1
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
2
|
Öney Öİ, Yenilmez HY, Bahar D, Öztürk NF, Altuntaş Bayır Z. Design of N-heterocycle based-phthalonitrile/metal phthalocyanine-silver nanoconjugates for cancer therapies. Dalton Trans 2023; 52:13119-13128. [PMID: 37602369 DOI: 10.1039/d3dt01656k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
This study reports the anticancer properties of carbazole-containing phthalonitrile/phthalocyanine-modified silver nanoparticles for the first time. In this study, a new mono-substituted phthalonitrile namely 3-[9H-carbazole-9-ethoxy]phthalonitrile and its metal phthalocyanines {M = Zn, Co, and Mn(Cl)} were synthesized by template cyclotetramerization of phthalonitrile derivatives. The newly synthesized compounds were characterized using UV-vis, FT-IR, 1H NMR, 13C NMR, and mass spectroscopy. The resultant compounds were successfully linked to the surface of silver nanoparticles. The characterization of the surficial modification was carried out by applying the TEM technique. The cytotoxic activities of the studied nanoconjugates were tested against A549, DLD-1, and Wi38 cell lines by performing a (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay with/without irradiation. Although the functionalization of silver nanoparticles increased the solubility of phthalocyanines in aqueous media, the presence of phthalonitrile/phthalocyanine derivatives on the silver nanoparticles' surface improved their biological properties. All the studied biological candidates exhibited antiproliferative activities against the cell lines. The IC50 values calculated were between 6.80 and 97.99 μM against the studied cell lines in the dark. However, the IC50 values determined were between 3.11 and 88.90 μM with irradiation. The highest IC50 values obtained were 3.11 and 3.52 μM against the DLD-1 cell line for nanoconjugates 1-AgNP and 3-AgNP, respectively. The findings indicated that the compounds may be utilized as anticancer agents after further studies.
Collapse
Affiliation(s)
- Özlem İpsiz Öney
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| | - H Yasemin Yenilmez
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| | - Dilek Bahar
- Genome & Stem Cell Center (GENKOK), Erciyes University, TR-38280, Kayseri, Türkiye
| | | | - Zehra Altuntaş Bayır
- Department of Chemistry, Istanbul Technical University, TR-34469, Istanbul, Türkiye.
| |
Collapse
|
3
|
Toubia I, Nguyen C, Diring S, Onofre M, Daurat M, Gauthier C, Gary-Bobo M, Kobeissi M, Odobel F. Development of targeted photodynamic therapy drugs by combining a zinc phthalocyanine sensitizer with TSPO or EGFR binding groups: the impact of the number of targeting agents on biological activity. Org Biomol Chem 2023; 21:6509-6523. [PMID: 37341568 DOI: 10.1039/d3ob00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Drug-targeted delivery has become a top priority in the world of medicine in order to develop more efficient therapeutic agents. This is important as a critical underlying problem in cancer therapy stems from the inability to deliver active therapeutic substances directly to tumor cells without causing collateral damage. In this work, zinc(II) phthalocyanine (ZnPc) was selected as a sensitizer and was linked to different targeting agents, which would be recognized by overexpressed proteins in cancer cells. As targeting agents, we first selected the two ligands (DAA1106, PK11195) of the translocator protein (TSPO) and then Erlotinib a binding group of the ATP domain of tyrosine kinase in epidermal growth factor (EGFR). ZnPc was connected via an ethylene glycol chain to either one (n = 1) or four (n = 4) targeting agents. The biological activity of these conjugates ZnPc(ligand)n was investigated on MDA-MB-231 breast human cancer cells and human hepatoma HepG2 cells, first in the dark (cytotoxicity) and then under irradiation (photodynamic therapy). The dark cytotoxicity was extremely low (IC50 ≥ 50 μM) for all of these compounds, which is a required criterion for further photodynamic application. After irradiation at 650 nm, only the conjugates bearing one targeting ligand such as ZnPc-[DAA1106]1, ZnPc-[PK11195]1, and ZnPc-[Erlo]1 showed photodynamic activity, while those linked to 4 targeting agents were inactive. Importantly, fluorescence imaging microscopy showed the colocalization of ZnPc-[DAA1106]1, ZnPc-[PK11195]1 and ZnPc-[erlo]1, at mitochondria, a result that justifies the observed photodynamic activity of these conjugates. This study first shows the impact of the number and the mode of organization of targeting agents on the ability of the sensitizer to cross the cell membrane. When zinc(II) phthalocyanine carries a single targeting agent, a significant photodynamic activity on MDA-MB-231 breast human cancer cells was measured and localization at the mitochondria was demonstrated by fluorescence imaging, thus proving the potential of the sensitizer linked to a targeting agent to improve selectivity. Another important conclusion from this study for the design of future effective PDT drugs using multivalence effects is to control the arrangement of the targeting agents in order to design molecules that will be able to pass the cell membrane barriers.
