1
|
Querio G, Geddo F, Antoniotti S, Femminò S, Gallo MP, Penna C, Pagliaro P. Stay connected: The myoendothelial junction proteins in vascular function and dysfunction. Vascul Pharmacol 2025; 158:107463. [PMID: 39814089 DOI: 10.1016/j.vph.2025.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH). This review aims to illustrate the mechanisms involved in the initiation and propagation of EDH, emphasizing the role of membrane proteins involved in its generation (TRPV4, Piezo1, ASIC1a) and propagation (connexins, Notch). Finally, we discuss relevant studies on pathological events linked to EDH dysfunction and discuss novel approaches, including the effects of natural and dietary bioactive molecules, in modulating EDH-mediated vascular tone.
Collapse
MESH Headings
- Humans
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/pathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Signal Transduction
- Intercellular Junctions/metabolism
- Vasodilation
- Connexins/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Membrane Potentials
- Ion Channels/metabolism
Collapse
Affiliation(s)
- Giulia Querio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy.
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| |
Collapse
|
2
|
Arefin S, Mudrovcic N, Hobson S, Pietrocola F, Ebert T, Ward LJ, Witasp A, Hernandez L, Wennberg L, Lundgren T, Steinmetz-Späh J, Larsson K, Thorell A, Bruno S, Marengo M, Cantaluppi V, Stenvinkel P, Kublickiene K. Early vascular aging in chronic kidney disease: focus on microvascular maintenance, senescence signature and potential therapeutics. Transl Res 2025; 275:32-47. [PMID: 39510246 DOI: 10.1016/j.trsl.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Chronic kidney disease (CKD) is a strong risk factor for cardiovascular mortality and morbidity. We hypothesized that a senescent phenotype instigated by uremic toxins could account for early vascular aging (EVA) and vascular dysfunctions of microvasculature in end stage kidney disease (ESKD) patients which ultimately lead to increased cardiovascular complication. To test this hypothesis, we utilized both in vivo, and ex vivo approaches to study endothelial and smooth muscle function and structure, and characterized markers related to EVA in 82 ESKD patients (eGFR <15 ml/min) and 70 non-CKD controls. In vivo measurement revealed no major difference in endothelial function between ESKD and control group, aside from higher stiffness detected in the microcirculation of ESKD participants. In contrast, ex vivo measurements revealed a notable change in the contribution of endothelium-derived factors and increased stiffness in ESKD patients vs. controls. In support, we demonstrated that ex vivo exposure of arteries to uremic toxins such as Trimethylamine N-oxide, Phenylacetylglutamine, or extracellular vesicles from CKD patients impaired endothelial function via diminishing the contribution of endothelium-derived relaxing factors such as nitric oxide and endothelium derived hyperpolarizing factor. Uremic arteries displayed elevated expression of senescence markers (p21CIP1, p16INK4a, and SA-β-gal), calcification marker (RUNX2), and reduced expression of Ki67, sirtuin1, Nrf2, and MHY11 markers, indicating the accumulation of senescent cells and EVA phenotype. Correspondingly, treating uremic vessel rings ex vivo with senolytic agents (Dasatinib + Quercetin) effectively reduced the senescence-associated secretory phenotype and changed the origin of extracellular vesicles. Notably, sex differences exist for certain abnormalities suggesting the importance of biological sex in the pathogenesis of vascular complications. In conclusion, the uremic microvasculature is characterized by a "senescence signature", which may contribute to EVA and cardiovascular complications in ESKD patients and could be alleviated by treatment with senolytic agents.
Collapse
Affiliation(s)
- Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Neja Mudrovcic
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Liam J Ward
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linkoping, Sweden
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Lundgren
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyds Hospital, Karolinska Institutet; Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Stefania Bruno
- Laboratory of Translational Research, University of Torino, Italy
| | | | - Vincenzo Cantaluppi
- Department of Translational Medicine, Nephrology and Kidney Transplantation Unit, University of Piemonte Orientale (UPO), Italy
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
4
|
Hobson S, Arefin S, Rahman A, Hernandez L, Ebert T, de Loor H, Evenepoel P, Stenvinkel P, Kublickiene K. Indoxyl Sulphate Retention Is Associated with Microvascular Endothelial Dysfunction after Kidney Transplantation. Int J Mol Sci 2023; 24:ijms24043640. [PMID: 36835051 PMCID: PMC9960432 DOI: 10.3390/ijms24043640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Kidney transplantation (KTx) is the preferred form of renal replacement therapy in chronic kidney disease (CKD) patients, owing to increased quality of life and reduced mortality when compared to chronic dialysis. Risk of cardiovascular disease is reduced after KTx; however, it is still a leading cause of death in this patient population. Thus, we aimed to investigate whether functional properties of the vasculature differed two years post-KTx (postKTx) compared to baseline (time of KTx). Using the EndoPAT device in 27 CKD patients undergoing living-donor KTx, we found that vessel stiffness significantly improved while endothelial function worsened postKTx vs. baseline. Furthermore, baseline serum indoxyl sulphate (IS), but not p-cresyl sulphate, was independently negatively associated with reactive hyperemia index, a marker of endothelial function, and independently positively associated with P-selectin postKTx. Finally, to better understand the functional effects of IS in vessels, we incubated human resistance arteries with IS overnight and performed wire myography experiments ex vivo. IS-incubated arteries showed reduced bradykinin-mediated endothelium-dependent relaxation compared to controls via reduced nitric oxide (NO) contribution. Endothelium-independent relaxation in response to NO donor sodium nitroprusside was similar between IS and control groups. Together, our data suggest that IS promotes worsened endothelial dysfunction postKTx, which may contribute to the sustained CVD risk.
