1
|
Mahout M, Carlson RP, Simon L, Peres S. Logic programming-based Minimal Cut Sets reveal consortium-level therapeutic targets for chronic wound infections. NPJ Syst Biol Appl 2024; 10:34. [PMID: 38565568 PMCID: PMC10987626 DOI: 10.1038/s41540-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Minimal Cut Sets (MCSs) identify sets of reactions which, when removed from a metabolic network, disable certain cellular functions. The traditional search for MCSs within genome-scale metabolic models (GSMMs) targets cellular growth, identifies reaction sets resulting in a lethal phenotype if disrupted, and retrieves a list of corresponding gene, mRNA, or enzyme targets. Using the dual link between MCSs and Elementary Flux Modes (EFMs), our logic programming-based tool aspefm was able to compute MCSs of any size from GSMMs in acceptable run times. The tool demonstrated better performance when computing large-sized MCSs than the mixed-integer linear programming methods. We applied the new MCSs methodology to a medically-relevant consortium model of two cross-feeding bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. aspefm constraints were used to bias the computation of MCSs toward exchanged metabolites that could complement lethal phenotypes in individual species. We found that interspecies metabolite exchanges could play an essential role in rescuing single-species growth, for instance inosine could complement lethal reaction knock-outs in the purine synthesis, glycolysis, and pentose phosphate pathways of both bacteria. Finally, MCSs were used to derive a list of promising enzyme targets for consortium-level therapeutic applications that cannot be circumvented via interspecies metabolite exchange.
Collapse
Affiliation(s)
- Maxime Mahout
- Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique, 91405, Orsay, France
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Laurent Simon
- Bordeaux-INP, Université Bordeaux, LaBRI, 33405, Talence Cedex, France
| | - Sabine Peres
- UMR CNRS 5558, Laboratoire de Biométrie et de Biologie Évolutive, Université Claude Bernard Lyon 1, 69100, Villeurbanne, France.
- INRIA Lyon Centre, 69100, Villeurbanne, France.
| |
Collapse
|
2
|
Im S, Do H, Hwang J, Shim YS, Lee JH. Crystal Structure and Sequence Analysis of N5, N10-Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase Enzyme from Porphyromonas gingivalis. CRYSTALS 2023; 13:1489. [DOI: 10.3390/cryst13101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The methylenetetrahydrofolate dehydrogenase–cyclohydrolase (FolD) enzyme has a dual activity of N5,N10-methylenetetrahydrofolate dehydrogenase and cyclohydrolase. This enzyme plays a critical role in the chemical modification of tetrahydrofolate, which is an important coenzyme involved in the synthesis of DNA, RNA, and amino acids. Therefore, bacterial FolD has been studied as a potential drug target for the development of antibiotics. Here, we determined the crystal structure of FolD (PgFolD) from the oral pathogen Porphyromonas gingivalis at 2.05 Å resolution using the molecular replacement method. The crystal structure of PgFolD was successfully refined to a crystallographic R-factor of 21.4% (Rfree = 23.8%). The crystals belong to the space group of P4322 with the unit cell parameters of a = 110.7 Å, b = 110.7 Å, and c = 69.8 Å, containing one subunit in the asymmetric unit. Our analytical size-exclusion chromatography results indicated that PgFolD forms a stable dimer in solution. Additionally, structural and sequence comparison studies with previously known FolDs revealed that PgFolD has a different substrate-binding site residue composition. These findings provide valuable insights for the structure-based development of specific inhibitors against the Porphyromonas gingivalis pathogen.
