expression of KLK-4 was delayed. The morphology of ameloblasts showing prominent Tomes' processes during the secretory stage was not altered, and there was no indication of disruption of cell structures or activities, but a residual layer, presumably consisting of organic material, remained at the enamel surface close to the gingival margin. The integrity of the dentogingival attachment at the junctional epithelium appeared unaffected by AMTN deficiency. These observations indicate that AMTN plays a subtle yet critical role in enamel biomineralization, particularly during the establishment of the outer and surface enamel layers. This role appears to be largely independent of other enamel proteins.
Collapse
Affiliation(s)
- Y Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - J Holcroft
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - B Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Huckert M, Stoetzel C, Morkmued S, Laugel-Haushalter V, Geoffroy V, Muller J, Clauss F, Prasad MK, Obry F, Raymond JL, Switala M, Alembik Y, Soskin S, Mathieu E, Hemmerlé J, Weickert JL, Dabovic BB, Rifkin DB, Dheedene A, Boudin E, Caluseriu O, Cholette MC, Mcleod R, Antequera R, Gellé MP, Coeuriot JL, Jacquelin LF, Bailleul-Forestier I, Manière MC, Van Hul W, Bertola D, Dollé P, Verloes A, Mortier G, Dollfus H, Bloch-Zupan A. Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta. Hum Mol Genet 2015; 24:3038-49. [PMID: 25669657 PMCID: PMC4424950 DOI: 10.1093/hmg/ddv053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/06/2015] [Indexed: 01/27/2023] Open
Abstract
Inherited dental malformations constitute a clinically and genetically heterogeneous group of disorders. Here, we report on four families, three of them consanguineous, with an identical phenotype, characterized by significant short stature with brachyolmia and hypoplastic amelogenesis imperfecta (AI) with almost absent enamel. This phenotype was first described in 1996 by Verloes et al. as an autosomal recessive form of brachyolmia associated with AI. Whole-exome sequencing resulted in the identification of recessive hypomorphic mutations including deletion, nonsense and splice mutations, in the LTBP3 gene, which is involved in the TGF-beta signaling pathway. We further investigated gene expression during mouse development and tooth formation. Differentiated ameloblasts synthesizing enamel matrix proteins and odontoblasts expressed the gene. Study of an available knockout mouse model showed that the mutant mice displayed very thin to absent enamel in both incisors and molars, hereby recapitulating the AI phenotype in the human disorder.
Collapse
Affiliation(s)
- Mathilde Huckert
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Corinne Stoetzel
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Supawich Morkmued
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Véronique Geoffroy
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Jean Muller
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France Université de Strasbourg, Laboratoire ICube UMR 7357, CNRS, LBGI, Strasbourg, France Hôpitaux Universitaires de Strasbourg, Laboratoire de Diagnostic Génétique, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - François Clauss
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Université de Strasbourg, Osteoarticular and Dental Regenerative NanoMedicine, Inserm UMR 1109, 11 rue Humann 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Megana K Prasad
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| | - Frédéric Obry
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Jean Louis Raymond
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France
| | - Marzena Switala
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Yves Alembik
- Hôpitaux Universitaires de Strasbourg, Service de Génétique Médicale, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Sylvie Soskin
- Hôpitaux Universitaires de Strasbourg, Service de Pédiatrie 1, Endocrinologie Pédiatrique, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Eric Mathieu
- Université de Strasbourg, Biomaterials and Bioengineering, Inserm UMR 1121, 11 rue Humann, 67000 Strasbourg, France
| | - Joseph Hemmerlé
- Université de Strasbourg, Biomaterials and Bioengineering, Inserm UMR 1121, 11 rue Humann, 67000 Strasbourg, France
| | - Jean-Luc Weickert
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | | | - Daniel B Rifkin
- Department of Cell Biology, NYU Langone Medical Centre, New York, USA
| | - Annelies Dheedene
- Center for Medical Genetics, Ghent University, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Oana Caluseriu
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Marie-Claude Cholette
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | - Ross Mcleod
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada
| | | | - Marie-Paule Gellé
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France Laboratoire EA 4691 'BIOS', 1, rue du Maréchal Juin, Reims 51100, France
| | - Jean-Louis Coeuriot
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France
| | - Louis-Frédéric Jacquelin
- Faculté d'Odontologie, Université de Reims Champagne-Ardenne, 2 rue du Général Koenig, Reims 51100, France
| | - Isabelle Bailleul-Forestier
- Faculty of Dentistry, Paul Sabatier University, LU51, Pôle Odontologie, Hôpitaux de Toulouse, 3 Chemin des Maraîchers, Toulouse, France
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue St Elisabeth, 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Reference Centre for Orodental Manifestations of Rare Diseases, CRMR, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Debora Bertola
- Unidade de Genética do Instituto da Criança, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil and
| | - Pascal Dollé
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CERBM, INSERM U 964, CNRS UMR 7104, 1 rue Laurent Fries, BP 10142, Illkirch 67404, France