Collapse
Affiliation(s)
- Sam Hobson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Awahan Rahman
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Leah Hernandez
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Thomas Ebert
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, D-04103 Leipzig, Germany
| | - Henriette de Loor
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit Leuven, BE-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, BE-3000 Leuven, Belgium
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska, Institutet, 141 52 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
5
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
6
|
Steinmetz-Späh J, Arefin S, Larsson K, Jahan J, Mudrovcic N, Wennberg L, Stenvinkel P, Korotkova M, Kublickiene K, Jakobsson PJ. Effects of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition on resistance artery tone in patients with end stage kidney disease. Br J Pharmacol 2021; 179:1433-1449. [PMID: 34766335 DOI: 10.1111/bph.15729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Inhibition of the microsomal prostaglandin (PG) E2 synthase (mPGES-1) introduces a promising anti-inflammatory treatment approach by specifically reducing PGE2 . The microvasculature is a central target organ for early manifestations of cardiovascular disease. Therefore, a better understanding of the prostaglandin system and characterising the effects of mPGES-1 inhibition in this vascular bed are of interest. EXPERIMENTAL APPROACH The effects of mPGES-1 inhibition on constriction and relaxation of resistance arteries (Ø100-400μm) from patients with end stage kidney disease (ESKD) and controls (Non-ESKD) were studied using wire-myography in combination with immunological and mass-spectrometry based analyses. KEY RESULTS Inhibition of mPGES-1 in arteries from ESKD patients and Non-ESKD controls significantly reduced adrenergic vasoconstriction, which was not affected by the COX-2 inhibitors NS-398 and Etoricoxib or the COX-1/COX-2 inhibitor Indomethacin, tested in Non-ESKD controls. Correspondingly, a significant increase of acetylcholine-induced dilatation was observed for mPGES-1 inhibition only. In IL-1β treated arteries, inhibition of mPGES-1 significantly reduced PGE2 levels while PGI2 levels remained unchanged. In contrast, COX-2 inhibition blocked the formation of both prostaglandins. Blockage of PGI2 signaling with an IP receptor antagonist did not restore the reduced constriction, neither did blocking of PGE2 -EP4 or signaling through PPARγ. A biphasic effect was observed for PGE2 , inducing dilatation at nmol and constriction at μmol concentrations. Immunohistochemistry demonstrated expression of mPGES-1, COX-1, PGIS, weak expression for COX-2 as well as receptor expression for PGE2 (EP1-4), thromboxane (TP) and PGI2 (IP) in ESKD and Non-ESKD. CONCLUSION Our study demonstrates vasodilating effects following mPGES-1 inhibition in human microvasculature and suggests that several pathways besides shunting to PGI2 may be involved.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Jabin Jahan
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Neja Mudrovcic
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Role of Uremic Toxins in Early Vascular Ageing and Calcification. Toxins (Basel) 2021; 13:toxins13010026. [PMID: 33401534 PMCID: PMC7824162 DOI: 10.3390/toxins13010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
In patients with advanced chronic kidney disease (CKD), the accumulation of uremic toxins, caused by a combination of decreased excretion secondary to reduced kidney function and increased generation secondary to aberrant expression of metabolite genes, interferes with different biological functions of cells and organs, contributing to a state of chronic inflammation and other adverse biologic effects that may cause tissue damage. Several uremic toxins have been implicated in severe vascular smooth muscle cells (VSMCs) changes and other alterations leading to vascular calcification (VC) and early vascular ageing (EVA). The above mentioned are predominant clinical features of patients with CKD, contributing to their exceptionally high cardiovascular mortality. Herein, we present an update on pathophysiological processes and mediators underlying VC and EVA induced by uremic toxins. Moreover, we discuss their clinical impact, and possible therapeutic targets aiming at preventing or ameliorating the harmful effects of uremic toxins on the vasculature.
Collapse
|
8
|
Quek KJ, Ameer OZ, Phillips JK. Amlodipine Improves Vessel Function and Remodeling in the Lewis Polycystic Kidney Rat Mesenteric Artery. Am J Hypertens 2020; 33:634-643. [PMID: 32215654 DOI: 10.1093/ajh/hpaa054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/28/2020] [Accepted: 03/24/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hypertension is a common comorbidity associated with chronic kidney disease (CKD). Treatment in these patients often involves L-type Ca2+ channel (LTCC) blockers. The effect of chronic LTCC-blockade treatment on resistance vasculature was investigated in a genetic hypertensive rat model of CKD, the Lewis Polycystic Kidney (LPK) rat. METHODS Mixed-sex LPK and Lewis control rats (total n = 38) were allocated to treated (amlodipine 20 mg/kg/day p.o. from 4 to 18 weeks) and vehicle groups. Following systolic blood pressure and renal function assessment, animals were euthanized and mesenteric vasculature was collected for functional and structural assessment using pressure myography and histology. RESULTS Amlodipine treatment reduced LPK rat blood pressure (untreated vs. treated: 185 ± 5 vs. 165 ± 9 mm Hg; P = 0.019), reduced plasma creatinine (untreated vs. treated: 197 ± 17 vs. 140 ± 16 µmol/l; P = 0.002), and improved some vascular structural parameters (internal and external diameters and wall-lumen ratios); however wall thickness was still increased in LPK relative to Lewis despite treatment (Lewis vs. LPK: 31 ± 2 vs. 41 ± 2 µm, P = 0.047). Treatment improved LPK rats' endothelium dysfunction, and nitric oxide-dependent and endothelium-derived hyperpolarization vasorelaxation components, and downregulated prostanoid contributions. LTCC blockade had no effect on biomechanical properties of compliance and intrinsic stiffness, nor artery wall composition. CONCLUSIONS Our results indicate that blockade of LTCCs with amlodipine is effective in improving, to a certain extent, detrimental structural and functional vascular features of resistance arteries in CKD.
Collapse
Affiliation(s)
- Ko Jin Quek
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Omar Z Ameer
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- College of Pharmacy, Department of Pharmaceutical Sciences, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
9
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
10
|
Pang P, Abbott M, Abdi M, Fucci QA, Chauhan N, Mistri M, Proctor B, Chin M, Wang B, Yin W, Lu TS, Halim A, Lim K, Handy DE, Loscalzo J, Siedlecki AM. Pre-clinical model of severe glutathione peroxidase-3 deficiency and chronic kidney disease results in coronary artery thrombosis and depressed left ventricular function. Nephrol Dial Transplant 2019; 33:923-934. [PMID: 29244159 DOI: 10.1093/ndt/gfx304] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/15/2017] [Indexed: 12/21/2022] Open
Abstract
Background Chronic kidney disease (CKD) patients have deficient levels of glutathione peroxidase-3 (GPx3). We hypothesized that GPx3 deficiency may lead to cardiovascular disease in the presence of chronic kidney disease due to an accumulation of reactive oxygen species and decreased microvascular perfusion of the myocardium. Methods. To isolate the exclusive effect of GPx3 deficiency in kidney disease-induced cardiac disease, we studied the GPx3 knockout mouse strain (GPx3-/-) in the setting of surgery-induced CKD. Results. Ribonucleic acid (RNA) microarray screening of non-stimulated GPx3-/- heart tissue show increased expression of genes associated with cardiomyopathy including myh7, plac9, serpine1 and cd74 compared with wild-type (WT) controls. GPx3-/- mice underwent surgically induced renal mass reduction to generate a model of CKD. GPx3-/- + CKD mice underwent echocardiography 4 weeks after injury. Fractional shortening (FS) was decreased to 32.9 ± 5.8% in GPx3-/- + CKD compared to 62.0% ± 10.3 in WT + CKD (P < 0.001). Platelet aggregates were increased in the myocardium of GPx3-/- + CKD. Asymmetric dimethylarginine (ADMA) levels were increased in both GPx3-/- + CKD and WT+ CKD. ADMA stimulated spontaneous platelet aggregation more quickly in washed platelets from GPx3-/-. In vitro platelet aggregation was enhanced in samples from GPx3-/- + CKD. Platelet aggregation in GPx3-/- + CKD samples was mitigated after in vivo administration of ebselen, a glutathione peroxidase mimetic. FS improved in GPx3-/- + CKD mice after ebselen treatment. Conclusion These results suggest GPx3 deficiency is a substantive contributing factor to the development of kidney disease-induced cardiac disease.