Collapse
Affiliation(s)
- Sehyeok Im
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Youn-Soo Shim
- Department of Dental Hygiene, Sunmoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| |
Collapse
|
3
|
Caprara CDSC, Mathias TK, Santos MDFC, D’Oca MGM, D’Oca CDRM, Roselet F, Abreu PC, Ramos DF. Application of 1H HR-MAS NMR-Based Metabolite Fingerprinting of Marine Microalgae. Metabolites 2023; 13:metabo13020202. [PMID: 36837821 PMCID: PMC9965007 DOI: 10.3390/metabo13020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Natural products from the marine environment as well as microalgae, have been known for the complexity of the metabolites they produce due to their adaptability to different environmental conditions, which has been an inexhaustible source of several bioactive properties, such as antioxidant, anti-tumor, and antimicrobial. This study aims to characterize the main metabolites of three species of microalgae (Nannochloropsis oceanica, Chaetoceros muelleri, and Conticribra weissflogii), which have important applications in the biofuel and nutrition industries, by 1H High-resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR), a method which is non-destructive, is highly reproducible, and requires minimal sample preparation. Even though the three species were found in the same ecosystem and a superior production of lipid compounds was observed, important differences were identified in relation to the production of specialized metabolites. These distinct properties favor the use of these compounds as leaders in the development of new bioactive compounds, especially against environmental, human, and animal pathogens (One Health), and demonstrate their potential in the development of alternatives for aquaculture.
Collapse
Affiliation(s)
| | - Tatiane Ksyvickas Mathias
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Maria de Fátima C. Santos
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Marcelo G. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Caroline Da R. M. D’Oca
- NMR Laboratory, NMR Center, Departamento de Química, Universidade Federal do Paraná, Curitiba 81530-900, PR, Brazil
| | - Fabio Roselet
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Paulo Cesar Abreu
- Laboratório de Produção de Microalgas (LPM), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande 96210-030, RS, Brazil
| | - Daniela Fernandes Ramos
- Laboratório de Desenvolvimento de Novos Fármacos (LADEFA), Universidade Federal do Rio Grande (FURG), Rio Grande 96200-400, RS, Brazil
- Núcleo de Desenvolvimento de Novos Fármacos—NUDEFA, Rua General Osório, s/n°, Campus Saúde, 2° andar, Rio Grande 96200-400, RS, Brazil
- Correspondence: ; Tel.: +55-53-3237-4634
| |
Collapse
|
4
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
5
|
Dawson A, Trumper P, de Souza JO, Parker H, Jones MJ, Hales TG, Hunter WN. Engineering a surrogate human heteromeric α/β glycine receptor orthosteric site exploiting the structural homology and stability of acetylcholine-binding protein. IUCRJ 2019; 6:1014-1023. [PMID: 31709057 PMCID: PMC6830221 DOI: 10.1107/s205225251901114x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Protein-engineering methods have been exploited to produce a surrogate system for the extracellular neurotransmitter-binding site of a heteromeric human ligand-gated ion channel, the glycine receptor. This approach circumvents two major issues: the inherent experimental difficulties in working with a membrane-bound ion channel and the complication that a heteromeric assembly is necessary to create a key, physiologically relevant binding site. Residues that form the orthosteric site in a highly stable ortholog, acetylcholine-binding protein, were selected for substitution. Recombinant proteins were prepared and characterized in stepwise fashion exploiting a range of biophysical techniques, including X-ray crystallography, married to the use of selected chemical probes. The decision making and development of the surrogate, which is termed a glycine-binding protein, are described, and comparisons are provided with wild-type and homomeric systems that establish features of molecular recognition in the binding site and the confidence that the system is suited for use in early-stage drug discovery targeting a heteromeric α/β glycine receptor.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Juliana Oliveira de Souza
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Holly Parker
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Mathew J. Jones
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Tim G. Hales
- Division of Systems Medicine, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
6
|
Bueno R, Dawson A, Hunter WN. An assessment of three human methylenetetrahydrofolate dehydrogenase/cyclohydrolase-ligand complexes following further refinement. Acta Crystallogr F Struct Biol Commun 2019; 75:148-152. [PMID: 30839287 PMCID: PMC6404858 DOI: 10.1107/s2053230x18018083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
The enzymes involved in folate metabolism are key drug targets for cell-growth modulation, and accurate crystallographic structures provide templates to be exploited for structure-based ligand design. In this context, three ternary complex structures of human methylenetetrahydrofolate dehydrogenase/cyclohydrolase have been published [Schmidt et al. (2000), Biochemistry, 39, 6325-6335] and potentially represent starting points for the development of new antifolate inhibitors. However, an inspection of the models and the deposited data revealed deficiencies and raised questions about the validity of the structures. A number of inconsistencies relating to the publication were also identified. Additional refinement was carried out with the deposited data, seeking to improve the models and to then validate the complex structures or correct the record. In one case, the inclusion of the inhibitor in the structure was supported and alterations to the model allowed details of enzyme-ligand interactions to be described that had not previously been discussed. For one weak inhibitor, the data suggested that the ligand may adopt two poses in the binding site, both with few interactions with the enzyme. In the third case, that of a potent inhibitor, inconsistencies were noted in the assignment of the chemical structure and there was no evidence to support the inclusion of the ligand in the active site.