Collapse
Affiliation(s)
- Isabelle Toubia
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | | | - Stéphane Diring
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| | - Mélanie Onofre
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Morgane Daurat
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | - Corentin Gauthier
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
- NanoMedSyn, 15 avenue Charles Flahault, 34293 Montpellier Cedex 5, France
| | | | - Marwan Kobeissi
- Laboratoire RammalRammal, Equipe de Synthèse Organique Appliquée SOA, Université Libanaise, Faculté des Sciences 5, Nabatieh, Lebanon.
| | - Fabrice Odobel
- Nantes Université, CNRS, CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR 6230, 2, rue de la Houssinière - BP 92208, F-44000 NANTES, France.
| |
Collapse
|
4
|
Li MY, Yang W, Cen JH, Liu LG, Yang G, Liu HY, Liao YH, Zhong XH. Gallium(III) Amide Corroles: DNA Interaction and Photodynamic Activity in Cancer Cells. Chempluschem 2023; 88:e202200413. [PMID: 36680306 DOI: 10.1002/cplu.202200413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Indexed: 01/07/2023]
Abstract
A series of gallium(III) amide corroles including meso-5,15-bis(pentafluorophenyl)-10-(4-Pyridinamide-phenyl)corrole gallium (III) (1-Ga), meso-5,15-bis(pentafluorophenyl)-10-(4-Furamide-phenyl)corrole gallium(III) (2-Ga) and meso-5,15-bis(pentafluorophenyl)-10-(4-Thiophenamide-phenyl)corrole gallium(III) (3-Ga) were synthesized. The interaction of these complexes with DNA and their photodynamic antitumor activities have been studied. UV spectra titration showed that these gallium(III) corroles interact with calf thymus DNA (CT-DNA) through an external binding mode. All three gallium(III) corroles can effectively generate singlet oxygen under illumination and have good photostability. Among the three gallium(III) corroles, 2-Ga exhibited excellent photodynamic antitumor activity against the tested tumor cell lines under light irradiation (625±2 nm, 0.3 mW/cm2 , 1.08 J/cm2 ). The best phototoxicity was observed by 2-Ga against HepG2 cells (IC50 =6.3±0.9), which is even better than temoporfin (IC50 =8.4±1.8). It could block HepG2 cells in the sub-G0 phase and effectively induce apoptosis of HepG2 cells under 625 nm light irradiation.
