1
|
Ali W, Agarwal M, Jamal S, Gangwar R, Sharma R, Mubarak MM, Wani ZA, Ahmad Z, Khan A, Sheikh JA, Grover A, Bhaskar A, Dwivedi VP, Grover S. Revitalizing antimicrobial strategies: paromomycin and dicoumarol repurposed as potent inhibitors of M.tb's replication machinery via targeting the vital protein DnaN. Int J Biol Macromol 2024; 278:134652. [PMID: 39173789 DOI: 10.1016/j.ijbiomac.2024.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Despite the WHO's recommended treatment regimen, challenges such as patient non-adherence and the emergence of drug-resistant strains persist with TB claiming 1.5 million lives annually. In this study, we propose a novel approach by targeting the DNA replication-machinery of M.tb through drug-repurposing. The β2-Sliding clamp (DnaN), a key component of this complex, emerges as a potentially vulnerable target due to its distinct structure and lack of human homology. Leveraging TBVS, we screened ∼2600 FDA-approved drugs, identifying five potential DnaN inhibitors, by employing computational studies, including molecular-docking and molecular-dynamics simulations. The shortlisted compounds were subjected to in-vitro and ex-vivo studies, evaluating their anti-mycobacterial potential. Notably, Dicoumarol, Paromomycin, and Posaconazole exhibited anti-TB properties with a MIC value of 6.25, 3.12 and 50 μg/ml respectively, with Dicoumarol and Paromomycin, demonstrating efficacy in reducing live M.tb within macrophages. Biophysical analyses confirmed the strong binding-affinity of DnaNdrug complexes, validating our in-silico predictions. Moreover, RNA-Seq data revealed the upregulation of proteins associated with DNA repair and replication mechanisms upon Paromomycin treatment. This study explores repurposing FDA-approved drugs to target TB via the mycobacterial DNA replication-machinery, showing promising inhibitory effects. It sets the stage for further clinical research, demonstrating the potential of drug repurposing in TB treatment.
Collapse
Affiliation(s)
- Waseem Ali
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Meetu Agarwal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Salma Jamal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rishabh Gangwar
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rahul Sharma
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Mohamad Mosa Mubarak
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zubair Ahmad Wani
- Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zahoor Ahmad
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India; Council of Scientific & Industrial Research (CSIR), Professor Academy of Scientific & Innovative Research (AcSIR), India.
| | - Areeba Khan
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | | | - Abhinav Grover
- Jawaharlal Nehru University, School of Biotechnology, New Delhi 110067, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Sonam Grover
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| |
Collapse
|
2
|
Botto MM, Borsellini A, Lamers MH. A four-point molecular handover during Okazaki maturation. Nat Struct Mol Biol 2023; 30:1505-1515. [PMID: 37620586 DOI: 10.1038/s41594-023-01071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 07/17/2023] [Indexed: 08/26/2023]
Abstract
DNA replication introduces thousands of RNA primers into the lagging strand that need to be removed for replication to be completed. In Escherichia coli when the replicative DNA polymerase Pol IIIα terminates at a previously synthesized RNA primer, DNA Pol I takes over and continues DNA synthesis while displacing the downstream RNA primer. The displaced primer is subsequently excised by an endonuclease, followed by the sealing of the nick by a DNA ligase. Yet how the sequential actions of Pol IIIα, Pol I polymerase, Pol I endonuclease and DNA ligase are coordinated is poorly defined. Here we show that each enzymatic activity prepares the DNA substrate for the next activity, creating an efficient four-point molecular handover. The cryogenic-electron microscopy structure of Pol I bound to a DNA substrate with both an upstream and downstream primer reveals how it displaces the primer in a manner analogous to the monomeric helicases. Moreover, we find that in addition to its flap-directed nuclease activity, the endonuclease domain of Pol I also specifically cuts at the RNA-DNA junction, thus marking the end of the RNA primer and creating a 5' end that is a suitable substrate for the ligase activity of LigA once all RNA has been removed.