Collapse
Affiliation(s)
- Renata Bueno
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
7
|
Haque MR, Higashiura A, Nakagawa A, Hirowatari A, Furuya S, Yamamoto K. Molecular structure of a 5,10-methylenetetrahydrofolate dehydrogenase from the silkworm Bombyx mori. FEBS Open Bio 2019; 9:618-628. [PMID: 30984537 PMCID: PMC6443876 DOI: 10.1002/2211-5463.12595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 11/12/2022] Open
Abstract
The enzyme 5,10‐methylenetetrahydrofolate dehydrogenase (MTHFD) is essential for the production of certain amino acids (glycine, serine, and methionine) and nucleic acids (thymidylate and purine). Here, we identified a cDNA encoding this enzyme from the silkworm Bombyx mori. The recombinant B. mori MTHFD (bmMTHFD) expressed in Escherichia coli recognized 5,10‐methylenetetrahydrofolate and 5,10‐methenyltetrahydrofolate as substrate in the presence of NADP+ as well as NAD+. The bmMTHFD structure was determined at a resolution of 1.75 Å by X‐ray crystallography. Site‐directed mutagenesis indicated that the amino acid residue Tyr49 contributed to its catalytic activity. Our findings provide insight into the mechanism underlying the activity of MTHFD from B. mori and potentially other insects and may therefore facilitate the development of inhibitors specific to MTHFD as insecticides.
Collapse
Affiliation(s)
- Mohammad R Haque
- Department of Bioscience and Biotechnology Kyushu University Graduate School Fukuoka Japan
| | - Akifumi Higashiura
- Institute for Protein Research Osaka University Suita Japan.,Present address: Department of Virology Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | | | - Aiko Hirowatari
- Department of Bioscience and Biotechnology Kyushu University Graduate School Fukuoka Japan
| | - Shigeki Furuya
- Department of Bioscience and Biotechnology Kyushu University Graduate School Fukuoka Japan
| | - Kohji Yamamoto
- Department of Bioscience and Biotechnology Kyushu University Graduate School Fukuoka Japan
| |
Collapse
|
8
|
Cullia G, Tamborini L, Conti P, De Micheli C, Pinto A. Folates in Trypanosoma brucei
: Achievements and Opportunities. ChemMedChem 2018; 13:2150-2158. [DOI: 10.1002/cmdc.201800500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Gregorio Cullia
- Institute of Biomolecules Max Mousseron (IBMM); UMR5247; CNRS; University of Montpellier; ENSCM; Place Eugène Battaillon 34095 Montpellier cedex 5 France
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Paola Conti
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Carlo De Micheli
- Department of Pharmaceutical Sciences (DISFARM); University of Milan; via Luigi Mangiagalli 25 20133 Milano Italy
| | - Andrea Pinto
- Department of Food Environmental and Nutritional Sciences; University of Milan; via Giovanni Celoria 2 20133 Milano Italy
| |
Collapse
|
9
|
Premnath P, Reck M, Wittstein K, Stadler M, Wagner-Döbler I. Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains. BMC Microbiol 2018; 18:24. [PMID: 29580208 PMCID: PMC5870221 DOI: 10.1186/s12866-018-1170-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Background Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. Results The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. Conclusions We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability. Electronic supplementary material The online version of this article (10.1186/s12866-018-1170-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Priyanka Premnath
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Michael Reck