Collapse
Affiliation(s)
- Paul Pang
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Molly Abbott
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Malyun Abdi
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Quynh-Anh Fucci
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Nikita Chauhan
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Murti Mistri
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brandon Proctor
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Chin
- Department of Radiology, Geisinger Health System, Danville, PA, USA
| | - Bin Wang
- Department of Surgery, 5th Hospital of Wuhan, Wuhan University, Wuhan, Hubei, China
| | - Wenqing Yin
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tzong-Shi Lu
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Arvin Halim
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kenneth Lim
- Massachusetts General Hospital, Boston, MA, USA
| | - Diane E Handy
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Joseph Loscalzo
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew M Siedlecki
- Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Bruel A, Bacchetta J, Ginhoux T, Rodier-Bonifas C, Sellier-Leclerc AL, Fromy B, Cochat P, Sigaudo-Roussel D, Dubourg L. Skin microvascular dysfunction as an early cardiovascular marker in primary hyperoxaluria type I. Pediatr Nephrol 2019; 34:319-327. [PMID: 30276532 DOI: 10.1007/s00467-018-4081-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/03/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Primary hyperoxaluria type 1 (PH1) is an orphan inborn error of oxalate metabolism leading to hyperoxaluria, progressive renal failure, oxalate deposition, and increased cardiovascular complications. As endothelial dysfunction and arterial stiffness are early markers of cardiovascular risk, we investigated early endothelial and vascular dysfunction in young PH1 patients either under conservative treatment (PH1-Cons) or after combined kidney liver transplantation (PH1-T) in comparison to healthy controls (Cont-H) and patients with a past of renal transplantation (Cont-T). METHODS Skin microvascular function was non-invasively assessed by laser Doppler flowmetry before and after stimulation by current, thermal, or pharmacological (nitroprussiate (SNP) or acetylcholine (Ach)) stimuli in young PH1 patients and controls. RESULTS Seven PH1-Cons (6 F, median age 18.2) and 6 PH1-T (2 F, median age 13.3) were compared to 96 Cont-H (51 F, median age 14.2) and 6 Cont-T (4 F, median age 14.5). The endothelium-independent vasodilatation (SNP) was severely decreased in PH1-T compared to Cont-H. Ach, current-induced vasodilatation (CIV), and thermal response was increased in PH1-Cons and Cont-T compared to controls. CONCLUSIONS PH1-T patients displayed severely decreased smooth muscle capacity to vasodilate. An exacerbated endothelial-dependent vasodilation suggests a role for silent inflammation in the early dysfunction of microcirculation observed in PH1-Cons and Cont-T.
Collapse
Affiliation(s)
- Alexandra Bruel
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Service de Pédiatrie, Hôpital Mère et Enfants, Centre hospitalo-universitaire de Nantes, Nantes, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France
| | - Tiphanie Ginhoux
- EPICIME-CIC 1407 de Lyon, Inserm, Service de Pharmacologie Clinique, CHU-Lyon, Lyon, France
| | - Christelle Rodier-Bonifas
- Service d'ophtalmologie, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Anne-Laure Sellier-Leclerc
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France
| | - Bérengère Fromy
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Pierre Cochat
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurence Dubourg
- Centre de Référence des Maladies Rénales Rares, Service de Néphrologie et Rhumatologie Pédiatriques, Hospices Civils de Lyon, Lyon, France. .,Université Claude Bernard Lyon 1, Lyon, France. .,Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Claude Bernard Lyon 1, Villeurbanne, France. .,Néphrologie, Dialyse, Hypertension et Exploration Fonctionnelle Rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
12
|
Ford TJ, Rocchiccioli P, Good R, McEntegart M, Eteiba H, Watkins S, Shaukat A, Lindsay M, Robertson K, Hood S, Yii E, Sidik N, Harvey A, Montezano AC, Beattie E, Haddow L, Oldroyd KG, Touyz RM, Berry C. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J 2018; 39:4086-4097. [PMID: 30165438 PMCID: PMC6284165 DOI: 10.1093/eurheartj/ehy529] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Aims Coronary microvascular dysfunction and/or vasospasm are potential causes of ischaemia in patients with no obstructive coronary artery disease (INOCA). We tested the hypothesis that these patients also have functional abnormalities in peripheral small arteries. Methods and results Patients were prospectively enrolled and categorised as having microvascular angina (MVA), vasospastic angina (VSA) or normal control based on invasive coronary artery function tests incorporating probes of endothelial and endothelial-independent function (acetylcholine and adenosine). Gluteal biopsies of subcutaneous fat were performed in 81 subjects (62 years, 69% female, 59 MVA, 11 VSA, and 11 controls). Resistance arteries were dissected enabling study using wire myography. Maximum relaxation to ACh (endothelial function) was reduced in MVA vs. controls [median 77.6 vs. 98.7%; 95% confidence interval (CI) of difference 2.3-38%; P = 0.0047]. Endothelium-independent relaxation [sodium nitroprusside (SNP)] was similar between all groups. The maximum contractile response to endothelin-1 (ET-1) was greater in MVA (median 121%) vs. controls (100%; 95% CI of median difference 4.7-45%, P = 0.015). Response to the thromboxane agonist, U46619, was also greater in MVA (143%) vs. controls (109%; 95% CI of difference 13-57%, P = 0.003). Patients with VSA had similar abnormal patterns of peripheral vascular reactivity including reduced maximum relaxation to ACh (median 79.0% vs. 98.7%; P = 0.03) and increased response to constrictor agonists including ET-1 (median 125% vs. 100%; P = 0.02). In all groups, resistance arteries were ≈50-fold more sensitive to the constrictor effects of ET-1 compared with U46619. Conclusions Systemic microvascular abnormalities are common in patients with MVA and VSA. These mechanisms may involve ET-1 and were characterized by endothelial dysfunction and enhanced vasoconstriction. Clinical trial registration ClinicalTrials.gov registration is NCT03193294.
Collapse
Affiliation(s)
- Thomas J Ford
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Rocchiccioli
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Margaret McEntegart
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Hany Eteiba
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Aadil Shaukat
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Mitchell Lindsay
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Keith Robertson
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Stuart Hood
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Eric Yii
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Novalia Sidik
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Adam Harvey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Elisabeth Beattie
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Laura Haddow
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Keith G Oldroyd
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
| | - Rhian M Touyz
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| | - Colin Berry
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, GJNH, Agamemnon St, Glasgow, UK
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Park YJ, Kim JM. Klotho and Postmenopausal Hormone Replacement Therapy in Women with Chronic Kidney Disease. J Menopausal Med 2018; 24:75-80. [PMID: 30202755 PMCID: PMC6127018 DOI: 10.6118/jmm.2018.24.2.75] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 01/05/2023] Open
Abstract
Kidney function is highly susceptible to age-related changes, with chronic kidney disease (CKD) serving as an important cause of morbidity and mortality in older patients. The prevalence of CKD in Korea is higher among the elderly, relative to the general population, with the most significant increases seen following the onset of menopause. Under normal conditions, estrogen attenuates renal superoxide production and protects the kidney from oxidative damage. As estrogen levels are known to decrease by as much as 80% during menopause, this represents a significant risk for older women. Postmenopausal hormone replacement therapy (HRT) modulates the renin-angiotensin system, thereby reducing the progressive deterioration of renal function. Use of estrogen-based HRT has been shown to ameliorate renal function in postmenopausal women, and delay CKD progression. Renal expression of klotho, an important suppressor of aging, is markedly decreased in CKD patients, making it a promising candidate for use as a prognostic biomarker in CKD. Here, we review the key links between renal function, sex, age, and estrogen levels during menopause, and discuss the use of postmenopausal HRT in CKD attenuation.
