1
|
Kokkali M, Karali K, Thanou E, Papadopoulou MA, Zota I, Tsimpolis A, Efstathopoulos P, Calogeropoulou T, Li KW, Sidiropoulou K, Gravanis A, Charalampopoulos I. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease. Mol Psychiatry 2025; 30:2265-2283. [PMID: 39587294 PMCID: PMC12092300 DOI: 10.1038/s41380-024-02833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit. Neurotrophic factors consist major regulatory molecules and their decline in AD is considered as an important cause of disease onset and progression. Novel pharmacological approaches are targeting the downstream pathways controlled by neurotrophins, such as nerve growth factor (NGF) receptors, TrkA and p75NTR, which enhance hippocampal neurogenic capacity and neuroprotective mechanisms, and potentially counteract the neurotoxic effects of amyloid deposition. BNN27 is a non-toxic, newly developed 17-spiro-steroid analog, penetrating the blood-brain-barrier (BBB) and mimicking the neuroprotective effects of NGF, acting as selective activator of its receptors, both TrkA and p75NTR, thus promoting survival of various neuronal cell types. Our present research aims at determining whether and which aspects of the AD-related pathology, BNN27 is able to alleviate, exploring the cellular and molecular AD components and link these changes with improvements in the cognitive performance of an animal AD model, the 5xFAD mice. Our results clearly indicate that BNN27 administration significantly reduced amyloid-β load in whole brain of the animals, enhanced adult hippocampal neurogenesis, restored cholinergic function and synaptogenesis, reducing inflammatory activation and leading to significant restoration of cognitive functions. BNN27 may represent a new lead multimodal molecule with neuroprotective, neurogenic and anti-neuroinflammatory actions for developing druggable anti-Alzheimeric agents. Proteomics data are available via ProteomeXchange with the identifier PXD044699.
Collapse
Affiliation(s)
- Maria Kokkali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Evangelia Thanou
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maria Anna Papadopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioanna Zota
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, 71003, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece.
| |
Collapse
|
2
|
Morado-Urbina CE, Kato J, Sandor K, Vazquez-Mora JA, Ängeby Möller K, Simon N, Salcido J, Martinez-Martinez A, Munoz-Islas E, Jimenez-Andrade JM, Svensson CI. Sex-dependent effects of the targeted nerve growth factor mutation (R100E) on pain behavior, joint inflammation, and bone erosion in mice. Pain 2024; 165:2814-2828. [PMID: 39324959 PMCID: PMC11562760 DOI: 10.1097/j.pain.0000000000003343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 09/27/2024]
Abstract
ABSTRACT Nerve growth factor (NGF)-R100E is a mutated form of human recombinant NGF that reduces the binding of NGF to its p75NTR receptor while retaining its affinity toward the TrkA receptor. Here, we used human wild type NGF and NGF-R100E knock-in mice to investigate the effects of this NGF mutation on inflammation-induced pain-related behaviors and bone loss. The hNGF-R100E mutation did not alter the nerve fiber density in the sciatic nerve, ankle joint synovium, and skin of naïve mice. Withdrawal responses to mechanical, thermal, and cold stimuli before and after joint inflammation induced by intra-articular injection of complete Freund adjuvant (CFA) were similar between human recombinant nerve growth factor-wild type and hNGF-R100E male and female mice while weight bearing and gait analysis revealed significant differences. Intriguingly, hNGF-R100E male and female mice showed only mild changes, indicating lower degrees of deep joint-related pain compared to their wild type counterparts. Furthermore, micro-CT analysis demonstrated that hNGF-R100E female mice, but not males, were protected from CFA-induced bone loss, and mRNA analysis showed a different gene regulation indicating a sex-dependent relationship between NGF, inflammation, and bone loss. In conclusion, our study reveals that the hNGF-R100E mutation renders mice insensitive to inflammation-induced impact on joint loading and gait while preserving the development of the peripheral nociceptive neurons and sensitivity to punctate stimulation of the skin. Notably, the mutation uncovers a sex-dependent relationship between NGF and inflammation-induced bone loss. These findings offer valuable insights into NGF as a target for pain management and the interplay between NGF and bone architecture.
Collapse
Affiliation(s)
- Carlos E. Morado-Urbina
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jungo Kato
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Juan Antonio Vazquez-Mora
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Kristina Ängeby Möller
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Jaira Salcido
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Arisai Martinez-Martinez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - Enriqueta Munoz-Islas
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | | | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
3
|
Napoli D, Orsini N, Salamone G, Calvello MA, Capsoni S, Cattaneo A, Strettoi E. Human NGF "Painless" Ocular Delivery for Retinitis Pigmentosa: An In Vivo Study. eNeuro 2024; 11:ENEURO.0096-24.2024. [PMID: 39293937 PMCID: PMC11412101 DOI: 10.1523/eneuro.0096-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 09/20/2024] Open
Abstract
Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, Pisa 56124, Italy
- Regional Doctorate School in Neuroscience, University of Florence, Italy
| | | | | | - Simona Capsoni
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Roma 00161, Italy
| | | |
Collapse
|
4
|
Tiberi A, Borgonovo G, Testa G, Pacifico P, Jacob A, Di Caprio M, Totaro V, Calvello M, Cattaneo A, Capsoni S. Reversal of neurological deficits by painless nerve growth factor in a mouse model of Rett syndrome. Brain 2024; 147:122-134. [PMID: 37633263 PMCID: PMC10766238 DOI: 10.1093/brain/awad282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/12/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.