Collapse
Affiliation(s)
- Meng-Yuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Wu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Jing-He Cen
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Ling-Gui Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Gang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, 510640, P. R. China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Southern Medical University, Guangzhou, Guangdong, 510091, P. R. China
| | - Xi-Hao Zhong
- Guangzhou Quality Supervision and Testing Institute, Guangzhou, Guangdong, 5114471, P. R. China
| |
Collapse
|
5
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Conjugation of Antimicrobial Peptide to Zinc Phthalocyanine for an Efficient Photodynamic Antimicrobial Chemotherapy. COATINGS 2022. [DOI: 10.3390/coatings12020200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Photodynamic antimicrobial chemotherapy is an attractive and novel therapeutic approach to treat microbial infections. Antimicrobial peptides (AMPs) have the potential to specifically target and kill the microorganism while showing no effect toward mammalian cells. In the current study, antimicrobial peptide (GGG(RW)3), an analogue of MP-196, was conjugated to a zinc phthalocyanine (ZnPc) photosensitizer (PS) for photoinactivation assay to enhance the bacterial killing efficacy of the peptide. The AMPs showed selectivity toward the Gram-positive strain of bacteria. We observed that the conjugate ZnPc-GGG(RW)3 also displayed a photoinactivation effect against the Gram-positive strains of S. aureus. The results showed that ZnPc-GGG(RW)3 induced a 6-log reduction (i.e., 99.999% cell killing) in Gram-positive S. aureus at a light dose of 22 J/cm2 upon illumination under red light, while the peptide did not exhibit such a significant effect when tested alone at the same concentration. The conjugate also showed 50% inhibition of the bacterial strain in the dark at a higher concentration. Furthermore, the addition of potassium iodide salt to the PS at lower concentrations also significantly killed the Gram-negative E. coli strain and killed the E. coli strain with up to a 5-log reduction at a light dose of 22 J/cm2 under red light illumination. We demonstrated the efficacy of antimicrobial peptide (GGG(RW)3 enhanced by conjugation to a ZnPc photosensitizer.
Collapse
|
7
|
El-Badrawy AM, Fadda AA, Abdel-Latif E, Selim YA. Design and synthesis of novel phthalocyanines as potential antioxidant and antitumor agents starting with new synthesized phthalonitrile derivatives. RSC Adv 2021; 11:34300-34308. [PMID: 35497267 PMCID: PMC9042375 DOI: 10.1039/d1ra05249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/03/2021] [Indexed: 12/02/2022] Open
Abstract
New phthalonitrile derivatives formed from reactions of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were considered as the key intermediates for the synthesis of new phthalocyanines. Moreover, new phthalonitrile derivatives 2, 5, 9, 10, 15 and 16 reacted with 1,4-diazabicyclo[2.2.2]octane (DBO) or hydroquinone to afford the corresponding new phthalocyanine dyes 3, 6, 11, 12, 17 and 18. In addition, the cyclotetramerization of phthalic anhydride derivative 20 afforded new phthalocyanine dye 22. Spectral and elemental investigations revealed the structures of the newly synthesized phthalocyanines. The antioxidant and cytotoxic properties of the novel compounds were investigated, and it has been established that compounds 17 and 18 have very strong anticancer and antioxidant action against all cell lines.
Collapse
Affiliation(s)
- Afnan M El-Badrawy
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ahmed A Fadda
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ehab Abdel-Latif
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Yasser A Selim
- Faculty of Specific Education, Zagazig University 44519 Zagazig Egypt
| |
Collapse
|
8
|
Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021; 36:1873-1881. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the mechanism and effect of photodynamic treatment mediated by 5-aminoketovalerate (5-ALA-PDT) on human ovarian cancer cells (OVCAR3 cells) and to provide a theoretical basis for the subsequent experimental step in vivo. Human ovarian cancer OVCAR3 cells were randomly divided into four groups: control group, laser irradiation alone group, photosensitizer alone group, and photodynamic treatment group. Alterations in cell morphology were observed with an inverted light microscope; cell viability was examined by CCK-8 assays. The ROS content and apoptosis rate were examined by flow cytometry analysis. Western blot was used to detect the expression of apoptosis-related proteins, such as caspase-3, Bax, and Bcl-2, and the expression of cleaved caspase-3 in live cells was detected by a cleaved caspase-3 assay kit. Inverted light microscopy showed alterations in cell morphology in different stages. Comparison with the three other groups indicated that tumor cell proliferation was significantly decreased in the photodynamic treatment group (P < 0.05). Flow cytometry analysis revealed that the content of ROS was higher in the photodynamic group than in the other three groups, and the apoptosis rate was higher in the photodynamic treatment group. The difference compared with the other three groups was statistically significant (P < 0.001). The western blot results indicated that the protein expression of Bcl-2 and caspase-3 was decreased in the photodynamic treatment group, and the protein expression level of Bax was increased (P < 0.05). The expression of cleaved caspase-3 was increased in the photodynamic treatment group compared with the other groups according to the data obtained with a microplate reader. Thus, our results demonstrated that the apoptosis and viability of OVCAR3 cells are altered in response to 5-ALA-PDT; however, no remarkable effects were observed in ovarian cancer cells treated with laser irradiation or photosensitizer alone. 5-ALA-PDT can significantly inhibit the growth of human ovarian cancer cells, and the mechanism of this effect is related to the tumor cell apoptosis mediated by the downregulation of Bcl-2 and caspase-3 and upregulation of Bax protein expression.