Collapse
Affiliation(s)
- Yoo Jin Park
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Asan, Korea
| | - Jun-Mo Kim
- Department of Interdisciplinary Program in Biomedical Science, Soonchunhyang University, Asan, Korea
| |
Collapse
|
14
|
Cerrato R, Crabtree M, Antoniades C, Kublickiene K, Schiffrin EL, Channon KM, Böhm F. Effects Of Endothelin-1 On Intracellular Tetrahydrobiopterin Levels In Vascular Tissue. SCAND CARDIOVASC J 2018; 52:163-169. [PMID: 29566572 DOI: 10.1080/14017431.2018.1453942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Tetrahydrobiopterin (BH4) is the essential cofactor of endothelial nitric oxide synthase (eNOS) and intracellular levels of BH4 is regulated by oxidative stress. The aim of this paper was to describe the influence of exogenous endothelin-1 on intracellular BH4 and its oxidation products dihydrobiopterin (BH2) and biopterin (B) in a wide range of vascular tissue. DESIGN Segments of internal mammary artery (IMA) and human saphenous vein (SV) from 41 patients undergoing elective surgery were incubated in ET-1 (0.1 μM). Aorta and lung from transgenic mice overexpressing ET-1 in the endothelium (ET-TG) were analysed with regards to intracellular biopterin levels. Human umbilical vein endothelial cells (HUVEC) were incubated in ET-1 (0.1 μM) and intracellular biopterin levels were analysed. From 6 healthy women undergoing caesarean section, subcutaneous fat was harvested and the resistance arteries in these biopsies were tested for ET-mediated endothelial dysfunction. RESULTS In HUVEC, exogenous ET-1 (0.1 μM) did not significantly change intracellular BH4, 1.54 ± 1.7 vs 1.68 ± 1.8 pmol/mg protein; p = .8. In IMA and SV, exogenous ET-1(0.1 μM) did not change intracellular BH4 n = 10, p = .4. In aorta from wild type vs ET-TG mice there was no significant difference in intracellular BH4 between the groups: 1.3 ± 0.49 vs 1.23 ± 0.3 pmol/mg protein; p = .6. In resistance arteries (n = 6) BH4 together with DTE (an antioxidant) was not able to prevent ET-mediated endothelial dysfunction. CONCLUSION ET-1 did not significantly alter intracellular tetrahydrobiopterin levels in IMA, SV, HUVEC or aorta from ET-TG mice. These findings are important for future research in ET-1 mediated superoxide production and endothelial dysfunction.
Collapse
Affiliation(s)
- Ruha Cerrato
- a Department of Medicine, Cardiology unit, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| | - Mark Crabtree
- b Department of Cardiovascular Medicine , John Radcliffe Hospital, University of Oxford , Oxford , UK
| | - Charalambos Antoniades
- b Department of Cardiovascular Medicine , John Radcliffe Hospital, University of Oxford , Oxford , UK
| | - Karolina Kublickiene
- c Department of Obstetrics & Gynecology, Karolinska Institutet, Institution of Medicine and Institution for Clinical Science, Intervention & Technology , Karolinska University Hospital , Stockholm , Sweden
| | - Ernesto L Schiffrin
- d Department of Medicine, Lady Davis Institute for Medical Research , Sir Mortimer B. Davis-Jewish General Hospital, McGill University , Montreal , Quebec , Canada
| | - Keith M Channon
- b Department of Cardiovascular Medicine , John Radcliffe Hospital, University of Oxford , Oxford , UK
| | - Felix Böhm
- a Department of Medicine, Cardiology unit, Karolinska Institutet , Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
15
|
Quek KJ, Ameer OZ, Phillips JK. AT1 Receptor Antagonism Improves Structural, Functional, and Biomechanical Properties in Resistance Arteries in a Rodent Chronic Kidney Disease Model. Am J Hypertens 2018; 31:696-705. [PMID: 29425281 DOI: 10.1093/ajh/hpy021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 02/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The renin-angiotensin system, in particular Angiotensin II (AngII), plays a significant role in the pathogenesis of hypertension in chronic kidney disease (CKD). Effects of chronic AT1 receptor antagonism were investigated in a genetic hypertensive rat model of CKD, the Lewis polycystic kidney (LPK) rat. METHODS Mixed-sex LPK and Lewis control rats (total n = 31) were split between treated (valsartan 60 mg/kg/day p.o. from 4 to 18 weeks) and vehicle groups. Animals were assessed for systolic blood pressure and urine biochemistry, and after euthanasia, blood collected for urea and creatinine analysis, confirming the hypertensive and renal phenotype. Mesenteric resistance vasculature was assessed using pressure myography and histology. RESULTS Valsartan treatment improved vascular structure in LPK rats, increasing internal and external diameter values and reducing wall thickness (untreated vs. treated LPK: 53.19 ± 3.29 vs. 33.93 ± 2.17 μm) and wall-lumen ratios (untreated vs. treated LPK: 0.52 ± 0.09 vs. 0.16 ± 0.01, all P < 0.0001). Endothelium dysfunction, as measured by maximal response to acetylcholine (Rmax), was normalized with treatment (untreated vs. treated LPK: 69.56 ± 4.34 vs. 103.05 ± 4.13, P < 0.05), increasing the relative contributions of nitric oxide and endothelium-derived hyperpolarization to vasorelaxation while downregulating the prostanoid contribution. Biomechanical properties also improved with treatment, as indicated by an increase in compliance, decrease in intrinsic stiffness and alterations in the artery wall composition, which included decreases in collagen density and collagen/elastin ratio. CONCLUSIONS Our results highlight the importance of AngII as a driver of resistance vessel structural, functional, and biomechanical dysfunction and provide insight as to how AT1 receptor blockade exerts therapeutic efficacy in CKD.
Collapse
Affiliation(s)
- Ko Jin Quek
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Omar Z Ameer
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
- Colleges of Medicine and Pharmacy, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Jacqueline K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin Sci (Lond) 2017; 130:1147-63. [PMID: 27252402 DOI: 10.1042/cs20160047] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023]
Abstract
Sex and gender differences are of fundamental importance in most diseases, including chronic kidney disease (CKD). Men and women with CKD differ with regard to the underlying pathophysiology of the disease and its complications, present different symptoms and signs, respond differently to therapy and tolerate/cope with the disease differently. Yet an approach using gender in the prevention and treatment of CKD, implementation of clinical practice guidelines and in research has been largely neglected. The present review highlights some sex- and gender-specific evidence in the field of CKD, starting with a critical appraisal of the lack of inclusion of women in randomized clinical trials in nephrology, and thereafter revisits sex/gender differences in kidney pathophysiology, kidney disease progression, outcomes and management of haemodialysis care. In each case we critically consider whether apparent discrepancies are likely to be explained by biological or psycho-socioeconomic factors. In some cases (a few), these findings have resulted in the discovery of disease pathways and/or therapeutic opportunities for improvement. In most cases, they have been reported as merely anecdotal findings. The aim of the present review is to expose some of the stimulating hypotheses arising from these observations as a preamble for stricter approaches using gender for the prevention and treatment of CKD and its complications.