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Kathrin Wittstein
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Helmholtz-Center for Infection Research, Department of Microbial Drugs, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Helmholtz-Center for Infection Research, Group Microbial Communication, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
10
|
The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD. Nat Commun 2017; 8:1529. [PMID: 29142318 PMCID: PMC5688156 DOI: 10.1038/s41467-017-01671-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 01/26/2023] Open
Abstract
The natural product carolacton is a macrolide keto-carboxylic acid produced by the myxobacterium Sorangium cellulosum, and was originally described as an antibacterial compound. Here we show that carolacton targets FolD, a key enzyme from the folate-dependent C1 metabolism. We characterize the interaction between bacterial FolD and carolacton biophysically, structurally and biochemically. Carolacton binds FolD with nanomolar affinity, and the crystal structure of the FolD–carolacton complex reveals the mode of binding. We show that the human FolD orthologs, MTHFD1 and MTHFD2, are also inhibited in the low nM range, and that micromolar concentrations of carolacton inhibit the growth of cancer cell lines. As mitochondrial MTHFD2 is known to be upregulated in cancer cells, it may be possible to use carolacton as an inhibitor tool compound to assess MTHFD2 as an anti-cancer target. The mechanisms behind the antibacterial activity of the natural product carolacton are unknown. Here, the authors show that carolacton is a potent inhibitor of FolD/MTHFD enzymes (involved in folate-dependent C1 metabolism in bacteria and humans) and inhibits the growth of cancer cell lines
Collapse
|
11
|
Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin JA. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun 2017; 8:14631. [PMID: 28266498 PMCID: PMC5344303 DOI: 10.1038/ncomms14631] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/18/2017] [Indexed: 01/13/2023] Open
Abstract
Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.
Collapse
Affiliation(s)
- Jennifer A. Bartell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Anna S. Blazier
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Phillip Yen
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Juliane C. Thøgersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis and Sleep, Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
- Emory+Children's Center for Cystic Fibrosis Research, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - Jason A. Papin
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
12
|
Eadsforth TC, Pinto A, Luciani R, Tamborini L, Cullia G, De Micheli C, Marinelli L, Cosconati S, Novellino E, Lo Presti L, Cordeiro da Silva A, Conti P, Hunter WN, Costi MP. Characterization of 2,4-Diamino-6-oxo-1,6-dihydropyrimidin-5-yl Ureido Based Inhibitors of Trypanosoma brucei FolD and Testing for Antiparasitic Activity. J Med Chem 2015; 58:7938-48. [PMID: 26322631 PMCID: PMC4621507 DOI: 10.1021/acs.jmedchem.5b00687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The bifunctional enzyme N5,N10-methylenetetrahydrofolate
dehydrogenase/cyclo
hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought
to develop inhibitors of Trypanosoma brucei FolD
(TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally
assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2
μM, against TbFolD and displayed antiparasitic
activity against T. brucei (IC50 49 μM).