Collapse
Affiliation(s)
- Qian Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuping Suo
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoni Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Xiaojuan Tian
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanxia Gao
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nannan Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
9
|
Lin C, Zhang Y, Zhao Q, Sun P, Gao Z, Cui S. Analysis of the short-term effect of photodynamic therapy on primary bronchial lung cancer. Lasers Med Sci 2020; 36:753-761. [PMID: 32594348 PMCID: PMC8121718 DOI: 10.1007/s10103-020-03080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
To analyze the short-term clinical effect of photodynamic therapy on bronchial lung cancer and provide relevant practical experience for its better application in clinical practice. Twenty patients with bronchial lung cancer diagnosed by pathology were treated with photodynamic therapy or interventional tumor reduction combined with photodynamic therapy. Follow-up at 3 months after treatment, the chest CT and bronchoscopy were reexamined. The lesions were observed under a microscope, and the pathological specimens of living tissues were stained with HE and TUNEL to evaluate the short-term clinical effect. The volume of the tumor in the trachea or bronchus was smaller than before and the obstruction improved after the PDT from the chest CT. We could conclude that after PDT, the tumor volume was reduced and the pathological tissue appeared necrotic, the surface was pale, and the blood vessels were fewer while compared with before, and less likely to bleed when touched from the results of the bronchoscopy. HE staining showed that before treatment, there were a large number of tumor cells, closely arranged and disordered, or agglomerated and distributed unevenly. The cell morphology was not clear and the sizes were various with large and deeply stained nucleus, and the intercellular substance was less. After treatment, the number of tumor cells decreased significantly compared with before and the arrangement was relatively loose and orderly. The cells were roughly the same size; the intercellular substance increased obviously and showed uniform staining. The nuclei morphology was incomplete and fragmented, and tumor cells were evenly distributed among the intercellular substance. TUNEL staining showed that the number of cells was large and the nucleus morphology was regular before treatment; the nuclear membrane was clear and only a small number of apoptotic cells could be seen. However, the number of cells decreased and arranged loosely after treatment, with evenly stained cytoplasm. The nuclear morphology was irregular and the nuclear membrane cannot be seen clearly. Apoptotic cells with typical characteristics such as karyopyknosis, karyorrhexis, and karyolysis were common. Photodynamic therapy for bronchial lung cancer can achieve a satisfactory short-term clinical treatment effect and improve the life quality of patients, but the long-term clinical effect remains to be further studied.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanyuan Zhang
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Qian Zhao
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Pingping Sun
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhe Gao
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shichao Cui
- Department of Respiration and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
10
|
Lin C, Zhang Y, Wang J, Sui A, Xiu L, Zhu X. The study of effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives. Lasers Med Sci 2019; 35:1085-1094. [PMID: 31642999 DOI: 10.1007/s10103-019-02892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
To investigate the effect and mechanism of 630-nm laser on human lung adenocarcinoma cell xenograft model in nude mice mediated by hematoporphyrin derivatives (HPD) and provide theoretical basis for clinical photodynamic therapy (PDT). Human lung adenocarcinoma cell xenograft model in nude mice was established and randomly divided into four groups: control group, pure photosensitizer group, pure irradiation group, and photodynamic treatment group. The tumor volume growth was compared, and the tumor growth inhibition rate was calculated. HE staining was used for routine pathological observation of tumor sections, and gross conditions of cells, interstitium, and blood vessels in several groups of tumor tissues were observed. TUNEL staining was used to observe and compare the apoptosis induced by photodynamic therapy. Real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression level of angiogenesis-related