Collapse
|
17
|
Endothelial dysfunction of internal thoracic artery graft in patients with chronic kidney disease. J Thorac Cardiovasc Surg 2017; 153:317-324.e1. [DOI: 10.1016/j.jtcvs.2016.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 11/21/2022]
|
18
|
Mudrovcic N, Arefin S, Van Craenenbroeck AH, Kublickiene K. Endothelial maintenance in health and disease: Importance of sex differences. Pharmacol Res 2017; 119:48-60. [PMID: 28108363 DOI: 10.1016/j.phrs.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The vascular endothelium has emerged as more than just an inert monolayer of cells lining the vascular bed. It represents the interface between the blood stream and vessel wall, and has a strategic role in regulating vascular homeostasis by the release of vasoactive substances. Endothelial dysfunction contributes to the development and progression of cardiovascular disease. Recognition of sex-specific factors implicated in endothelial cell biology is important for the identification of clinically relevant preventive and/or therapeutic strategies. This review aims to give an overview of the recent advances in understanding the importance of sex specific observations in endothelial maintenance, both in healthy and diseased conditions. The female endothelium is highlighted in the context of polycystic ovary syndrome and pre-eclampsia. Furthermore, sex differences are explored in chronic kidney disease, which is currently appreciated as one of public health priorities. Overall, this review endorses integration of sex analysis in experimental and patient-oriented research in the exciting field of vascular biology.
Collapse
Affiliation(s)
- Neja Mudrovcic
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Gender Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
19
|
Garland CJ, Dora KA. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf) 2017; 219:152-161. [PMID: 26752699 DOI: 10.1111/apha.12649] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/04/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
Abstract
Endothelium-dependent hyperpolarizing factor (EDHF) is a powerful vasodilator influence in small resistance arteries and thus an important modulator of blood pressure and flow. As the name suggests, EDHF was thought to describe a diffusible factor stimulating smooth muscle hyperpolarization (and thus vasodilatation). However, this idea has evolved with the recognition that a factor can operate alongside the spread of hyperpolarizing current from the endothelium to the vascular smooth muscle (VSM). As such, the pathway is now termed endothelium-dependent hyperpolarization (EDH). EDH is activated by an increase in endothelial [Ca2+ ]i , which stimulates two Ca2+ -sensitive K channels, SKCa and IKCa . This was discovered because apamin and charybdotoxin applied in combination blocked EDHF responses, but iberiotoxin - a blocker of BKCa - was not able to substitute for charybdotoxin. SKCa and IKCa channels are arranged in endothelial microdomains, particularly within projections towards the adjacent smooth muscle, which are rich in IKCa channels and close to interendothelial gap junctions where SKCa channels, are prevalent. KCa activation hyperpolarizes endothelial cells, and K+ efflux through them can act as a diffusible 'EDHF' by stimulating VSM Na+ ,K+ -ATPase and inwardly rectifying K channels (KIR ). In parallel, hyperpolarizing current spreads from the endothelium to the smooth muscle through myoendothelial gap junctions located on endothelial projections. The resulting radial EDH is complemented by the spread of 'conducted' hyperpolarization along the endothelium of arteries and arterioles to affect conducted vasodilatation (CVD). Retrograde CVD effectively integrates blood flow within the microcirculation, but how the underlying hyperpolarization is sustained is unclear.
Collapse
Affiliation(s)
- C. J. Garland
- Department of Pharmacology; University of Oxford; Oxford UK
| | - K. A. Dora
- Department of Pharmacology; University of Oxford; Oxford UK
| |
Collapse
|
20
|
Ameer OZ, Butlin M, Kaschina E, Sommerfeld M, Avolio AP, Phillips JK. Long-Term Angiotensin II Receptor Blockade Limits Hypertension, Aortic Dysfunction, and Structural Remodeling in a Rat Model of Chronic Kidney Disease. J Vasc Res 2016; 53:216-229. [DOI: 10.1159/000452411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/08/2016] [Indexed: 11/19/2022] Open
|
21
|
Borg M, Svensson M, Povlsen JV, Schmidt EB, Aalkjær C, Christensen JH, Ivarsen P. Long chain n-3 polyunsaturated fatty acids and vascular function in patients with chronic kidney disease and healthy subjects: a cross-sectional and comparative study. BMC Nephrol 2016; 17:184. [PMID: 27871238 PMCID: PMC5117573 DOI: 10.1186/s12882-016-0393-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/09/2016] [Indexed: 12/26/2022] Open
Abstract
Background Patients with chronic kidney disease have a markedly increased cardiovascular mortality compared with the general population. Long chain n-3 polyunsaturated fatty acids have been suggested to possess cardioprotective properties. This cross-sectional and comparative study evaluated correlations between hemodynamic measurements, resistance artery function and fish consumption to the content of long chain n-3 polyunsaturated fatty acids in adipose tissue, a long-term marker of seafood intake. Methods Seventeen patients with chronic kidney disease stage 5 + 5d and 27 healthy kidney donors were evaluated with hemodynamic measurements before surgery; from these subjects, 11 patients and 11 healthy subjects had vasodilator properties of subcutaneous resistance arteries examined. The measurements were correlated to adipose tissue n-3 polyunsaturated fatty acids. Information on fish intake was obtained from a dietary questionnaire and compared with adipose tissue n-3 polyunsaturated fatty acids. Results Fish intake and the content of n-3 polyunsaturated fatty acids in adipose tissue did not differ between patients and controls. n-3 polyunsaturated fatty acid levels in adipose tissue were positively correlated to systemic vascular resistance index; (r = 0.44; p = 0.07 and r = 0.62; p < 0.05, chronic kidney disease and healthy subjects respectively) and negatively correlated to cardiac output index (r = −0.69; p < 0.01 and r = −0.50; p < 0.05, chronic kidney disease and healthy subjects respectively). No correlation was observed between n-3 polyunsaturated fatty acid levels in adipose tissue and vasodilator properties in resistance arteries. n-3 PUFA content in adipose tissue increased with increasing self-reported fish intake. Conclusions The correlations found, suggest a role for n-3 polyunsaturated fatty acids in hemodynamic properties. However, this is apparently not due to changes in intrinsic properties of the resistance arteries as no correlation was found to n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Morten Borg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Respiratory Medicine and Allergology, Aarhus University Hospital, Nørrebrogade 44, build. 2A, 8000, Aarhus C, Denmark. .,Department of Internal Medicine, Horsens Regional Hospital, Horsens, Denmark.