Collapse
Affiliation(s)
- Margherita M Botto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Molecular and Cellular Biology, Geneva University, Geneva, Switzerland
| | - Alessandro Borsellini
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands
- Department of Structural Biology, Human Technopole, Milan, Italy
| | - Meindert H Lamers
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.
| |
Collapse
|
3
|
Mulye M, Singh MI, Jain V. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes (Basel) 2022; 13:2058. [PMID: 36360296 PMCID: PMC9690074 DOI: 10.3390/genes13112058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Sliding clamps play a pivotal role in the process of replication by increasing the processivity of the replicative polymerase. They also serve as an interacting platform for a plethora of other proteins, which have an important role in other DNA metabolic processes, including DNA repair. In other words, clamps have evolved, as has been correctly referred to, into a mobile "tool-belt" on the DNA, and provide a platform for several proteins that are involved in maintaining genome integrity. Because of the central role played by the sliding clamp in various processes, its study becomes essential and relevant in understanding these processes and exploring the protein as an important drug target. In this review, we provide an updated report on the functioning, interactions, and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
Collapse
Affiliation(s)
- Meenakshi Mulye
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| | | | - Vikas Jain
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| |
Collapse
|
4
|
Lata K, Vishwakarma J, Kumar S, Khanam T, Ramachandran R. Mycobacterium tuberculosis Endonuclease VIII 2 (Nei2) forms a prereplicative BER complex with DnaN: Identification, characterization, and disruption of complex formation. Mol Microbiol 2021; 117:320-333. [PMID: 34820919 DOI: 10.1111/mmi.14848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis Nei2 (Rv3297) is a BER glycosylase that removes oxidized base lesions from ssDNA and replication fork-mimicking substrates. We show that Endonuclease VIII 2 (Nei2) forms a BER complex with the β-clamp (DnaN, Rv0002) with a KD of 170 nM. The Nei2-β-clamp interactions enhance Nei2's activities up to several folds. SEC analysis shows that one molecule of Nei2 binds to a single β-clamp dimer. Nei2 interacts with subsites I and II of the β-clamp via a noncanonical 223 QGCRRCGTLIAY239 Clamp Interacting Protein (CIP) motif in the C-terminal zinc-finger domain, which was previously shown by us to be dispensable for intrinsic Nei2 activity. The 12-mer peptide alone exhibited a KD of 10.28 nM, suggesting that the motif is a key mediator of Nei2-β-clamp interactions. Finally, we identified inhibitors of Nei2-β-clamp interactions using rational methods, in vitro disruption, and SPR assays after querying a database of natural products. We found that Tubulosine, Fumitremorgin C, Toyocamycin, and Aleuritic acid exhibit IC50 values of 94.47, 83.49, 109.7, and 71.49 µM, respectively. They act by disrupting Nei2-β-clamp interactions and do not affect intrinsic Nei2 activity. Among other things, the present study gives insights into the role of Nei2 in bacterial prereplicative BER.
Collapse
Affiliation(s)
- Kiran Lata
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jyoti Vishwakarma
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Khanam T, Afsar M, Shukla A, Alam F, Kumar S, Soyar H, Dolma K, Pasupuleti M, Srivastava KK, Ampapathi RS, Ramachandran R. M. tuberculosis class II apurinic/ apyrimidinic-endonuclease/3'-5' exonuclease (XthA) engages with NAD+-dependent DNA ligase A (LigA) to counter futile cleavage and ligation cycles in base excision repair. Nucleic Acids Res 2020; 48:4325-4343. [PMID: 32232338 PMCID: PMC7530888 DOI: 10.1093/nar/gkaa188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Class-II AP-endonuclease (XthA) and NAD+-dependent DNA ligase (LigA) are involved in initial and terminal stages of bacterial DNA base excision repair (BER), respectively. XthA acts on abasic sites of damaged DNA to create nicks with 3′OH and 5′-deoxyribose phosphate (5′-dRP) moieties. Co-immunoprecipitation using mycobacterial cell-lysate, identified MtbLigA-MtbXthA complex formation. Pull-down experiments using purified wild-type, and domain-deleted MtbLigA mutants show that LigA-XthA interactions are mediated by the BRCT-domain of LigA. Small-Angle-X-ray scattering, 15N/1H-HSQC chemical shift perturbation experiments and mutational analysis identified the BRCT-domain region that interacts with a novel 104DGQPSWSGKP113 motif on XthA for complex-formation. Isothermal-titration calorimetry experiments show that a synthetic peptide with this sequence interacts with MtbLigA and disrupts XthA–LigA interactions. In vitro assays involving DNA substrate and product analogs show that LigA can efficiently reseal 3′OH and 5′dRP DNA termini created by XthA at abasic sites. Assays and SAXS experiments performed in the presence and absence of DNA, show that XthA inhibits LigA by specifically engaging with the latter's BRCT-domain to prevent it from encircling substrate DNA. Overall, the study suggests a coordinating function for XthA whereby it engages initially with LigA to prevent the undesirable consequences of futile cleavage and ligation cycles that might derail bacterial BER.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Mohammad Afsar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankita Shukla