Collapse
Affiliation(s)
- Alexia Tiberi
- Institute of Neuroscience, CNR, 56124 Pisa, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Giulia Borgonovo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Giovanna Testa
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Paola Pacifico
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Ajesh Jacob
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Valentino Totaro
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
| | | | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute (EBRI), 00161 Roma, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy
- Section of Human Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Khalil A, Barras A, Boukherroub R, Tseng CL, Devos D, Burnouf T, Neuhaus W, Szunerits S. Enhancing paracellular and transcellular permeability using nanotechnological approaches for the treatment of brain and retinal diseases. NANOSCALE HORIZONS 2023; 9:14-43. [PMID: 37853828 DOI: 10.1039/d3nh00306j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Paracellular permeability across epithelial and endothelial cells is, in large part, regulated by apical intercellular junctions also referred to as tight junctions (TJs). These junctions contribute to the spatial definition of different tissue compartments within organisms, separating them from the outside world as well as from inner compartments, with their primary physiological role of maintaining tissue homeostasis. TJs restrict the free, passive diffusion of ions and hydrophilic small molecules through paracellular clefts and are important for appropriate cell polarization and transporter protein localisation, supporting the controlled transcellular diffusion of smaller and larger hydrophilic as well as hydrophobic substances. This traditional diffusion barrier concept of TJs has been challenged lately, owing to a better understanding of the components that are associated with TJs. It is now well-established that mutations in TJ proteins are associated with a range of human diseases and that a change in the membrane fluidity of neighbouring cells can open possibilities for therapeutics to cross intercellular junctions. Nanotechnological approaches, exploiting ultrasound or hyperosmotic agents and permeation enhancers, are the paradigm for achieving enhanced paracellular diffusion. The other widely used transport route of drugs is via transcellular transport, allowing the passage of a variety of pro-drugs and nanoparticle-encapsulated drugs via different mechanisms based on receptors and others. For a long time, there was an expectation that lipidic nanocarriers and polymeric nanostructures could revolutionize the field for the delivery of RNA and protein-based therapeutics across different biological barriers equipped with TJs (e.g., blood-brain barrier (BBB), retina-blood barrier (RBB), corneal TJs, etc.). However, only a limited increase in therapeutic efficiency has been reported for most systems until now. The purpose of this review is to explore the reasons behind the current failures and to examine the emergence of synthetic and cell-derived nanomaterials and nanotechnological approaches as potential game-changers in enhancing drug delivery to target locations both at and across TJs using innovative concepts. Specifically, we will focus on recent advancements in various nanotechnological strategies enabling the bypassing or temporally opening of TJs to the brain and to the retina, and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Asmaa Khalil
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Ching-Li Tseng
- Taipei Medical University, Graduate Institute of Biomedical Materials and Tissue Engineering (GIBMTE), New Taipei City 235603, Taiwan
- Taipei Medical University, International PhD Program in Biomedical Engineering (IPBME), New Taipei City 235603, Taiwan
| | - David Devos
- University Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, Lille, France
| | - Thierry Burnouf
- Taipei Medical University, Graduate Institute of Biomedical Materials and Tissue Engineering (GIBMTE), New Taipei City 235603, Taiwan
- Taipei Medical University, International PhD Program in Biomedical Engineering (IPBME), New Taipei City 235603, Taiwan
| | - Winfried Neuhaus
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, 1210 Vienna, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| |
Collapse
|
6
|
Castoldi V, Zerbini G, Maestroni S, Viganò I, Rama P, Leocani L. Topical Nerve Growth Factor (NGF) restores electrophysiological alterations in the Ins2 Akita mouse model of diabetic retinopathy. Exp Eye Res 2023; 237:109693. [PMID: 37890756 DOI: 10.1016/j.exer.2023.109693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
People suffering from diabetes mellitus commonly have to face diabetic retinopathy (DR), an eye disease characterized by early retinal neurodegeneration and microvascular damage, progressively leading to sight loss. The Ins2Akita (Akita) diabetic mouse presents the characteristics of DR and experimental drugs can be tested on this model to check their efficacy before going to the clinic. Topical administration of Nerve Growth Factor (NGF) has been recently demonstrated to prevent DR in the Akita mouse, reverting the thinning of retinal layers and protecting the retinal ganglion cells (RGCs) from death. In this study, we characterize the effects of topical NGF on neuroretina function, quantified with the electroretinogram (ERG). In particular, we show that NGF can ameliorate RGC conduction in the retina of Akita mice, which correlates with a recovery of retinal nerve fiber plus ganglion cell layer (RNFL-GCL) structure. Overall, our preclinical results highlight that topical administration of NGF could be a promising therapeutic approach for DR, being capable of exerting a beneficial impact on retinal functionality.
Collapse
Affiliation(s)
- Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Silvia Maestroni
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ilaria Viganò
- Complications of Diabetes Unit, Diabetes Research Institute-DRI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Unit, IRCCS Ospedale San Raffaele, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
7
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
8
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Yu X, Yang Z, Zhang Y, Xia J, Zhang J, Han Q, Yu H, Wu C, Xu Y, Xu W, Yang W. Lipid Nanoparticle Delivery of Chemically Modified NGF R100W mRNA Alleviates Peripheral Neuropathy. Adv Healthc Mater 2023; 12:e2202127. [PMID: 36325948 DOI: 10.1002/adhm.202202127] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Messenger RNA (mRNA) carries genetic instructions to the cell machinery for the transient production of antigens or therapeutic proteins and shows enormous potential in vaccine development, cancer immunotherapy, protein replacement therapy, and genome engineering. Here, the synthesis of chemically modified nerve growth factor mutant (NGFR100W ) mRNA through in vitro transcription is described. After the replacement of the original signal peptide sequence with the Ig Kappa leader sequence, codon-optimized NGFR100W mRNA yielded high secretion of mature NGFR100W , which promotes axon growth in PC12 cells. Using lipid nanoparticle (LNP)-delivery of N1-methylpseudouridine-modified mRNA in mice, NGFR100W -mRNA-LNPs result in the successful expression of NGFR100W protein, which significantly reduces nociceptive activity compared to that of NGFWT . This indicates that NGFR100W derived from exogenous mRNA elicited "painless" neuroprotective activity. Additionally, the therapeutic value of NGFR100W mRNA is established in a paclitaxel-induced peripheral neuropathy model by demonstrating the rapid recovery of intraepidermal nerve fibers. The results show that in vitro-transcribed mRNA has significant flexibility in sequence design and fast in vivo functional validation of target proteins. Furthermore, the results highlight the therapeutic potential of mRNA as a supplement to beneficial proteins for preventing or reversing some chronic medical conditions, such as peripheral neuropathy.