factors VEGF, HIF-1α and apoptosis-related factors Bax and Bcl-2 mRNA in the transplanted tumor tissues. Western blot was employed to detect the expression of angiogenesis-related proteins VEGF, HIF-1α and apoptosis-related proteins Bax, Caspase-3, and Bcl-2. Compared with the other three groups, the tumor growth inhibition rate of the photodynamic treatment group was significantly increased and the difference was statistically significant (P < 0.05). HE staining showed that the animal model of lung adenocarcinoma A549 was successfully established. TUNEL staining revealed that more apoptotic cells were found in the photodynamic treatment group, and the apoptosis index was calculated. Compared with the other three groups, the difference was statistically significant (P < 0.05). RT-PCR results showed that compared with the other three groups, the mRNA expressions of VEGF, HIF-1α, and Bcl-2 in the photodynamic treatment group decreased, while the expression of Bax mRNA increased(P < 0.05), and the differences were statistically significant. Western blot results showed that protein expressions of VEGF, HIF-1α, and Bcl-2 decreased in the photodynamic treatment group, while protein expression level of Bax and Caspase-3 increased (P < 0.05), indicating statistically significant differences. The 630-nm laser mediated by hematoporphyrin derivatives can significantly inhibit the growth of human lung adenocarcinoma xenograft tumor in nude mice, the mechanism of which is related to the inhibition of tumor angiogenesis by down-regulating VEGF and HIF-1α gene expression, and the promotion of tumor apoptosis by up-regulating Bax, Caspase-3, and down-regulating Bcl-2 gene expression.
Collapse
Affiliation(s)
- Cunzhi Lin
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yuanyuan Zhang
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Jun Wang
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Aihua Sui
- Central laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lulu Xiu
- Department of Respiration, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xinhong Zhu
- Department of International Medicine, Qingdao Municipal Hospital, Qingdao, 266071, China.
| |
Collapse
|
11
|
Chow SYS, Wong RCH, Zhao S, Lo PC, Ng DKP. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy. Chemistry 2018; 24:5779-5789. [DOI: 10.1002/chem.201706128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Sun Y. S. Chow
- Department of Chemistry; The Chinese University of Hong Kong; Shatin N.T. Hong Kong China
| | - Roy C. H. Wong
- Department of Chemistry; The Chinese University of Hong Kong; Shatin N.T. Hong Kong China
| | - Shirui Zhao
- Department of Chemistry; The Chinese University of Hong Kong; Shatin N.T. Hong Kong China
| | - Pui-Chi Lo
- Department of Biomedical Sciences; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry; The Chinese University of Hong Kong; Shatin N.T. Hong Kong China
| |
Collapse
|
12
|
Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018; 47:7369-7400. [DOI: 10.1039/c7cs00554g] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present article reviews the most important developing strategies in light-induced nanomedicine, based on the combination of porphyrinoid photosensitizers with a wide variety of biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
| | | | - Eduardo Anaya-Plaza
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| | - Andrés de la Escosura
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| |
Collapse
|
13
|
Liu Q, Pang M, Tan S, Wang J, Chen Q, Wang K, Wu W, Hong Z. Potent peptide-conjugated silicon phthalocyanines for tumor photodynamic therapy. J Cancer 2018; 9:310-320. [PMID: 29344278 PMCID: PMC5771339 DOI: 10.7150/jca.22362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/15/2017] [Indexed: 02/02/2023] Open
Abstract
Phthalocyanines (Pcs) are a group of promising photosensitizers for use in photodynamic therapy (PDT). However, their extremely low solubility and their strong tendency to aggregate in aqueous solution greatly restrict their application. Conjugation of Pc macrocycles with peptide ligands could be a very useful strategy to optimize the physical properties of Pcs not only by increasing their water solubility and reducing their aggregation but also by endowing the conjugates with a tumor-targeting capability. To develop highly potent photosensitizers for tumor PDT, we prepared new peptide-conjugated photosensitizers using silicon Pc (SiPc), which has much higher photodynamic activity than zinc Pcs, as the light activation moiety and the cRGDfK peptide (or simply cRGD) as the peptide moiety. A polyethylene glycol linker and an extra carboxylic acid group