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Faiyaz Alam
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sanjay Kumar
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Horam Soyar
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kunzes Dolma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kishore Kumar Srivastava
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravi Sankar Ampapathi
- Sophisticated Analytical Instruments Based Facility and Research Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
6
|
Li Y, Wang X, Teng D, Chen H, Wang M, Wang J, Zhang J, He W. Identification of the Ligands of TCRγδ by Screening the Immune Repertoire of γδT Cells From Patients With Tuberculosis. Front Immunol 2019; 10:2282. [PMID: 31608066 PMCID: PMC6769167 DOI: 10.3389/fimmu.2019.02282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection is a serious threat to human health. γδT cells, which are characterized by major histocompatibility complex (MHC) non-restriction, are rapidly activated and initiate anti-infectious immune responses in the early stages of Mtb infection. However, the mechanism underlying the recognition of Mtb by γδT cells remains unclear. In this study, we characterized the pattern of the human T-cell receptor (TCR) γδ complementary determinant region 3 (CDR3) repertoire in TB patients by using high-throughput immune repertoire sequencing. The results showed that the diversity of CDR3δ was significantly reduced and that the frequency of different gene fragments (V/J), particularly the V-segment of the δ-chain, was substantially altered, which indicate that TB infection-related γδT cells, especially the δ genes, were activated and amplified in TB patients. Then, we screened the Mtb-associated epitopes/proteins recognized by γδT cells using an Mtb proteome chip with dominant CDR3δ peptides as probes. We identified the Mtb protein Rv0002 as a potential ligand capable of stimulating the activation and proliferation of γδT cells. Our findings provide a further understanding of the mechanisms underlying γδT cell-mediated immunity against Mtb infection.
Collapse
Affiliation(s)
- Yuxia Li
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Xinfeng Wang
- Department of Laboratory Medicine, Shandong Provincial Chest Hospital, Jinan, China
| | - Da Teng
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Hui Chen
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Maoshui Wang
- Department of Laboratory Medicine, Shandong Provincial Chest Hospital, Jinan, China
| | - Junling Wang
- Department of Laboratory Medicine, Shandong Provincial Chest Hospital, Jinan, China
| | - Jianmin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| | - Wei He
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences and School of Basic Medicine, Beijing, China
| |
Collapse
|
7
|
Perumal SK, Xu X, Yan C, Ivanov I, Benkovic SJ. Recognition of a Key Anchor Residue by a Conserved Hydrophobic Pocket Ensures Subunit Interface Integrity in DNA Clamps. J Mol Biol 2019; 431:2493-2510. [PMID: 31051173 DOI: 10.1016/j.jmb.2019.04.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Sliding clamp proteins encircle duplex DNA and are involved in processive DNA replication and the DNA damage response. Clamp proteins are ring-shaped oligomers (dimers or trimers) and are loaded onto DNA by an ATP-dependent clamp loader complex that ruptures the interface between two adjacent subunits. Here we measured the solution dynamics of the human clamp protein, proliferating cell nuclear antigen, by monitoring the change in the fluorescence of a site-specifically labeled. To unravel the origins of clamp subunit interface stability, we carried out comprehensive comparative analysis of the interfaces of seven sliding clamps. We used computational modeling (molecular dynamic simulations and MM/GBSA binding energy decomposition analyses) to identify conserved networks of hydrophobic residues critical for clamp stability and ring-opening dynamics. The hydrophobic network is shared among clamp proteins and exhibits a "key in a keyhole" pattern where a bulky aromatic residue from one clamp subunit is anchored into a hydrophobic pocket of the opposing subunit. Bioinformatics and dynamic network analyses showed that this oligomeric latch is conserved across DNA sliding clamps from all domains of life and dictates the dynamics of clamp opening and closing.