Collapse
Affiliation(s)
- Xiang Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zheng Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jia Xia
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qi Han
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai, 200438, P. R. China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei Xu
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Department of Neurology, Ruijin Hospital, Zhoushan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 316012, P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200025, P. R. China
| |
Collapse
|
10
|
Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial and neuronal changes in Alzheimer's disease, and the related controversies II: gliotherapies and multimodal therapy. J Cent Nerv Syst Dis 2022; 14:11795735221123896. [PMID: 36407561 PMCID: PMC9666878 DOI: 10.1177/11795735221123896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/05/2022] [Indexed: 08/30/2023] Open
Abstract
Since the original description of Alzheimer´s disease (AD), research into this condition has mainly focused on assessing the alterations to neurons associated with dementia, and those to the circuits in which they are involved. In most of the studies on human brains and in many models of AD, the glial cells accompanying these neurons undergo concomitant alterations that aggravate the course of neurodegeneration. As a result, these changes to neuroglial cells are now included in all the "pathogenic cascades" described in AD. Accordingly, astrogliosis and microgliosis, the main components of neuroinflammation, have been integrated into all the pathogenic theories of this disease, as discussed in this part of the two-part monograph that follows an accompanying article on gliopathogenesis and glioprotection. This initial reflection verified the implication of alterations to the neuroglia in AD, suggesting that these cells may also represent therapeutic targets to prevent neurodegeneration. In this second part of the monograph, we will analyze the possibilities of acting on glial cells to prevent or treat the neurodegeneration that is the hallmark of AD and other pathologies. Evidence of the potential of different pharmacological, non-pharmacological, cell and gene therapies (widely treated) to prevent or treat this disease is now forthcoming, in most cases as adjuncts to other therapies. A comprehensive AD multimodal therapy is proposed in which neuronal and neuroglial pharmacological treatments are jointly considered, as well as the use of new cell and gene therapies and non-pharmacological therapies that tend to slow down the progress of dementia.
Collapse
|
11
|
Lisi L, Marinelli S, Ciotti GMP, Pizzoferrato M, Palmerio F, Chiavari M, Cattaneo A, Navarra P. The effects of painless nerve growth factor on human microglia polarization. Front Cell Neurosci 2022; 16:969058. [PMID: 36339818 PMCID: PMC9633670 DOI: 10.3389/fncel.2022.969058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2023] Open
Abstract
Previous studies in the rat suggest that microglial cells represent a potential druggable target for nerve growth factor (NGF) in the brain. The painless human Nerve Growth Factor (hNGFp) is a recombinant mutated form of human nerve growth factor (hNGF) that shows identical neurotrophic and neuroprotective properties of wild-type NGF but displays at least 10-fold lower algogenic activity. From the pharmacological point of view, hNGFp is a biased tropomyosin receptor kinase A (TrkA) agonist and displays a significantly lower affinity for the p75 neurotrophin receptor (p75NTR). This study aimed to evaluate the expression of TrkA and p75NTR NGF receptors in two different human microglia cell lines, and to investigate the effects of hNGFp and wild-type NGF (NGF) on L-arginine metabolism, taken as a marker of microglia polarization. Both NGF receptors are expressed in human microglia cell lines and are effective in transducing signals triggered by NGF and hNGFp. The latter and, to a lesser extent, NGF inhibit cytokine-stimulated inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in these cells. Conversely NGF but not hNGFp stimulates arginase-mediated urea production.
Collapse
Affiliation(s)
- Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Federica Palmerio
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
| | - Marta Chiavari
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Rome, Italy
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
12
|
Amyloidogenesis and Neurotrophic Dysfunction in Alzheimer’s Disease: Do They have a Common Regulating Pathway? Cells 2022; 11:cells11203201. [PMID: 36291068 PMCID: PMC9600014 DOI: 10.3390/cells11203201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The amyloid cascade hypothesis has predominately been used to describe the pathogenesis of Alzheimer’s disease (AD) for decades, as Aβ oligomers are thought to be the prime cause of AD. Meanwhile, the neurotrophic factor hypothesis has also been proposed for decades. Accumulating evidence states that the amyloidogenic process and neurotrophic dysfunction are mutually influenced and may coincidently cause the onset and progress of AD. Meanwhile, there are intracellular regulators participating both in the amyloidogenic process and neurotrophic pathways, which might be the common original causes of amyloidogenesis and neurotrophic dysfunction. In this review, the current understanding regarding the role of neurotrophic dysfunction and the amyloidogenic process in AD pathology is briefly summarized. The mutual influence of these two pathogenesis pathways and their potential common causal pathway are further discussed. Therapeutic strategies targeting the common pathways to simultaneously prevent amyloidogenesis and neurotrophic dysfunction might be anticipated for the disease-modifying treatment of AD.