were also tested for introduction into the conjugates to optimize the conjugate structure. The conjugates' photophysical and photodynamic behaviors were then carefully evaluated and compared using in vitro and in vivo experiments. One of the prepared conjugates, RGD-(Linker)2-Glu-SiPc, showed excellent physical properties and photodynamic activity, with an EC50 (half maximal effective concentration) of 10-20 nM toward various cancer cells. This conjugate eradicated human glioblastoma U87-MG tumors in a xenograft murine tumor model after only one dose of photodynamic treatment, with no tumor regrowth during observation for up to 35 days. The conjugate RGD-(Linker)2-Glu-SiPc thus showed highly promising potential for use in tumor treatment.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Mingpei Pang
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Sihai Tan
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Jin Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Qingle Chen
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Kai Wang
- International Medicine Center, Tianjin Hospital, Tianjin 300457, P. R. China
| | - Wenjie Wu
- College of Material Science and Chemical Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Xu P, Jia Y, Yang Y, Chen J, Hu P, Chen Z, Huang M. Photodynamic Oncotherapy Mediated by Gonadotropin-Releasing Hormone Receptors. J Med Chem 2017; 60:8667-8672. [DOI: 10.1021/acs.jmedchem.7b01216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Xu
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Yuhua Jia
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College
of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Yongshuai Yang
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College
of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P. R. China
| | - Jincan Chen
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Ping Hu
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Zhuo Chen
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Mingdong Huang
- State
Key Laboratory of Structural Chemistry and Danish-Chinese Centre for
Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- College
of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
| |
Collapse
|
15
|
do Nascimento FB, Ribeiro AO. Investigation of synthetic pathways of carboxylic acid phthalocyanines from glycolic and lactic acids. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Alpugan S, Topkaya D, Atilla D, Ahsen V, Niazi J, Dumoulin F. Using aptamers as targeting moieties conjugated to photosensitising phthalocyanines. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Horne TK, Cronjé MJ. Mechanistics and photo-energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research. Chem Biol Drug Des 2017; 89:221-242. [DOI: 10.1111/cbdd.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Tamarisk K. Horne
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| | - Marianne J. Cronjé
- Department of Biochemistry; Faculty of Science; University of Johannesburg; Auckland Park South Africa
| |
Collapse
|
18
|
Li X, Taratula O, Taratula O, Schumann C, Minko T. LHRH-Targeted Drug Delivery Systems for Cancer Therapy. Mini Rev Med Chem 2017; 17:258-267. [PMID: 27739358 PMCID: PMC6645782 DOI: 10.2174/1389557516666161013111155] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 09/18/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
Targeted delivery of therapeutic and diagnostic agents to cancer sites has significant potential to improve the therapeutic outcome of treatment while minimizing severe side effects. It is widely accepted that decoration of the drug delivery systems with targeting ligands that bind specifically to the receptors on the cancer cells is a promising strategy that may substantially enhance accumulation of anticancer agents in the tumors. Due to the transformed cellular nature, cancer cells exhibit a variety of overexpressed cell surface receptors for peptides, hormones, and essential nutrients, providing a significant number of target candidates for selective drug delivery. Among others, luteinizing hormonereleasing hormone (LHRH) receptors are overexpressed in the majority of cancers, while their expression in healthy tissues, apart from pituitary cells, is limited. The recent studies indicate that LHRH peptides can be employed to efficiently guide anticancer and imaging agents directly to cancerous cells, thereby increasing the amount of these substances in tumor tissue and preventing normal cells from unnecessary exposure. This manuscript provides an overview of the targeted drug delivery platforms that take advantage of the LHRH receptors overexpression by cancer cells.