Using compound 2, we were able to obtain the first X-ray
structure of TbFolD in the presence of NADP+ and the inhibitor, which then guided the rational design of a new
series of potent TbFolD inhibitors.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| | - Andrea Pinto
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Rosaria Luciani
- Department of Life Science, University of Modena and Reggio Emilia , Via Campi 103, 41125, Modena, Italy
| | - Lucia Tamborini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Gregorio Cullia
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Carlo De Micheli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , Via Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Università di Napoli , Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II" , Via Montesano 49, 80131 Napoli, Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano , Via Golgi 19, 20133 Milano, Italy
| | - Anabela Cordeiro da Silva
- Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Cellular da Universidade do Porto, Departamento de Ciências Biológicas, Universidade do Porto , Porto, Portugal
| | - Paola Conti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano , Via Mangiagalli 25, 20133 Milano, Italy
| | - William N Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee , Dow Street, Dundee DD1 5EH, U.K
| | - Maria P Costi
- Department of Life Science, University of Modena and Reggio Emilia , Via Campi 103, 41125, Modena, Italy
| |
Collapse
|
13
|
Sah S, Varshney U. Impact of Mutating the Key Residues of a Bifunctional 5,10-Methylenetetrahydrofolate Dehydrogenase-Cyclohydrolase from Escherichia coli on Its Activities. Biochemistry 2015; 54:3504-13. [PMID: 25988590 DOI: 10.1021/acs.biochem.5b00400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylenetetrahydrofolate dehydrogenase-cyclohydrolase (FolD) catalyzes interconversion of 5,10-methylene-tetrahydrofolate and 10-formyl-tetrahydrofolate in the one-carbon metabolic pathway. In some organisms, the essential requirement of 10-formyl-tetrahydrofolate may also be fulfilled by formyltetrahydrofolate synthetase (Fhs). Recently, we developed an Escherichia coli strain in which the folD gene was deleted in the presence of Clostridium perfringens fhs (E. coli ΔfolD/p-fhs) and used it to purify FolD mutants (free from the host-encoded FolD) and determine their biological activities. Mutations in the key residues of E. coli FolD, as identified from three-dimensional structures (D121A, Q98K, K54S, Y50S, and R191E), and a genetic screen (G122D and C58Y) were generated, and the mutant proteins were purified to determine their kinetic constants. Except for the R191E and K54S mutants, others were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. While the R191E mutant showed high cyclohydrolase activity, it retained only a residual dehydrogenase activity. On the other hand, the K54S mutant lacked the cyclohydrolase activity but possessed high dehydrogenase activity. The D121A and G122D (in a loop between two helices) mutants were highly compromised in terms of both dehydrogenase and cyclohydrolase activities. In vivo and in vitro characterization of wild-type and mutant (R191E, G122D, D121A, Q98K, C58Y, K54S, and Y50S) FolD together with three-dimensional modeling has allowed us to develop a better understanding of the mechanism for substrate binding and catalysis by E. coli FolD.
Collapse
Affiliation(s)
- Shivjee Sah
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- †Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,‡Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
14
|
Rimsa V, Eadsforth TC, Joosten RP, Hunter WN. High-resolution structure of the M14-type cytosolic carboxypeptidase from Burkholderia cenocepacia refined exploiting PDB_REDO strategies. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:279-89. [PMID: 24531462 PMCID: PMC3940198 DOI: 10.1107/s1399004713026801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023]
Abstract
A potential cytosolic metallocarboxypeptidase from Burkholderia cenocepacia has been crystallized and a synchrotron-radiation microfocus beamline allowed the acquisition of diffraction data to 1.9 Å resolution. The asymmetric unit comprises a tetramer containing over 1500 amino acids, and the high-throughput automated protocols embedded in PDB_REDO were coupled with model-map inspections in refinement. This approach has highlighted the value of such protocols for efficient analyses. The subunit is constructed from two domains. The N-terminal domain has previously only been observed in cytosolic carboxypeptidase (CCP) proteins. The C-terminal domain, which carries the Zn2+-containing active site, serves to classify this protein as a member of the M14D subfamily of carboxypeptidases. Although eukaryotic CCPs possess deglutamylase activity and are implicated in processing modified tubulin, the function and substrates of the bacterial family members remain unknown. The B. cenocepacia protein did not display deglutamylase activity towards a furylacryloyl glutamate derivative, a potential substrate. Residues previously shown to coordinate the divalent cation and that contribute to peptide-bond cleavage in related enzymes such as bovine carboxypeptidase are conserved. The location of a conserved basic patch in the active site adjacent to the catalytic Zn2+, where an acetate ion is identified, suggests recognition of the carboxy-terminus in a similar fashion to other carboxypeptidases. However, there are significant differences that indicate the recognition of substrates with different properties. Of note is the presence of a lysine in the S1' recognition subsite that suggests specificity towards an acidic substrate.