Collapse
|
13
|
Humpel C. Intranasal neprilysin rapidly eliminates amyloid-beta plaques, but causes plaque compensations: the explanation why the amyloid-beta cascade may fail? Neural Regen Res 2022; 17:1881-1884. [PMID: 35142662 PMCID: PMC8848595 DOI: 10.4103/1673-5374.335138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative brain disorders are a major burden in our society, such as Alzheimer´s disease. In order to repair or prevent such diseases, drugs are designed which enter the brain, but the blood-brain barrier limits their entry and the search for alternative pathways is important. Recently, we reported that intranasal delivery of the amyloid-beta degrading enzyme neprilysin eliminated amyloid-beta plaques in transgenic Alzheimer´s disease mice. This review describes the anatomical structure of the intranasal pathway, explains the intranasal delivery of pure neprilysin, cell-loaded neprilysin (platelets) and collagen-embedded neprilysin to destruct amyloid-beta plaques in Alzheimer´s disease in transgenic APP_SweDI mice and hypothesizes why this may cause compensation and why the amyloid-beta cascade hypothesis may fail.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Lisi L, Ciotti GMP, Chiavari M, Martire M, Navarra P. The effects of CHF6467, a new mutated form of NGF, on cell models of human glioblastoma. A comparison with wild-type NGF. Growth Factors 2022; 40:37-45. [PMID: 35442129 DOI: 10.1080/08977194.2022.2060095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
CHF6467 is a mutated form of human recombinant nerve growth factor (NGF). The mutation selectively disrupts the binding of NGF to its p75NTR receptor while maintaining the affinity toward TrkA receptor. Because of such different profile of receptor interaction, CHF6467 maintains unaltered the neurotrophic and neuroprotective properties of wild-type NGF but shows reduced algogenic activity.In this study, we investigated the effects of CHF6467 on mortality, proliferation, cell-damage and migration in three human glioblastoma cell lines (U87MG, T98G, LN18), and in the rat astrocytoma C6 cells. Both CHF6467 and wild-type NGF, given in the range 1-50 ng/ml, did not modify cell proliferation, metabolism and migration, as well as the number of live/dead cells.The present in vitro data are predictive of a lack of tumorigenic activity by both wild-type NGF and CHF6467 on these cell types in vivo, and warrant for CHF6467 further clinical development.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gabriella Maria Pia Ciotti
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Marta Chiavari
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Maria Martire
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
15
|
Capsoni S, Cattaneo A. Getting Into the Brain: The Intranasal Approach to Enhance the Delivery of Nerve Growth Factor and Its Painless Derivative in Alzheimer’s Disease and Down Syndrome. Front Neurosci 2022; 16:773347. [PMID: 35360160 PMCID: PMC8961408 DOI: 10.3389/fnins.2022.773347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
Abstract
The neurotrophin Nerve Growth Factor (NGF) holds a great potential as a therapeutic candidate for the treatment of neurological diseases. However, its safe and effective delivery to the brain is limited by the fact that NGF needs to be selectively targeted to the brain, to avoid severe side effects such as pain and to bypass the blood brain barrier. In this perspective, we will summarize the different approaches that have been used, or are currently applied, to deliver NGF to the brain, during preclinical and clinical trials to develop NGF as a therapeutic drug for Alzheimer’s disease. We will focus on the intranasal delivery of NGF, an approach that is used to deliver proteins to the brain in a non-invasive, safe, and effective manner minimizing systemic exposure. We will also describe the main experimental facts related to the effective intranasal delivery of a mutant form of NGF [painless NGF, human nerve growth factor painless (hNGFp)] in mouse models of Alzheimer’s disease and compare it to other ways to deliver NGF to the brain. We will also report new data on the application of intranasal delivery of hNGFp in Down Syndrome mouse model. These new data extend the therapeutic potential of hNGFp for the treatment of the dementia that is progressively associated to Down Syndrome. In conclusion, we will show how this approach can be a promising strategy and a potential solution for other unmet medical needs of safely and effectively delivering this neuroprotective neurotrophin to the brain.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- *Correspondence: Simona Capsoni,
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute–Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
16
|
Xhima K, Markham-Coultes K, Kofoed RH, Saragovi HU, Hynynen K, Aubert I. Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies. Brain 2021; 145:2806-2822. [PMID: 34919633 PMCID: PMC9420023 DOI: 10.1093/brain/awab460] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Early degeneration of basal forebrain cholinergic neurons (BFCNs) contributes substantially to cognitive decline in Alzheimer's disease (AD). Evidence from preclinical models of neuronal injury and aging support a pivotal role for nerve growth factor (NGF) in neuroprotection, resilience, and cognitive function. However, whether NGF can provide therapeutic benefit in the presence of AD-related pathologies remains unresolved. Perturbations in the NGF signaling system in AD may render neurons unable to benefit from NGF administration. Additionally, challenges related to brain delivery remain for clinical translation of NGF-based therapies in AD. To be safe and efficient, NGF-related agents should stimulate the NGF receptor, tropomyosin receptor kinase A (TrkA), avoid activation through the p75 neurotrophin receptor (p75NTR), and be delivered non-invasively to targeted brain areas using real-time monitoring. We addressed these limitations using MRI-guided focused ultrasound (MRIgFUS) to increase blood-brain barrier (BBB) permeability locally and transiently, allowing an intravenously administered TrkA agonist that does not activate p75NTR, termed D3, to enter targeted brain areas. Here, we report the therapeutic potential of selective TrkA activation in a transgenic mouse model that recapitulates numerous AD-associated pathologies. Repeated MRIgFUS-mediated delivery of D3 (D3/FUS) improved cognitive function in the TgCRND8 model of AD. Mechanistically, D3/FUS treatment effectively attenuated cholinergic degeneration and promoted functional recovery. D3/FUS treatment also resulted in widespread reduction of brain amyloid pathology and dystrophic neurites surrounding amyloid plaques. Furthermore, D3/FUS markedly enhanced hippocampal neurogenesis in TgCRND8 mice, implicating TrkA agonism as a novel therapeutic target to promote neurogenesis in the context of AD-related pathology. Thus, this study provides evidence that selective TrkA agonism confers neuroprotection to effectively counteract AD-related vulnerability. Recent clinical trials demonstrate that non-invasive BBB modulation using MRIgFUS is safe, feasible and reversible in AD patients. TrkA receptor agonists coupled with MRIgFUS delivery constitute a promising disease-modifying strategy to foster brain health and counteract cognitive decline in AD.