Collapse
Affiliation(s)
- Xiaoning Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Canan Schumann
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, United States
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, United States
| |
Collapse
|
19
|
Abstract
Corroles are exceptionally promising platforms for the development of agents for simultaneous cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for imaging and targeting as well as therapeutic function within one theranostic assembly. In this review, we begin with a brief outline of corrole chemistry that has been uniquely useful in designing corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole anticancer activity, which commenced one year after the first scalable synthesis was reported (1999-2000). In 2001, a major advance was made with the introduction of negatively charged corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More recently, both cellular uptake and intracellular trafficking of metallocorroles have been documented in experimental investigations employing advanced optical spectroscopic as well as magnetic resonance imaging techniques. Key results from work on both cellular and animal models are reviewed, with emphasis on those that have shed new light on the mechanisms associated with anticancer activity. In closing, we predict a very bright future for corrole anticancer research, as it is experiencing exponential growth, taking full advantage of recently developed imaging and therapeutic modalities.
Collapse
Affiliation(s)
- Ruijie D Teo
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Jae Youn Hwang
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science & Technology , Daegu, Republic of Korea
| | - John Termini
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope , 1500 East Duarte Road, Duarte, California 91010, United States
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa 32000, Israel
| | - Harry B Gray
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
20
|
Chow SYS, Lo PC, Ng DKP. An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy. Dalton Trans 2016; 45:13021-4. [DOI: 10.1039/c6dt02283a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel self-quenched phthalocyanine tetramer has been prepared which can be activated in acidic environments, resulting in enhanced fluorescence emission and singlet oxygen production.
Collapse
Affiliation(s)
- Sun Y. S. Chow
- Department of Chemistry
- The Chinese University of Hong Kong
- China
| | - Pui-Chi Lo
- Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- China
| |
Collapse
|
21
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
22
|
Jiang BP, Zhang L, Zhu Y, Shen XC, Ji SC, Tan XY, Cheng L, Liang H. Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles for effectively targeted photothermal therapy. J Mater Chem B 2015; 3:3767-3776. [DOI: 10.1039/c4tb01738b] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water-soluble hyaluronic acid–hybridized polyaniline nanoparticles show effective photothermal ablation of cancer with targeted specificity.
Collapse
Affiliation(s)
- Bang-Ping Jiang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Li Zhang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Yang Zhu
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xing-Can Shen
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Shi-Chen Ji
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Xue-You Tan
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Lei Cheng
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| | - Hong Liang
- Ministry of Education Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Chemical Engineering
- Guangxi Normal University
- Guilin
- P. R. China
| |
Collapse
|
23
|
Lamberti MJ, Vittar NBR, Rivarola VA. Breast cancer as photodynamic therapy target: Enhanced therapeutic efficiency by overview of tumor complexity. World J Clin Oncol 2014; 5:901-907. [PMID: 25493228 PMCID: PMC4259952 DOI: 10.5306/wjco.v5.i5.901] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/04/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy is a minimally invasive and clinically approved procedure for eliminating selected malignant cells with specific light activation of a photosensitizer agent. Whereas interstitial and intra-operative approaches have been investigated for the ablation of a broad range of superficial or bulky solid tumors such as breast cancer, the majority of approved photodynamic therapy protocols are for the treatment of superficial lesions of skin and luminal organs. This review article will discuss recent progress in research focused mainly on assessing the efficacies of various photosensitizers used in photodynamic therapy, as well as the combinatory strategies of various therapeutic modalities for improving treatments of parenchymal and/or stromal tissues of breast cancer solid tumors. Cytotoxic agents are used in cancer treatments for their effect on rapidly proliferating cancer cells. However, such therapeutics often lack specificity, which can lead to toxicity and undesirable side effects. Many approaches are designed to target tumors. Selective therapies can be established by focusing on distinctive intracellular (receptors, apoptotic pathways, multidrug resistance system, nitric oxide-mediated stress) and environmental (glucose, pH) differences between tumor and healthy tissue. A rational design of effective combination regimens for breast cancer treatment involves a better understanding of the mechanisms and molecular interactions of cytotoxic agents that underlie drug resistance and sensitivity.