| | - My Svensson
- Department of Nephrology, Akershus University Hospital, Lørenskog, Norway
| | - Johan V Povlsen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Erik B Schmidt
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | | | | | - Per Ivarsen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Quek KJ, Boyd R, Ameer OZ, Zangerl B, Butlin M, Murphy TV, Avolio AP, Phillips JK. Progressive vascular remodelling, endothelial dysfunction and stiffness in mesenteric resistance arteries in a rodent model of chronic kidney disease. Vascul Pharmacol 2016; 81:42-52. [PMID: 26771067 DOI: 10.1016/j.vph.2015.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/31/2015] [Indexed: 12/25/2022]
Abstract
Chronic kidney disease (CKD) and hypertension are co-morbid conditions both associated with altered resistance artery structure, biomechanics and function. We examined these characteristics in mesenteric artery together with renal function and systolic blood pressure (SBP) changes in the Lewis polycystic kidney (LPK) rat model of CKD. Animals were studied at early (6-weeks), intermediate (12-weeks), and late (18-weeks) time-points (n=21), relative to age-matched Lewis controls (n=29). At 12 and 18-weeks, LPK arteries exhibited eutrophic and hypertrophic inward remodelling characterised by thickened medial smooth muscle, decreased lumen diameter, and unchanged or increased media cross-sectional area, respectively. At these later time points, endothelium-dependent vasorelaxation was also compromised, associated with impaired endothelium-dependent hyperpolarisation and reduced nitric oxide synthase activity. Stiffness, elastic-modulus/stress slopes and collagen/elastin ratios were increased in 6 and 18-week-old-LPK, in contrast to greater arterial compliance at 12weeks. Multiple linear regression analysis highlighted SBP as the main predictor of wall-lumen ratio (r=0.536, P<0.001 n=46 pairs). Concentration-response curves revealed increased sensitivity to phenylephrine but not potassium chloride in 18-week-LPK. Our results indicate that impairment in LPK resistance vasculature is evident at 6weeks, and worsens with hypertension and progression of renal disease.
Collapse
Affiliation(s)
- K J Quek
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - R Boyd
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - O Z Ameer
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - B Zangerl
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia; Centre for Eye Health, University of New South Wales, Sydney, Australia.
| | - M Butlin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - T V Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia.
| | - A P Avolio
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| | - J K Phillips
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
23
|
Geenen IL, Kolk FF, Molin DG, Wagenaar A, Compeer MG, Tordoir JH, Schurink GW, De Mey JG, Post MJ. Nitric Oxide Resistance Reduces Arteriovenous Fistula Maturation in Chronic Kidney Disease in Rats. PLoS One 2016; 11:e0146212. [PMID: 26727368 PMCID: PMC4699647 DOI: 10.1371/journal.pone.0146212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Autologous arteriovenous (AV) fistulas are the first choice for vascular access but have a high risk of non-maturation due to insufficient vessel adaptation, a process dependent on nitric oxide (NO)-signaling. Chronic kidney disease (CKD) is associated with oxidative stress that can disturb NO-signaling. Here, we evaluated the influence of CKD on AV fistula maturation and NO-signaling. Methods CKD was established in rats by a 5/6th nephrectomy and after 6 weeks, an AV fistula was created between the carotid artery and jugular vein, which was followed up at 3 weeks with ultrasound and flow assessments. Vessel wall histology was assessed afterwards and vasoreactivity of carotid arteries was studied in a wire myograph. The soluble guanylate cyclase (sGC) activator BAY 60–2770 was administered daily to CKD animals for 3 weeks to enhance fistula maturation. Results CKD animals showed lower flow rates, smaller fistula diameters and increased oxidative stress levels in the vessel wall. Endothelium-dependent relaxation was comparable but vasorelaxation after sodium nitroprusside was diminished in CKD vessels, indicating NO resistance of the NO-receptor sGC. This was confirmed by stimulation with BAY 60–2770 resulting in increased vasorelaxation in CKD vessels. Oral administration of BAY 60–2770 to CKD animals induced larger fistula diameters, however; flow was not significantly different from vehicle-treated CKD animals. Conclusions CKD induces oxidative stress resulting in NO resistance that can hamper AV fistula maturation. sGC activators like BAY 60–2770 could offer therapeutic potential to increase AV fistula maturation.
Collapse
Affiliation(s)
- Irma L. Geenen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of General Surgery, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- * E-mail:
| | - Felix F. Kolk
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel G. Molin
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Allard Wagenaar
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mathijs G. Compeer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan H. Tordoir
- Department of General Surgery, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Geert W. Schurink
- Department of General Surgery, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jo G. De Mey
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark J. Post
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
24
|
Rogan A, McGregor G, Weston C, Krishnan N, Higgins R, Zehnder D, Ting SMS. Exaggerated blood pressure response to dynamic exercise despite chronic refractory hypotension: results of a human case study. BMC Nephrol 2015; 16:81. [PMID: 26055191 PMCID: PMC4460705 DOI: 10.1186/s12882-015-0076-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/21/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Chronic refractory hypotension is a rare but significant mortality risk in renal failure patients. Such aberrant physiology usually deems patient unfit for renal transplant surgery. Exercise stimulates the mechano-chemoreceptors in the skeletal muscle thereby modulating the sympathetic effects on blood pressure regulation. The haemodynamic response to dynamic exercise in such patients has not been previously investigated. We present a case with severe chronic hypotension who underwent exercise testing before and after renal transplantation, with marked differences in blood pressure response to exercise. CASE PRESENTATION A 40-year old haemodialysis-dependent patient with a 2 year history of refractory hypotension (≤80/50 mmHg) was referred for living donor renal transplantation at our tertiary centre. Each dialysis session was often less than 2 h and 30 min due to symptomatic hypotension. As part of the cardiovascular assessment, she underwent haemodynamic evaluation with cardiopulmonary exercise testing. Blood pressure normalized during unloaded pedalling but was exaggerated at maximal workload whereby it rose from 82/50 mmHg to a peak of 201/120 mmHg. Transthoracic echocardiography, tonometric measure of central vascular compliance and myocardial perfusion scan were normal. She subsequently underwent an antibody-incompatible renal transplantation and was vasopressor reliant for 14 days during the post-operative period. Eight weeks following transplant, resting blood pressure was normal and a physiological exercise-haemodynamic response was observed during a repeat cardiopulmonary exercise testing. CONCLUSION This case highlights the potential therapeutic role of unloaded leg cycling exercise during dialysis session to correct chronic hypotension, allowing patients to have greater tolerance to fluid shift. It also adds to existing evidence that sympathetic dysfunction is reversible with renal transplant. Furthermore chronic hypotension with preserved exercise-haemodynamic response and cardiovascular reserve should not preclude these patients from renal transplant surgery.
Collapse
Affiliation(s)
- Alice Rogan
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK.
| | - Gordon McGregor
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK. .,Departments of Cardiac Exercise Physiology, University Hospital Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Charles Weston
- Department of Nephrology, Dorset County Hospital NHS Foundation Trust, Dorchester, UK.
| | - Nithya Krishnan
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK.
| | - Robert Higgins
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK.
| | - Daniel Zehnder
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK. .,Division of Metabolic and Vascular Health, The University of Warwick, Coventry, UK.
| | - Stephen M S Ting
- Departments of Renal Medicine and Transplantation, University Hospital Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK. .,Division of Metabolic and Vascular Health, The University of Warwick, Coventry, UK.
| |
Collapse
|
25
|
Orozco B. R. ENFERMEDAD CARDIOVASCULAR (ECV) EN LA ENFERMEDAD RENAL CRÓNICA (ERC). REVISTA MÉDICA CLÍNICA LAS CONDES 2015. [DOI: 10.1016/j.rmclc.2015.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease remains the single most serious contributor to mortality in chronic kidney disease (CKD). Although conventional risk factors are prevalent in CKD, both cardiomyopathy and vasculopathy can be caused by pathophysiologic mechanisms specific to the uremic state. CKD is a state of systemic αKlotho deficiency. Although the molecular mechanism of action of αKlotho is not well understood, the downstream targets and biologic functions of αKlotho are astonishingly pleiotropic. An emerging body of literature links αKlotho to uremic vasculopathy. RECENT FINDINGS The expression of αKlotho in the vasculature is controversial because of conflicting data. Regardless of whether αKlotho acts as a circulating or resident protein, there are good data associating changes in αKlotho levels with vascular pathology including vascular calcification and in-vitro data of the direct action of αKlotho on both the endothelium and vascular smooth muscle cells in terms of cytoprotection and prevention of mineralization. SUMMARY It is critical to understand the pathogenic role of αKlotho on the integral endothelium-vascular smooth muscle network rather than each cell type in isolation in uremic vasculopathy, as αKlotho can serve as a potential prognostic biomarker and a biological therapeutic agent.