Collapse
Affiliation(s)
- Kristiana Xhima
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kelly Markham-Coultes
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Rikke Hahn Kofoed
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - H. Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
- Department of Ophthalmology and Vision Sciences, McGill University, Montreal, QC, H4A 3S5, Canada
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Isabelle Aubert
- Hurvitz Brain Sciences Research Program, Biological Sciences, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
17
|
Manni L, Conti G, Chiaretti A, Soligo M. Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma. Front Pharmacol 2021; 12:754502. [PMID: 34867367 PMCID: PMC8635100 DOI: 10.3389/fphar.2021.754502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Giorgio Conti
- Department of Emergency, Intensive Pediatric Therapy and Pediatric Trauma Center, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
18
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
19
|
Braschi C, Capsoni S, Narducci R, Poli A, Sansevero G, Brandi R, Maffei L, Cattaneo A, Berardi N. Intranasal delivery of BDNF rescues memory deficits in AD11 mice and reduces brain microgliosis. Aging Clin Exp Res 2021; 33:1223-1238. [PMID: 32676979 PMCID: PMC8081712 DOI: 10.1007/s40520-020-01646-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
A decrease in brain-derived neurotrophic factor (BDNF), a neurotrophin essential for synaptic function, plasticity and neuronal survival, is evident early in the progression of Alzheimer's disease (AD), being apparent in subjects with mild cognitive impairment or mild AD, and both proBDNF and mature BDNF levels are positively correlated with cognitive measures. BDNF delivery is, therefore, considered of great interest as a potentially useful therapeutic strategy to contrast AD. Invasive BDNF administration has indeed been recently used in animal models of AD with promising results in rescuing memory deficits, synaptic density and cell loss. Here, we tested whether non-invasive intranasal administration of different BDNF concentrations after the onset of cognitive and anatomical deficits (6 months of age) could rescue neuropathological and memory deficits in AD11 mice, a model of NGF deprivation-induced neurodegeneration. In addition to AD hallmarks, we investigated BDNF effects on microglia presence in the brain of AD11 mice, since alterations in microglia activation have been associated with ageing-related cognitive decline and with the progression of neurodegenerative diseases, including AD. We found that intranasal delivery of 42 pmol BDNF (1 μM), but not PBS, was sufficient to completely rescue performance of AD11 mice both in the object recognition test and in the object context test. No further improvement was obtained with 420 pmol (10 μM) BDNF dose. The strong improvement in memory performance in BDNF-treated mice was not accompanied by an amelioration of AD-like pathology, Aβ burden, tau hyperphosphorylation and cholinergic deficit, but there was a dramatic decrease of CD11b immunoreactive brain microglia. These results reinforce the potential therapeutic uses of BDNF in AD and the non-invasive intranasal route as an effective delivery strategy of BDNF to the brain. They also strengthen the connection between neuroinflammation and neurodegenerative dementia and suggest microglia as a possible mediator of BDNF therapeutic actions in the brain.
Collapse
Affiliation(s)
- Chiara Braschi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | - Simona Capsoni
- Scuola Normale Superiore, Pisa, Italy
- Human Physiology Section, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Narducci
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy
| | | | - Gabriele Sansevero
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- IRCCS Stella Maris, Calambrone, Pisa, Italy
| | | | - Lamberto Maffei
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Antonino Cattaneo
- Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute, Rome, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience of the CNR, Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research, Child Health (NEUROFARBA), Florence University, Florence, Italy.
| |
Collapse
|
20
|
Humpel C. Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model. Front Aging Neurosci 2021; 13:649646. [PMID: 33967739 PMCID: PMC8100061 DOI: 10.3389/fnagi.2021.649646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Malerba F, Bruni Ercole B, Florio R, Cattaneo A. A Quantitative Bioassay to Determine the Inhibitory Potency of NGF-TrkA Antagonists. SLAS DISCOVERY 2021; 26:823-830. [PMID: 33874771 DOI: 10.1177/24725552211000672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this article, we demonstrate and validate a new bioassay named the NTAB [NGF-TrkA (nerve growth factor-tropomyosin receptor kinase A) antagonist bioassay] for the determination of the inhibitory potency of NGF-TrkA antagonists, based on the inhibition of NGF-dependent proliferation of the human TF1 erythroleukemic cell line.It is well known that NGF holds great therapeutic potential due to its neurotrophic and neuroprotective properties. NGF is also involved in some pathways, however, principally driven by TrkA that, if not correctly regulated, can lead to unwanted pathological outcomes linked to pain, angiogenesis, and cancer.Indeed, there is an increasing interest, from a therapeutic perspective, in designing new effective molecules (antibodies, antibody fragments, or small molecules) able to inhibit the undesired NGF-TrkA pathway. For these reasons, there is an interest to develop functional cell-based assays for determination of the inhibition potency of compounds inhibiting the NGF-TrkA axis. The NTAB presents significant advantages over other published NGF-TrkA functional bioassays, for these reasons: (1) It is quantitative, (2) it measures a pure TrkA response, (3) it is simpler, (4) it is based on a natural biological response, and (5) it is easily scalable from a lab scale to an automated industrial assay.The NTAB assay was validated with a panel of well-characterized NGF-TrkA inhibitors, yielding characteristic dose-response curves, from which the relative strength of the inhibitors was quantitatively determined and used for comparisons. This new bioassay will be very useful to assist in the validation and prioritization of the best inhibitors among a large number of candidates.