Collapse
Affiliation(s)
- Senthil K Perumal
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaojun Xu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Chunli Yan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Ivaylo Ivanov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Stephen J Benkovic
- Department of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Rv0004 is a new essential member of the mycobacterial DNA replication machinery. PLoS Genet 2017; 13:e1007115. [PMID: 29176877 PMCID: PMC5720831 DOI: 10.1371/journal.pgen.1007115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/07/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022] Open
Abstract
DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004’s DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes. DNA is the molecule that encodes all of the genetic information of an organism. In order to pass genes onto the next generation, DNA has to first be copied through a process called DNA replication. Most of the initial studies on bacterial DNA replication were performed in Escherichia coli and Bacillus subtilis. While these studies were very informative, there is an increasing appreciation that more distantly related bacteria have diverged from these organisms in even the most fundamental processes. Mycobacteria, a group of bacteria that includes the human pathogen Mycobacterium tuberculosis, are distantly related to E. coli and B. subtilis and lack some of the proteins used for DNA replication in those model organisms. In this study, we discover that a previously uncharacterized protein in Mycobacteria, named Rv0004, is essential for bacterial viability and involved in DNA replication. Rv0004 is conserved in most bacteria but is absent from E. coli and B. subtilis. Since Rv0004 is essential for mycobacterial viability, this study both identifies a future target for antibiotic therapy and expands our knowledge on the diversity of bacterial DNA replication strategies, which may be applicable to other organisms.
Collapse
|
9
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
10
|
Machaba KE, Cele FN, Mhlongo NN, Soliman MES. Sliding Clamp of DNA Polymerase III as a Drug Target for TB Therapy: Comprehensive Conformational and Binding Analysis from Molecular Dynamic Simulations. Cell Biochem Biophys 2017; 74:473-481. [PMID: 27651172 DOI: 10.1007/s12013-016-0764-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common causes of death in the world. Mycobacterium tuberculosis -sliding clamp is a protein essential for many important DNA transactions including replication and DNA repair proteins, thus, a potential drug target for tuberculosis. Further investigation is needed in understanding DNA polymerase sliding clamp structure, especially from a computational perspective. In this study, we employ a wide-range of comparative molecular dynamic analyses on two systems: Mycobacterium tuberculosis - sliding clamp enzyme in its apo and bound form. The results reported in this study shows apo conformation to be less stable, as compared to bound conformation with an average radius of gyration of 25.812 and 25.459 Å, respectively. This was further supported by root mean square fluctuation, where an apo enzyme showed a higher degree of flexibility. However, the presence of the ligand lowers radius of gyration and root mean square fluctuation and also leads to an existence of negative correlated motions. Principal component analysis further justifies the same findings, whereby the apo enzyme exhibits a higher fluctuation compared to the bound complex. In addition, a stable 310 helix located at the binding site appears to be unstable in the presence of the ligand. Hence, it is possible that the binding of the ligand may have caused a rearrangement of the structure, leading to a change in the unwinding of 310 helix. Findings reported in this study further enhance the understanding of Mycobacterium tuberculosis -DnaN and also give a lead to the development of potent tuberculosis drugs.
Collapse
Affiliation(s)
- Kgothatso E Machaba
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Favorite N Cele
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Ndumiso N Mhlongo
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Modeling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4001, South Africa.
| |
Collapse
|
11
|
Chandran AV, Jayanthi S, Vijayan M. Structure and interactions of RecA: plasticity revealed by molecular dynamics simulations. J Biomol Struct Dyn 2017; 36:98-111. [PMID: 28049371 DOI: 10.1080/07391102.2016.1268975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Eleven independent simulations, each involving three consecutive molecules in the RecA filament, carried out on the protein from Mycobacterium tuberculosis, Mycobacterium smegmatis and Escherichia coli and their Adenosine triphosphate (ATP) complexes, provide valuable information which is complementary to that obtained from crystal structures, in addition to confirming the robust common structural framework within which RecA molecules from different eubacteria function. Functionally important loops, which are largely disordered in crystal structures, appear to adopt in each simulation subsets of conformations from larger ensembles. The simulations indicate the possibility of additional interactions involving the P-loop which remains largely invariant. The phosphate tail of the ATP is firmly anchored on the loop while the nucleoside moiety exhibits substantial structural variability. The most important consequence of ATP binding is the movement of the 'switch' residue. The relevant simulations indicate the feasibility of a second nucleotide binding site, but the pathway between adjacent molecules in the filament involving the two nucleotide binding sites appears to be possible only in the mycobacterial proteins.
