1
|
Lee JE, Lee H, Baek E, Choi B, Yun HS, Yoo YK, Lee YS, Song GJ, Cho KS. The role of glial and neuronal Eph/ephrin signaling in Drosophila mushroom body development and sleep and circadian behavior. Biochem Biophys Res Commun 2024; 720:150072. [PMID: 38749187 DOI: 10.1016/j.bbrc.2024.150072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The Eph receptor, a prototypically large receptor protein tyrosine kinase, interacts with ephrin ligands, forming a bidirectional signaling system that impacts diverse brain functions. Eph receptors and ephrins mediate forward and reverse signaling, affecting neurogenesis, axon guidance, and synaptic signaling. While mammalian studies have emphasized their roles in neurogenesis and synaptic plasticity, the Drosophila counterparts are less studied, especially in glial cells, despite structural similarities. Using RNAi to modulate Eph/ephrin expression in Drosophila neurons and glia, we studied their roles in brain development and sleep and circadian behavior. Knockdown of neuronal ephrin disrupted mushroom body development, while glial knockdown had minimal impact. Surprisingly, disrupting ephrin in neurons or glial cells altered sleep and circadian rhythms, indicating a direct involvement in these behaviors independent from developmental effects. Further analysis revealed distinct sleep phenotypes between neuronal and glial knockdowns, underscoring the intricate interplay within the neural circuits that govern behavior. Glia-specific knockdowns showed altered sleep patterns and reduced circadian rhythmicity, suggesting an intricate role of glia in sleep regulation. Our findings challenge simplistic models of Eph/ephrin signaling limited to neuron-glia communication and emphasize the complexity of the regulatory networks modulating behavior. Future investigations targeting specific glial subtypes will enhance our understanding of Eph/ephrin signaling's role in sleep regulation across species.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyungi Lee
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Eunji Baek
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byoungyun Choi
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Kyoung Yoo
- Department of Electronic Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea
| | - Young-Sun Lee
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Gyun Jee Song
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, Republic of Korea; Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, 22711, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea; Korea Hemp Institute, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Buhl E, Kim YA, Parsons T, Zhu B, Santa-Maria I, Lefort R, Hodge JJ. Effects of Eph/ephrin signalling and human Alzheimer's disease-associated EphA1 on behaviour and neurophysiology. Neurobiol Dis 2022; 170:105752. [DOI: 10.1016/j.nbd.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
|
3
|
Contreras EG, Sierralta J, Oliva C. Novel Strategies for the Generation of Neuronal Diversity: Lessons From the Fly Visual System. Front Mol Neurosci 2019; 12:140. [PMID: 31213980 PMCID: PMC6554424 DOI: 10.3389/fnmol.2019.00140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022] Open
Abstract
Among all organs of an adult animal, the central nervous system stands out because of its vast complexity and morphological diversity. During early development, the entire central nervous system develops from an apparently homogenous group of progenitors that differentiate into all neural cell types. Therefore, understanding the molecular and genetic mechanisms that give rise to the cellular and anatomical diversity of the brain is a key goal of the developmental neurobiology field. With this aim in mind, the development of the central nervous system of model organisms has been extensively studied. From more than a century, the mechanisms of neurogenesis have been studied in the fruit fly Drosophila melanogaster. The visual system comprises one of the major structures of the Drosophila brain. The visual information is collected by the eye-retina photoreceptors and then processed by the four optic lobe ganglia: the lamina, medulla, lobula and lobula plate. The molecular mechanisms that originate neuronal diversity in the optic lobe have been unveiled in the past decade. In this article, we describe the early development and differentiation of the lobula plate ganglion, from the formation of the optic placode and the inner proliferation center to the specification of motion detection neurons. We focused specifically on how the precise combination of signaling pathways and cell-specific transcription factors patterns the pool of neural stem cells that generates the different neurons of the motion detection system.
Collapse
Affiliation(s)
- Esteban G Contreras
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jimena Sierralta
- Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Carlos Oliva
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Ngo KT, Andrade I, Hartenstein V. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe. Dev Biol 2017; 428:1-24. [PMID: 28533086 PMCID: PMC5825191 DOI: 10.1016/j.ydbio.2017.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
Abstract
Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates.
Collapse
Affiliation(s)
- Kathy T Ngo
- Department of Molecular, Cell, and Developmental Biology, United States
| | - Ingrid Andrade
- Department of Molecular, Cell, and Developmental Biology, United States
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
5
|
Oliva C, Hassan BA. Receptor Tyrosine Kinases and Phosphatases in Neuronal Wiring: Insights From Drosophila. Curr Top Dev Biol 2016; 123:399-432. [PMID: 28236973 DOI: 10.1016/bs.ctdb.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tyrosine phosphorylation is at the crossroads of many signaling pathways. Brain wiring is not an exception, and several receptor tyrosine kinases (RTKs) and tyrosine receptor phosphates (RPTPs) have been involved in this process. Considerable work has been done on RTKs, and for many of them, detailed molecular mechanisms and functions in several systems have been characterized. In contrast, RPTPs have been studied considerably less and little is known about their ligands and substrates. In both families, we find redundancy between different members to accomplish particular wiring patterns. Strikingly, some RTKs and RPTPs have lost their catalytic activity during evolution, but not their importance in biological processes. In this regard, we have to keep in mind that these proteins have multiple domains and some of their functions are independent of tyrosine phosphorylation/dephosphorylation. Since RTKs and RPTPs are enzymes involved not only in early stages of axon and dendrite pathfinding but also in synapse formation and physiology, they have a potential as drug targets. Drosophila has been a key model organism in the search of a better understanding of brain wiring, and its sophisticated toolbox is very suitable for studying the function of genes with pleiotropic functions such as RTKs and RPTPs, from wiring to synaptic formation and function. In these review, we mainly cover findings from this model organism and complement them with discoveries in vertebrate systems.
Collapse
Affiliation(s)
- Carlos Oliva
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad of Chile, Santiago, Chile.
| | - Bassem A Hassan
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Institut du Cerveau et la Moelle (ICM)-Hôpital Pitié-Salpêtrière, Boulevard de l'Hôpital, Paris, France.
| |
Collapse
|