Collapse
Affiliation(s)
- Vadim Rimsa
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Thomas C. Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
15
|
Dawson A, Trumper P, Chrysostomou G, Hunter WN. Structure of diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase from Acinetobacter baumannii. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:611-7. [PMID: 23722836 PMCID: PMC3668577 DOI: 10.1107/s174430911301292x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/11/2013] [Indexed: 11/11/2022]
Abstract
The bifunctional diaminohydroxyphosphoribosylaminopyrimidine deaminase/5-amino-6-(5-phosphoribosylamino)uracil reductase (RibD) represents a potential antibacterial drug target. The structure of recombinant Acinetobacter baumannii RibD is reported in orthorhombic and tetragonal crystal forms at 2.2 and 2.0 Å resolution, respectively. Comparisons with orthologous structures in the Protein Data Bank indicated close similarities. The tetragonal crystal form was obtained in the presence of guanosine monophosphate, which surprisingly was observed to occupy the adenine-binding site of the reductase domain.
Collapse
Affiliation(s)
- Alice Dawson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Paul Trumper
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Georgios Chrysostomou
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
16
|
Rao VA, Shepherd SM, Owen R, Hunter WN. Structure of Pseudomonas aeruginosa inosine 5'-monophosphate dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:243-7. [PMID: 23519796 PMCID: PMC3606566 DOI: 10.1107/s1744309113002352] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 01/23/2013] [Indexed: 05/29/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) represents a potential antimicrobial drug target. The crystal structure of recombinant Pseudomonas aeruginosa IMPDH has been determined to a resolution of 2.25 Å. The structure is a homotetramer of subunits dominated by a (β/α)8-barrel fold, consistent with other known structures of IMPDH. Also in common with previous work, the cystathionine β-synthase domains, residues 92-204, are not present in the model owing to disorder. However, unlike the majority of available structures, clearly defined electron density exists for a loop that creates part of the active site. This loop, composed of residues 297-315, links α8 and β9 and carries the catalytic Cys304. P. aeruginosa IMPDH shares a high level of sequence identity with bacterial and protozoan homologues, with residues involved in binding substrate and the NAD+ cofactor being conserved. Specific differences that have been proven to contribute to selectivity against the human enzyme in a study of Cryptosporidium parvum IMPDH are also conserved, highlighting the potential value of IMPDH as a drug target.
Collapse
Affiliation(s)
- Vincenzo A. Rao
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Sharon M. Shepherd
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Richard Owen
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| |
Collapse
|
17
|
Moynie L, Schnell R, McMahon SA, Sandalova T, Boulkerou WA, Schmidberger JW, Alphey M, Cukier C, Duthie F, Kopec J, Liu H, Jacewicz A, Hunter WN, Naismith JH, Schneider G. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:25-34. [PMID: 23295481 PMCID: PMC3539698 DOI: 10.1107/s1744309112044739] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/25/2022]
Abstract
Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns.
Collapse
Affiliation(s)
- Lucille Moynie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Stephen A. McMahon
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Tatyana Sandalova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Jason W. Schmidberger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Magnus Alphey
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Cyprian Cukier
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Fraser Duthie
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Jolanta Kopec
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Huanting Liu
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Agata Jacewicz
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - William N. Hunter
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 9ST, Scotland
| | - Gunter Schneider
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
18
|
Eadsforth TC, Maluf FV, Hunter WN. Acinetobacter baumannii FolD ligand complexes --potent inhibitors of folate metabolism and a re-evaluation of the structure of LY374571. FEBS J 2012; 279:4350-60. [PMID: 23050773 DOI: 10.1111/febs.12025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 01/26/2023]
Abstract
The bifunctional N(5),N(10)-methylenetetrahydrofolate dehydrogenase/cyclohydrolase (DHCH or FolD), which is widely distributed in prokaryotes and eukaryotes, is involved in the biosynthesis of folate cofactors that are essential for growth and cellular development. The enzyme activities represent a potential antimicrobial drug target. We have characterized the kinetic properties of FolD from the Gram-negative pathogen Acinetobacter baumanni and determined high-resolution crystal structures of complexes with a cofactor and two potent inhibitors. The data reveal new details with respect to the molecular basis of catalysis and potent inhibition. A unexpected finding was that our crystallographic data revealed a different structure for LY374571 (an inhibitor studied as an antifolate) than that previously published. The implications of this observation are discussed.
Collapse
Affiliation(s)
- Thomas C Eadsforth
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK
| | | | | |
Collapse
|