Collapse
Affiliation(s)
- Francesca Malerba
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Bruno Bruni Ercole
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Rita Florio
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy
| | - Antonino Cattaneo
- Fondazione EBRI (European Brain Research Institute) Rita Levi-Montalcini, Rome, Italy.,BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
22
|
Kanu LN, Ciolino JB. Nerve Growth Factor as an Ocular Therapy: Applications, Challenges, and Future Directions. Semin Ophthalmol 2021; 36:224-231. [PMID: 33641595 DOI: 10.1080/08820538.2021.1890793] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nerve growth factor (NGF), the prototypical neurotrophin first discovered in the 1950s, has recently garnered increased interest as a therapeutic agent promoting neuronal health and regeneration. After gaining orphan drug status within the last decade, NGF-related research and drug development has accelerated. The purpose of this article is to review the preclinical and clinical evidence of NGF in various applications, including central and peripheral nervous system, skin, and ophthalmic disorders. We focus on the ophthalmic applications including not only the FDA-approved indication of neurotrophic keratitis but also retinal disease and glaucoma. NGF represents a promising therapy whose therapeutic profile is evolving. The challenges related to this therapy are reviewed, along with possible solutions and future directions.
Collapse
Affiliation(s)
- Levi N Kanu
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Joseph B Ciolino
- 1. Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. Int J Mol Sci 2020; 21:E9591. [PMID: 33339351 PMCID: PMC7766709 DOI: 10.3390/ijms21249591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aβ) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA;
- Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Yen N. Diep
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
24
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
25
|
Bhattamisra SK, Shin LY, Saad HIBM, Rao V, Candasamy M, Pandey M, Choudhury H. Interlink Between Insulin Resistance and Neurodegeneration with an Update on Current Therapeutic Approaches. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:174-183. [PMID: 32418534 DOI: 10.2174/1871527319666200518102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
The interlink between diabetes mellitus and neurodegenerative diseases such as Alzheimer's Disease (AD) and Parkinson's Disease (PD) has been identified by several researchers. Patients with Type-2 Diabetes Mellitus (T2DM) are found to be affected with cognitive impairments leading to learning and memory deficit, while patients with Type-1 Diabetes Mellitus (T1DM) showed less severe levels of these impairments in the brain. This review aimed to discuss the connection between insulin with the pathophysiology of neurodegenerative diseases (AD and PD) and the current therapeutic approached mediated through insulin for management of neurodegenerative diseases. An extensive literature search was conducted using keywords "insulin"; "insulin resistance"; "Alzheimer's disease"; "Parkinson's disease" in public domains of Google scholar, PubMed, and ScienceDirect. Selected articles were used to construct this review. Studies have shown that impaired insulin signaling contributes to the accumulation of amyloid-β, neurofibrillary tangles, tau proteins and α-synuclein in the brain. Whereas, improvement in insulin signaling slows down the progression of cognitive decline. Various therapeutic approaches for altering the insulin function in the brain have been researched. Besides intranasal insulin, other therapeutics like PPAR-γ agonists, neurotrophins, stem cell therapy and insulin-like growth factor-1 are under investigation. Research has shown that insulin insensitivity in T2DM leads to neurodegeneration through mechanisms involving a variety of extracellular, membrane receptor, and intracellular signaling pathway disruptions. Some therapeutics, such as intranasal administration of insulin and neuroactive substances have shown promise but face problems related to genetic background, accessibility to the brain, and invasiveness of the procedures.
Collapse
Affiliation(s)
- Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Yuen Shin
- School of Health Sciences, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | | | - Vikram Rao
- School of Postgraduate Studies, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Neurodegeneration and Neuro-Regeneration-Alzheimer's Disease and Stem Cell Therapy. Int J Mol Sci 2019; 20:ijms20174272. [PMID: 31480448 PMCID: PMC6747457 DOI: 10.3390/ijms20174272] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aging causes many changes in the human body, and is a high risk for various diseases. Dementia, a common age-related disease, is a clinical disorder triggered by neurodegeneration. Brain damage caused by neuronal death leads to cognitive decline, memory loss, learning inabilities and mood changes. Numerous disease conditions may cause dementia; however, the most common one is Alzheimer’s disease (AD), a futile and yet untreatable illness. Adult neurogenesis carries the potential of brain self-repair by an endogenous formation of newly-born neurons in the adult brain; however it also declines with age. Strategies to improve the symptoms of aging and age-related diseases have included different means to stimulate neurogenesis, both pharmacologically and naturally. Finally, the regulatory mechanisms of stem cells neurogenesis or a functional integration of newborn neurons have been explored to provide the basis for grafted stem cell therapy. This review aims to provide an overview of AD pathology of different neural and glial cell types and summarizes current strategies of experimental stem cell treatments and their putative future use in clinical settings.