Collapse
Affiliation(s)
- Anu V Chandran
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - S Jayanthi
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| | - M Vijayan
- a Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
12
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
13
|
Pandey P, Tarique KF, Mazumder M, Rehman SAA, Kumari N, Gourinath S. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori. Sci Rep 2016; 6:31181. [PMID: 27499105 PMCID: PMC4976356 DOI: 10.1038/srep31181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/14/2016] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori, a gram-negative and microaerophilic bacterium, is the major cause of chronic gastritis, gastric ulcers and gastric cancer. Owing to its central role, DNA replication machinery has emerged as a prime target for the development of antimicrobial drugs. Here, we report 2Å structure of β-clamp from H. pylori (Hpβ-clamp), which is one of the critical components of DNA polymerase III. Despite of similarity in the overall fold of eubacterial β-clamp structures, some distinct features in DNA interacting loops exists that have not been reported previously. The in silico prediction identified the potential binders of β-clamp such as alpha subunit of DNA pol III and DNA ligase with identification of β-clamp binding regions in them and validated by SPR studies. Hpβ-clamp interacts with DNA ligase in micromolar binding affinity. Moreover, we have successfully determined the co-crystal structure of β-clamp with peptide from DNA ligase (not reported earlier in prokaryotes) revealing the region from ligase that interacts with β-clamp.
Collapse
Affiliation(s)
- Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | | - Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Nilima Kumari
- Department of Bioscience and Biotechnology, Banasthali University, Rajasthan, India
| | | |
Collapse
|
14
|
Gu S, Li W, Zhang H, Fleming J, Yang W, Wang S, Wei W, Zhou J, Zhu G, Deng J, Hou J, Zhou Y, Lin S, Zhang XE, Bi L. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity. Sci Rep 2016; 6:18418. [PMID: 26822057 PMCID: PMC4731781 DOI: 10.1038/srep18418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022] Open
Abstract
DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb.
Collapse
Affiliation(s)
- Shoujin Gu
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Li
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Joy Fleming
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqiang Yang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Wei
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhou
- The Fourth People's Hospital, Foshan 528000, China
| | - Guofeng Zhu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiaoyu Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Hou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zhou
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiqiang Lin
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-En Zhang
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijun Bi
- Key Laboratory of RNA Biology &National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Chandran AV, Prabu JR, Nautiyal A, Patil KN, Muniyappa K, Vijayan M. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. J Biosci 2015; 40:13-30. [PMID: 25740138 DOI: 10.1007/s12038-014-9497-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the 'switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M. smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.
Collapse
Affiliation(s)
- Anu V Chandran
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012
| | | | | | | | | | | |
Collapse
|
16
|
Khanam T, Rai N, Ramachandran R. Mycobacterium tuberculosis class II apurinic/apyrimidinic-endonuclease/3'-5' exonuclease III exhibits DNA regulated modes of interaction with the sliding DNA β-clamp. Mol Microbiol 2015; 98:46-68. [PMID: 26103519 DOI: 10.1111/mmi.13102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 11/30/2022]
Abstract
The class-II AP-endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β-clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239 QLRFPKK245 motif in the DNA-binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding-groove (PBG) and the C-terminal of β-clamp located on different domains interact with XthA. The β-clamp-XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β-clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β-clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β-clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β-clamp is important for interactions with XthA, while the C-terminal domain predominantly mediates functional interactions in the substrate's presence.
Collapse
Affiliation(s)
- Taran Khanam
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Niyati Rai
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| | - Ravishankar Ramachandran
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226031, India
| |
Collapse
|