Collapse
|
24
|
Zhang FL, Huang Q, Liu JY, Huang MD, Xue JP. Molecular-Target-Based Anticancer Photosensitizer: Synthesis and in vitro Photodynamic Activity of Erlotinib-Zinc(II) Phthalocyanine Conjugates. ChemMedChem 2014; 10:312-20. [DOI: 10.1002/cmdc.201402373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Indexed: 11/09/2022]
|
25
|
Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater 2014; 10:4257-68. [PMID: 24969665 DOI: 10.1016/j.actbio.2014.06.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/10/2014] [Accepted: 06/17/2014] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) has attracted much interest for the treatment of cancer due to the increased incidence of multidrug resistance and systemic toxicity in conventional chemotherapy. Phthalocyanine (Pc) is one of main classes of photosensitizers for PDT and possesses optimal photophysical and photochemical properties. A higher specificity can ideally be achieved when Pcs are targeted towards tumor-specific receptors, which may also facilitate specific drug delivery. Herein, we develop a simple and unique strategy to prepare a hydrophilic tumor-targeting photosensitizer ATF-ZnPc by covalently coupling zinc phthalocyanine (ZnPc) to the amino-terminal fragment (ATF) of urokinase-type plasminogen activator (uPA), a fragment responsible for uPA receptor (uPAR, a biomarker overexpressed in cancer cells), through the carboxyl groups of ATF. We demonstrate the high efficacy of this tumor-targeting PDT agent for the inhibition of tumor growth both in vitro and in vivo. Our in vivo optical imaging results using H22 tumor-bearing mice show clearly the selective accumulation of ATF-ZnPc in tumor region, thereby revealing the great potential of ATF-ZnPc for clinical applications such as cancer detection and guidance of tumor resection in addition to photodynamic treatment.
Collapse
|
26
|
Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, Zhang F, Xue J, Chen X, Huang M. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics 2014; 4:642-59. [PMID: 24723985 PMCID: PMC3982134 DOI: 10.7150/thno.8527] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022] Open
Abstract
Human serum albumin (HSA), a naturally abundant protein in blood plasma and tissue fluids, has an extraordinary ligand-binding capacity and is advocated as a drug carrier to facilitate drug delivery. To render it tumor targeting specificity, we generated a recombinant HSA fused with the amino-terminal fragment (ATF) of urokinase, allowing the fusion protein to bind to urokinase receptor (uPAR), which is shown to have a high expression level in many tumors, but not in normal tissues. To test the efficacy of this bifunctional protein (ATF-HSA), a hydrophobic photosensitizer (mono-substituted β-carboxy phthalocyanine zinc, CPZ) was chosen as a cytotoxic agent. A dilution-incubation-purification (DIP) strategy was developed to load the ATF-HSA with this CPZ, forming a 1:1 molecular complex (ATF-HSA:CPZ). We demonstrated that CPZ was indeed embedded inside ATF-HSA at the fatty acid binding site 1 (FA1) of HSA, giving a hydrodynamic radius of 7.5 nm, close to HSA's (6.5 nm). ATF-HSA:CPZ showed high stability and remarkable optical and photophysical properties in aqueous solution. In addition, the molecular complex ATF-HSA:CPZ can bind to recombinant uPAR in vitro and uPAR on tumor cell surfaces, and was efficient in photodynamic killing of tumor cells. The tumor-killing potency of this molecular complex was further demonstrated in a tumor-bearing mouse model at a dose of 0.080 μmol / kg, or 0.050 mg CPZ / kg of mouse body weight. Using fluorescent molecular tomography (FMT), ATF-HSA:CPZ was shown to accumulate specifically in tumors, and importantly, such tumor retention was higher than that of HSA:CPZ. Together, these results indicate that ATF-HSA:CPZ is not only an efficient tumor-specific cytotoxic agent, but also an useful tumor-specific imaging probe. This bifunctional protein ATF-HSA can also be used as a drug carrier for other types of cytotoxic or imaging agents to render them specificity for uPAR-expressing tumors.
Collapse
|
27
|
Hollow silica nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and photothermal combination therapy. Biomaterials 2013; 34:7905-12. [DOI: 10.1016/j.biomaterials.2013.07.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/08/2013] [Indexed: 01/22/2023]
|