| | - Alain Verloes
- Département de Génétique - Hôpital Robert Debré, CRMR 'Anomalies du Développement & Syndromes Malformatifs', CRMR 'Déficiences Intellectuelles de Causes Rares', 48 bd Sérurier, Paris 75019, France
| | - Geert Mortier
- Center for Medical Genetics, Ghent University, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium
| | - Hélène Dollfus
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Hôpitaux Universitaires de Strasbourg, Service de Génétique Médicale, 1 place de l'Hôpital, 67000 Strasbourg, France
| | - Agnès Bloch-Zupan
- Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France Université de Strasbourg, Laboratoire de Génétique Médicale, INSERM UMR 1112, Faculté de Médecine, FMTS, 11 rue Humann 67000 Strasbourg, France
| |
Collapse
|
41
|
Ganss B, Abbarin N. Maturation and beyond: proteins in the developmental continuum from enamel epithelium to junctional epithelium. Front Physiol 2014; 5:371. [PMID: 25309457 PMCID: PMC4174742 DOI: 10.3389/fphys.2014.00371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022] Open
Abstract
Enamel, covering the surface of teeth, is the hardest substance in mammals. It is designed to last a lifetime in spite of severe environmental challenges. Enamel is formed in a biomineralization process that is essentially divided into secretory and maturation stages. While the molecular events of enamel formation during the secretory stage have been elucidated to some extent, the mechanisms of enamel maturation are less defined, and little is known about the molecules present beyond the maturation stage. Several genes, all located within the secreted calcium-binding phosphoprotein (SCPP) gene cluster, were recently shown to be expressed during the developmental continuum from maturation stage ameloblasts to junctional epithelium (JE). This review introduces four such genes and their protein products, and presents our current state of knowledge on their roles, primarily in enamel formation and JE biology. The discovery of these proteins, and a more detailed analysis of their biological functions, will likely contribute to a more thorough understanding of the molecular mechanisms of enamel maturation and dentogingival attachment.
Collapse
Affiliation(s)
- Bernhard Ganss
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| | - Nastaran Abbarin
- Matrix Dynamics Group, Mineralized Tissue Lab, Faculty of Dentistry, University of Toronto Toronto, ON, Canada
| |
Collapse
|
42
|
Pugach MK, Gibson CW. Analysis of enamel development using murine model systems: approaches and limitations. Front Physiol 2014; 5:313. [PMID: 25278900 PMCID: PMC4166228 DOI: 10.3389/fphys.2014.00313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/24/2022] Open
Abstract
A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.
Collapse
Affiliation(s)
- Megan K Pugach
- Department of Mineralized Tissue Biology, The Forsyth Institute, Harvard School of Dental Medicine, Harvard University Cambridge, MA, USA
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
43
|
Sarkar J, Simanian EJ, Tuggy SY, Bartlett JD, Snead ML, Sugiyama T, Paine ML. Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front Physiol 2014; 5:277. [PMID: 25120490 PMCID: PMC4110967 DOI: 10.3389/fphys.2014.00277] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
Ameloblasts are ectoderm-derived cells that produce an extracellular enamel matrix that mineralizes to form enamel. The development and use of immortalized cell lines, with a stable phenotype, is an important contribution to biological studies as it allows for the investigation of molecular activities without the continuous need for animals. In this study we compare the expression profiles of enamel-specific genes in two mouse derived ameloblast-like cell lines: LS8 and ALC cells. Quantitative PCR analysis indicates that, relative to each other, LS8 cells express greater mRNA levels for genes that define secretory-stage activities (Amelx, Ambn, Enam, and Mmp20), while ALC express greater mRNA levels for genes that define maturation-stage activities (Odam and Klk4). Western blot analyses show that Amelx, Ambn, and Odam proteins are detectable in ALC, but not LS8 cells. Unstimulated ALC cells form calcified nodules, while LS8 cells do not. These data provide greater insight as to the suitability of both cell lines to contribute to biological studies on enamel formation and biomineralization, and highlight some of the strengths and weaknesses when relying on enamel epithelial organ-derived cell lines to study molecular activities of amelogenesis.
Collapse
Affiliation(s)
- Juni Sarkar
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Emil J Simanian
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Sarah Y Tuggy
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute Cambridge, MA, USA
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| | - Toshihiro Sugiyama
- Department of Biochemistry, Akita University Graduate School of Medicine Hondo, Akita, Japan
| | - Michael L Paine
- Center for Craniofacial Molecular Biology, Division of Biomedical Sciences, Herman Ostrow School of Dentistry of USC, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
44
|
New insights into the functions of enamel matrices in calcified tissues. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Kawasaki K. Odontogenic ameloblast-associated protein (ODAM) and amelotin: Major players in hypermineralization of enamel and enameloid. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Yoshizaki K, Yamada Y. Gene evolution and functions of extracellular matrix proteins in teeth. ACTA ACUST UNITED AC 2013; 72:1-10. [PMID: 23539364 DOI: 10.1016/j.odw.2013.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the "core matrisome" in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins.
Collapse
Affiliation(s)
- Keigo Yoshizaki
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | | |
Collapse
|