Collapse
|
27
|
Mitra S, Behbahani H, Eriksdotter M. Innovative Therapy for Alzheimer's Disease-With Focus on Biodelivery of NGF. Front Neurosci 2019; 13:38. [PMID: 30804738 PMCID: PMC6370742 DOI: 10.3389/fnins.2019.00038] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with abnormal protein modification, inflammation and memory impairment. Aggregated amyloid beta (Aβ) and phosphorylated tau proteins are medical diagnostic features. Loss of memory in AD has been associated with central cholinergic dysfunction in basal forebrain, from where the cholinergic circuitry projects to cerebral cortex and hippocampus. Various reports link AD progression with declining activity of cholinergic neurons in basal forebrain. The neurotrophic molecule, nerve growth factor (NGF), plays a major role in the maintenance of cholinergic neurons integrity and function, both during development and adulthood. Numerous studies have also shown that NGF contributes to the survival and regeneration of neurons during aging and in age-related diseases such as AD. Changes in neurotrophic signaling pathways are involved in the aging process and contribute to cholinergic and cognitive decline as observed in AD. Further, gradual dysregulation of neurotrophic factors like NGF and brain derived neurotrophic factor (BDNF) have been reported during AD development thus intensifying further research in targeting these factors as disease modifying therapies against AD. Today, there is no cure available for AD and the effects of the symptomatic treatment like cholinesterase inhibitors (ChEIs) and memantine are transient and moderate. Although many AD treatment studies are being carried out, there has not been any breakthrough and new therapies are thus highly needed. Long-term effective therapy for alleviating cognitive impairment is a major unmet need. Discussion and summarizing the new advancements of using NGF as a potential therapeutic implication in AD are important. In summary, the intent of this review is describing available experimental and clinical data related to AD therapy, priming to gain additional facts associated with the importance of NGF for AD treatment, and encapsulated cell biodelivery (ECB) as an efficient tool for NGF delivery.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
| | - Homira Behbahani
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.,Aging Theme, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E, Shahpasand K. Stem cell therapy in Alzheimer's disease: possible benefits and limiting drawbacks. Mol Biol Rep 2018; 46:1425-1446. [PMID: 30565076 DOI: 10.1007/s11033-018-4499-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death globally and the main reason for dementia in elderly people. AD is a long-term and progressive neurodegenerative disorder that steadily worsens memory and communicating skills eventually leads to a disabled person of performing simple daily tasks. Unfortunately, numerous clinical trials exploring new therapeutic drugs have encountered disappointing outcomes in terms of improved cognitive performance since they are not capable of halting or stimulating the regeneration of already-damaged neural cells, and merely provide symptomatic relief. Therefore, a deeper understanding of the mechanism of action of stem cell may contribute to the development of novel and effective therapies. The revolutionary discovery of stem cells has cast a new hope for the development of disease-modifying treatments for AD, in terms of their potency in the replenishment of lost cells via differentiating towards specific lineages, stimulating in situ neurogenesis, and delivering the therapeutic agents to the brain. Herein, firstly, we explore the pathophysiology of AD. Next, we summarize the most recent preclinical stem cell reports designed for AD treatment, their benefits and outcomes according to cell type. We briefly review relevant clinical trials and their potential clinical applications in order to find a unique solution to effectively relieve the patients' pain.
Collapse
Affiliation(s)
- Masoume Alipour
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Leila Arab
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ehsani
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran.
| |
Collapse
|
29
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
30
|
Capsoni S, Malerba F, Carucci NM, Rizzi C, Criscuolo C, Origlia N, Calvello M, Viegi A, Meli G, Cattaneo A. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain 2017; 140:201-217. [PMID: 28031222 PMCID: PMC5379860 DOI: 10.1093/brain/aww271] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/19/2016] [Accepted: 09/07/2016] [Indexed: 11/17/2022] Open
Abstract
Nerve growth factor is a therapeutic candidate for Alzheimer’s disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Simona Capsoni
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,2 Institute of Neuroscience, National Council for Research, Pisa, Italy
| | - Francesca Malerba
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy.,3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | | | - Caterina Rizzi
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Chiara Criscuolo
- 2 Institute of Neuroscience, National Council for Research, Pisa, Italy.,4 Department of Biotechnological and Applied Clinical Sciences, School of Medicine, University of L'Aquila, Coppito, L'Aquila, Italy
| | - Nicola Origlia
- 2 Institute of Neuroscience, National Council for Research, Pisa, Italy
| | | | - Alessandro Viegi
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Giovanni Meli
- 3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Antonino Cattaneo
- 1 Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy .,3 Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| |
Collapse
|
31
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
32
|
Severini C, Petrocchi Passeri P, Ciotti M, Florenzano F, Petrella C, Malerba F, Bruni B, D'Onofrio M, Arisi I, Brandi R, Possenti R, Calissano P, Cattaneo A. Nerve growth factor derivative NGF61/100 promotes outgrowth of primary sensory neurons with reduced signs of nociceptive sensitization. Neuropharmacology 2017; 117:134-148. [DOI: 10.1016/j.neuropharm.2017.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/09/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2022]
|
33
|
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci 2017; 11:68. [PMID: 28360840 PMCID: PMC5350152 DOI: 10.3389/fncel.2017.00068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Italy
| | | | - Cristina Zona
- IRCCS Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Maria T Ciotti
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR)Rome, Italy; NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI)Rome, Italy
| | - Pietro Calissano
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| |
Collapse
|
34
|
Gudasheva TA, Povarnina PY, Antipova TA, Firsova YN, Konstantinopolsky MA, Seredenin SB. Dimeric dipeptide mimetics of the nerve growth factor Loop 4 and Loop 1 activate TRKA with different patterns of intracellular signal transduction. J Biomed Sci 2015; 22:106. [PMID: 26642930 PMCID: PMC4672491 DOI: 10.1186/s12929-015-0198-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/26/2015] [Indexed: 01/13/2023] Open
Abstract
Background This study aimed at developing nerve growth factor (NGF) mimetics that selectively activate specific biological signals and, as a result, lack the side effects of the full-length protein. Two dimeric dipeptides, bis-(N-aminocaproyl-glycyl-L-lysine) hexamethylenediamide (GK-6) and bis(N-succinyl-L-glutamyl-L-lysine) hexamethylenediamide (GK-2), were designed based on the most exposed outside fragments of NGF, namely, the loop 1 and loop 4 β-turn sequences, respectively. These dipeptides exhibited neuroprotective activity in vitro at micro-nanomolar concentrations. Results Studies on the mechanism of action revealed that both compounds elevate the level of tyrosine kinase A (TrkA) receptor phosphorylation and that they each have different postreceptor signaling patterns. GK-6 increases the levels of extracellular signal-regulated kinase (ERK) and AKT kinase phosphorylation, whereas GK-2 only increases the level of AKT phosphorylation. Apart from the neuroprotective activity, GK-6 promoted differentiation in PC12 cells, whereas GK-2 did not. Furthermore, it was established that the neuroprotective activity of GK-2 was completely abolished by a selective inhibitor of phosphatidylinositol 3-kinase (LY294002) but not by a specific inhibitor of mitogen-activated protein kinases MEK1 and MEK2 (PD98059). In vivo experiments demonstrated that GK-2 did not induce hyperalgesia, which is one of the primary adverse effects of NGF. By contrast, GK-6 produced a significant decrease in the pain threshold of rats as determined by the tail flick test. Conclusion The data obtained suggest that dimeric dipeptide NGF mimetics are promising candidates in the development of pharmacological agents with NGF-like activity that are free of the main side effect of NGF.
