1
|
Behera M, Ghorai SM, De S, Kaur H. Understanding eco-immunology of bacterial zoonoses and alternative therapeutics toward "One Health". INTERNATIONAL JOURNAL OF ONE HEALTH 2021. [DOI: 10.14202/ijoh.2021.104-115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current review identifies key bacterial zoonoses, the understanding of comparative immunology, evolutionary trade-offs between emerging bacterial pathogens and their dynamics on both arms of immunity. The several gaps in the literature limit our understanding of spread of prominent bacterial zoonotic diseases and the host-pathogen interactions that may change in response to environmental and social factors. Gaining a more comprehensive understanding of how anthropogenic activities affects the spread of emerging zoonotic diseases, is essential for predicting and mitigating future disease emergence through fine-tuning of surveillance and control measures with respect to different pathogens. This review highlights the urgent need to increase understanding of the comparative immunity of animal reservoirs, design of vaccines according to the homology in host-pathogen interactions, and the alternative strategies to counter the risk of bacterial pathogenic spillover to humans with eventual spread of zoonotic diseases.
Collapse
Affiliation(s)
- Manisha Behera
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India; Department of Zoology, Hindu College, University of Delhi, Delhi, India
| | | | - Sachinandan De
- Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Gao CQ, Zhi R, Yang Z, Li HC, Yan HC, Wang XQ. Low dose of IGF-I increases cell size of skeletal muscle satellite cells via Akt/S6K signaling pathway. J Cell Biochem 2016; 116:2637-48. [PMID: 25923195 DOI: 10.1002/jcb.25212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway.
Collapse
Affiliation(s)
- Chun-qi Gao
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Rui Zhi
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,Guizhou Agricultural Vocational College, Guiyang, Guizhou, China
| | - Zhou Yang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China.,College of Science and Engineering, Guangxi Open University, Nanning, Guangxi, China
| | - Hai-chang Li
- Davis Heart & Lung Research Institute, Wexner Medical Center at the Ohio State University, Columbus, Ohio
| | - Hui-chao Yan
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| | - Xiu-qi Wang
- College of Animal Science, South China Agricultural University/National Engineering Research Center for Breeding Swine Industry/Guangdong Provincial Key Laboratory of Agro-Animal Genomics, Guangzhou, Guangdong province, China
| |
Collapse
|
3
|
Bin L, Luping D, Bing S, Zhengyu Y, Maojun L, Zhixin F, Yanna W, Haiyan W, Guoqing S, Kongwang H. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae. PLoS One 2014; 9:e101968. [PMID: 25098731 PMCID: PMC4123846 DOI: 10.1371/journal.pone.0101968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/13/2014] [Indexed: 12/22/2022] Open
Abstract
Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod)-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.
Collapse
Affiliation(s)
- Li Bin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (LB); (HK)
| | - Du Luping
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Sun Bing
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
| | - Yu Zhengyu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Liu Maojun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Feng Zhixin
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wei Yanna
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wang Haiyan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shao Guoqing
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - He Kongwang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (LB); (HK)
| |
Collapse
|
5
|
Zhang H, Ma Z, Li Y, Zheng J, Yi L, Fan H, Lu C. Identification of a novel collagen type І-binding protein from Streptococcus suis serotype 2. Vet J 2013; 197:406-14. [PMID: 23465548 DOI: 10.1016/j.tvjl.2013.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/24/2022]
Abstract
Streptococcus suis, a major pathogen of pigs, is an emerging zoonotic agent that causes meningitis and septic shock. cbp40 is a putative virulent gene that has been identified using suppression subtractive hybridization performed on the virulent S. suis serotype 2 strain HA9801 and the avirulent S. suis serotype 2 strain T15. Based on predicted protein features showing a shared conserved domain with the collagen-binding protein Cna of Staphylococcus aureus, Cbp40 is likely to function as a direct mediator of collagen adhesion. Here, the cbp40 gene was cloned and the recombinant protein purified. Western blotting using swine convalescent sera confirmed its role as an immunogenic protein. Collagen binding activity could be detected by western affinity blot and ELISA. Conversely, deletion of the cbp40 gene reduced bacterial adhesion to HEp-2 cells, capacity for biofilm formation, and virulence in a zebrafish infection model. The response of the bEnd.3 cell line to infection with the S. suis serotype 2 strain ZY05719 and the cbp40-knockout strain was evaluated using gene expression arrays. The differentially expressed genes were involved in inflammatory and immune responses, leukocyte adhesion and heterophilic cell adhesion. Collectively, these data suggest that Cbp40 plays an important role as an extracellular matrix adhesion protein that interacts with host cells during infection.
Collapse
Affiliation(s)
- Hui Zhang
- Key Lab Animal Disease Diagnostic and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|