Collapse
|
27
|
Abushufa AM, Eldehni MT, Odudu A, Evans PD, O'Sullivan SE, McIntyre CW. Defining uremic arterial functional abnormalities in patients recently started on haemodialysis: combined in vivo and ex vivo assessment. PLoS One 2014; 9:e113462. [PMID: 25546407 PMCID: PMC4278673 DOI: 10.1371/journal.pone.0113462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/26/2014] [Indexed: 11/18/2022] Open
Abstract
Endothelial dysfunction is a key initiating event in vascular disease in chronic kidney disease (CKD) patients and haemodialysis (HD) patients exhibit significant vascular abnormalities. To understand this further, we examined how ex vivo intrinsic function in isolated arteries correlates with in vivo assessments of cardiovascular status in HD patients. Abdominal fat biopsies were obtained from 11 HD patients and 26 non-uremic controls. Subcutaneous arteries were dissected and mounted on a wire myograph, and cumulative concentration-response curves to noradrenalin, endothelin-1, a thromboxane A2 agonist (U46619), angiotensin II, vasopressin, bradykinin (BK), acetylcholine (ACh) and sodium nitroprusside (SNP) were constructed. Pulse wave velocity and blood pressure were measured in HD patients. Enhanced (P<0.05−0.0001) maximal contractile responses (Rmax) to all spasmogens (particularly vasopressin) were observed in arteries from HD patients compared to controls, and this effect was more pronounced in arteries with an internal diameter>600 µm. The potency (pEC50) of U46619 (P<0.01) and vasopressin (P<0.001) was also increased in arteries>600 µm of HD patients. The maximal relaxant response to the endothelium-dependent dilators ACh and BK were lower in HD patients (P<0.01-P<0.0001) (worse for ACh than BK); however the endothelium-independent dilator SNP was similar in both groups. PWV was significantly correlated with the vasoconstrictor response to vasopressin (P = 0.042) in HD patients. HD patients are primed for hypertension and end organ demand ischaemia by a highly sensitised pressor response. The failure of arterial relaxation is mediated by endothelial dysfunction. Intrinsic vascular abnormalities may be important in sensitising HD patients to recurrent cumulative ischaemic end organ injury.
Collapse
Affiliation(s)
- Adil M Abushufa
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mohamed T Eldehni
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| | - Aghogho Odudu
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| | - Philip D Evans
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris W McIntyre
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom; Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| |
Collapse
|
28
|
Borg MK, Ivarsen P, Brøndum E, Povlsen JV, Aalkjær C. Hemodynamics and function of resistance arteries in healthy persons and end stage renal disease patients. PLoS One 2014; 9:e94638. [PMID: 24722412 PMCID: PMC3983241 DOI: 10.1371/journal.pone.0094638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/19/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cardiovascular disease is the leading cause of death in patients with end stage renal disease (ESRD). The vasodilator mechanisms in small resistance arteries are in earlier studies shown to be reduced in patients with end stage renal disease. We studied whether endothelium dependent vasodilatation were diminished in ESRD patients and the interaction between the macro- and microcirculation. METHODS Eleven patients with ESRD had prior to renal transplant or insertion of peritoneal dialysis catheter measured pulse wave velocity. During surgery, a subcutaneous fat biopsy was extracted. Resistance arteries were then dissected and mounted on a wire myograph for measurements of dilator response to increasing concentrations of acetylcholine after preconstriction with noradrenaline. Twelve healthy kidney donors served as controls. RESULTS Systolic blood pressure was elevated in patients compared to the healthy controls; no difference in the concentration of asymmetric dimethyl arginine was seen. No significant difference in the endothelium dependent vasodilatation between patients and controls was found. Correlation of small artery properties showed an inverse relationship between diastolic blood pressure and nitric oxide dependent vasodilatation in controls. Pulse pressure was positively correlated to the total endothelial vasodilatation in patients. A negative association between S-phosphate and endothelial derived hyperpolarisation-like vasodilatation was seen in resistance arteries from controls. CONCLUSION This study finds similar vasodilator properties in kidney patients and controls. However, correlations of pulse pressure and diastolic blood pressure with resistance artery function indicate compensating measures in the microcirculation during end stage renal disease.
Collapse
Affiliation(s)
- Morten K. Borg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Per Ivarsen
- Department of Renal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Emil Brøndum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Johan V. Povlsen
- Department of Renal Medicine, Aarhus University Hospital and Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Christian Aalkjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
29
|
Jankowski J, Westhof T, Vaziri ND, Ingrosso D, Perna AF. Gases as Uremic Toxins: Is There Something in the Air? Semin Nephrol 2014; 34:135-50. [DOI: 10.1016/j.semnephrol.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Spradley FT, White JJ, Paulson WD, Pollock DM, Pollock JS. Differential regulation of nitric oxide synthase function in aorta and tail artery from 5/6 nephrectomized rats. Physiol Rep 2013; 1:e00145. [PMID: 24400147 PMCID: PMC3871460 DOI: 10.1002/phy2.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/05/2022] Open
Abstract
Chronic renal failure (CRF) is associated with hypertension and concomitant endothelial dysfunction, enhanced vasoconstriction, and nitric oxide synthase (NOS) dysfunction. Vascular function in patients is assessed in peripheral extremity arteries like the finger arteries, whereas animal studies often use the centrally located aorta. Therefore, we examined whether peripheral tail artery and aortic NOS function are differentially regulated by blood pressure in rats with CRF. Using wire myography, arterial function was assessed in 16-week-old Sprague-Dawley rats that were subjected to 5/6 nephrectomy (Nx; arterial ligation model) 8 weeks earlier or non-Nx (control) rats. In aortas from Nx rats, endothelial-dependent vasorelaxation response to acetylcholine (ACh) was blunted and there was enhancement of phenylephrine (PE)-mediated vasoconstriction. Inversely, tail arteries from Nx rats had no change in endothelial function and reduced response to PE. Studies where arterial segments were incubated with the nonspecific NOS inhibitor, L-NAME, showed that Nx reduced NOS function in the aorta but increased NOS function in tail artery for both ACh and PE responses. Furthermore, the observed alterations in NOS function in both aorta and tail artery were abolished when mean arterial blood pressure, as assessed by telemetry, was maintained at normal levels in the 5/6 Nx rats using triple therapy: hydralazine (30 mg/kg per day), hydrochlorothiazide (10 mg/kg per day), and reserpine (0.5 mg/kg per day). In conclusion, differential changes of NOS function in central versus peripheral arteries in CRF are dependent upon hypertension.
Collapse
Affiliation(s)
- Frank T Spradley
- Section of Experimental Medicine, Georgia Regents University Augusta, Georgia ; Department of Medicine, Georgia Regents University Augusta, Georgia
| | - John J White
- Department of Medicine, Georgia Regents University Augusta, Georgia ; Charlie Norwood VA Medical Center, Georgia Regents University Augusta, Georgia
| | - William D Paulson
- Department of Medicine, Georgia Regents University Augusta, Georgia ; Charlie Norwood VA Medical Center, Georgia Regents University Augusta, Georgia
| | - David M Pollock
- Section of Experimental Medicine, Georgia Regents University Augusta, Georgia ; Department of Medicine, Georgia Regents University Augusta, Georgia
| | - Jennifer S Pollock
- Section of Experimental Medicine, Georgia Regents University Augusta, Georgia ; Department of Medicine, Georgia Regents University Augusta, Georgia
| |
Collapse
|
31
|
Pacurari M, Xing D, Hilgers RHP, Guo YY, Yang Z, Hage FG. Endothelial cell transfusion ameliorates endothelial dysfunction in 5/6 nephrectomized rats. Am J Physiol Heart Circ Physiol 2013; 305:H1256-64. [PMID: 23955716 DOI: 10.1152/ajpheart.00132.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial dysfunction is prevalent in chronic kidney disease. This study tested the hypothesis that transfusion of rat aortic endothelial cells (ECs) ameliorates endothelial dysfunction in a rat model of chronic kidney disease. Male Sprague-Dawley rats underwent sham surgery or 5/6 nephrectomy (Nx). Five weeks after Nx, EC (1.5 × 10(6) cells/rat) or vehicle were transfused intravenously. One week later, vascular reactivity of mesenteric artery was assessed on a wire myograph. Sensitivity of endothelium-dependent relaxation to acetylcholine and maximum vasodilation were impaired by Nx and improved by EC transfusion. Using selective pharmacological nitric oxide synthase isoform inhibitors, we demonstrated that the negative effect of Nx on endothelial function and rescue by EC transfusion are, at least in part, endothelial nitric oxide synthase mediated. Plasma asymmetric dimethylarginine was increased by Nx and decreased by EC transfusion, whereas mRNA expression of dimethylarginine dimethylaminohydrolases 1 (DDAH1) was decreased by Nx and restored by EC transfusion. Immunohistochemical staining confirmed that local expression of DDAH1 is decreased by Nx and increased by EC transfusion. In conclusion, EC transfusion attenuates Nx-induced endothelium-dependent vascular dysfunction by regulating DDAH1 expression and enhancing endothelial nitric oxide synthase activity. These results suggest that EC-based therapy could provide a novel therapeutic strategy to improve vascular function in chronic kidney disease.
Collapse
Affiliation(s)
- Maricica Pacurari
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | | | | | | | | |
Collapse
|
32
|
Effects of Salvianolic Acid A on Plasma and Tissue Dimethylarginine Levels in a Rat Model of Myocardial Infarction. J Cardiovasc Pharmacol 2013; 61:482-8. [DOI: 10.1097/fjc.0b013e3182893fd5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Witasp A, Rydén M, Carrero JJ, Qureshi AR, Nordfors L, Näslund E, Hammarqvist F, Arefin S, Kublickiene K, Stenvinkel P. Elevated circulating levels and tissue expression of pentraxin 3 in uremia: a reflection of endothelial dysfunction. PLoS One 2013; 8:e63493. [PMID: 23658833 PMCID: PMC3643920 DOI: 10.1371/journal.pone.0063493] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Elevated systemic pentraxin 3 (PTX3) levels appear to be a powerful marker of inflammatory status and a superior outcome predictor in patients with chronic kidney disease (CKD). As previous data imply that PTX3 is involved in vascular pathology and that adipose tissue mass may influence circulating PTX3 levels, we aimed to study the importance of adipose tissue expression of PTX3 in the uremic milieu and its relation to endothelial dysfunction parameters. Plasma PTX3 and abdominal subcutaneous adipose tissue (SAT) PTX3 mRNA levels were quantified in 56 stage 5 CKD patients (median age 57 [range 25-75] years, 30 males) and 40 age and gender matched controls (median age 58 [range 20-79] years, 27 males). Associations between PTX3 measures and an extensive panel of clinical parameters, including surrogate markers of endothelial function, were assessed. Functional ex vivo studies on endothelial status and immunohistochemical staining for PTX3 were conducted in resistance subcutaneous arteries isolated from SAT. SAT PTX3 mRNA expression correlated with plasma PTX3 concentrations (rho = 0.54, p = 0.0001) and was increased (3.7 [0.4-70.3] vs. 1.2 [0.2-49.3] RQ, p = 0.02) in CKD patients with cardiovascular disease (CVD), but was not significantly different between patients and controls. The association to CVD was lost after adjustments. SAT PTX3 mRNA levels were independently correlated to asymmetric dimethylarginine and basal resistance artery tone developed after inhibition with nitric oxide synthase and cyclooxygenase (rho = -0.58, p = 0.002). Apparent positive PTX3 immunoreactivity was observed in both patient and control arteries. In conclusion, fat PTX3 mRNA levels are associated with measures of endothelial cell function in patients with CKD. PTX3 may be involved in adipose tissue-orchestrated mechanisms that are restricted to the uremic milieu and modify inflammation and vascular complications in CKD patients.
Collapse
Affiliation(s)
- Anna Witasp
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Juan Jesús Carrero
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Nordfors
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Folke Hammarqvist
- Division of Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Center for Gender Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
34
|
Chennasamudram SP, Noor T, Vasylyeva TL. COMPARISON OF SEVELAMER AND CALCIUM CARBONATE ON ENDOTHELIAL FUNCTION AND INFLAMMATION IN PATIENTS ON PERITONEAL DIALYSIS. J Ren Care 2013; 39:82-9. [DOI: 10.1111/j.1755-6686.2013.12009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudha P. Chennasamudram
- Department of Pediatrics, School of Medicine; Texas Tech University Health Sciences Center; Amarillo; Texas; USA
| | - Tanjila Noor
- Department of Pediatrics, School of Medicine; Texas Tech University Health Sciences Center; Amarillo; Texas; USA
| | - Tetyana L. Vasylyeva
- Department of Pediatrics, School of Medicine; Texas Tech University Health Sciences Center; Amarillo; Texas; USA
| |
Collapse
|
35
|
Zapolski T, Wysokiński A, Książek A, Jaroszyński A. Aortic stiffness and left atrial volume index in patients on continuous ambulatory peritoneal dialysis: role of endothelial dysfunction. Int J Cardiol 2012; 162:253-6. [PMID: 22790190 DOI: 10.1016/j.ijcard.2012.06.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/18/2012] [Accepted: 06/23/2012] [Indexed: 12/25/2022]
|