Collapse
Affiliation(s)
- Tatyana A Gudasheva
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Polina Yu Povarnina
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Tatyana A Antipova
- Laboratory of Neuroprotective Pharmacology, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Yulia N Firsova
- Department of Medicinal Chemistry, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Mark A Konstantinopolsky
- Laboratory of Pharmacological Regulation of Alcohol and Drug Addiction, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Institute of Pharmacology, Baltiyskaya str. 8, 125315, Moscow, Russia.
| |
Collapse
|
35
|
Malerba F, Paoletti F, Bruni Ercole B, Materazzi S, Nassini R, Coppi E, Patacchini R, Capsoni S, Lamba D, Cattaneo A. Functional Characterization of Human ProNGF and NGF Mutants: Identification of NGF P61SR100E as a "Painless" Lead Investigational Candidate for Therapeutic Applications. PLoS One 2015; 10:e0136425. [PMID: 26371475 PMCID: PMC4570711 DOI: 10.1371/journal.pone.0136425] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 11/21/2022] Open
Abstract
Background Nerve Growth Factor (NGF) holds a great therapeutic promise for Alzheimer's disease, diabetic neuropathies, ophthalmic diseases, dermatological ulcers. However, the necessity for systemic delivery has hampered the clinical applications of NGF due to its potent pro-nociceptive action. A “painless” human NGF (hNGF R100E) mutant has been engineered. It has equal neurotrophic potency to hNGF but a lower nociceptive activity. We previously described and characterized the neurotrophic and nociceptive properties also of the hNGF P61S and P61SR100E mutants, selectively detectable against wild type hNGF. However, the reduced pain-sensitizing potency of the “painless” hNGF mutants has not been quantified. Objectives and Results Aiming at the therapeutic application of the “painless” hNGF mutants, we report on the comparative functional characterization of the precursor and mature forms of the mutants hNGF R100E and hNGF P61SR100E as therapeutic candidates, also in comparison to wild type hNGF and to hNGF P61S. The mutants were assessed by a number of biochemical, biophysical methods and assayed by cellular assays. Moreover, a highly sensitive ELISA for the detection of the P61S-tagged mutants in biological samples has been developed. Finally, we explored the pro-nociceptive effects elicited by hNGF mutants in vivo, demonstrating an expanded therapeutic window with a ten-fold increase in potency. Conclusions This structure-activity relationship study has led to validate the concept of developing painless NGF as a therapeutic, targeting the NGF receptor system and supporting the choice of hNGF P61S R100E as the best candidate to advance in clinical development. Moreover, this study contributes to the identification of the molecular determinants modulating the properties of the hNGF “painless” mutants.
Collapse
Affiliation(s)
- Francesca Malerba
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Paoletti
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Bruno Bruni Ercole
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | | - Simona Capsoni
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park–Basovizza, Trieste, Italy
| | - Antonino Cattaneo
- Neurotrophic Factors and Neurodegenerative Diseases Unit, European Brain Research Institute, “Rita Levi-Montalcini” Foundation, Rome, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- * E-mail:
| |
Collapse
|
36
|
Katare YK, Daya RP, Sookram Gray C, Luckham RE, Bhandari J, Chauhan AS, Mishra RK. Brain Targeting of a Water Insoluble Antipsychotic Drug Haloperidol via the Intranasal Route Using PAMAM Dendrimer. Mol Pharm 2015; 12:3380-8. [DOI: 10.1021/acs.molpharmaceut.5b00402] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yogesh K. Katare
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ritesh P. Daya
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Christal Sookram Gray
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Roger E. Luckham
- Department
of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jayant Bhandari
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Abhay S. Chauhan
- School
of Pharmacy, Concordia University Wisconsin, Mequon, Wisconsin 53097, United States
| | - Ram K. Mishra
- Department
of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
37
|
Aly AEE, Waszczak BL. Intranasal gene delivery for treating Parkinson's disease: overcoming the blood-brain barrier. Expert Opin Drug Deliv 2015; 12:1923-41. [PMID: 26289676 DOI: 10.1517/17425247.2015.1069815] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Developing a disease-modifying gene therapy for Parkinson's disease (PD) has been a high priority for over a decade. However, due to the inability of large biomolecules to cross the blood-brain barrier (BBB), the only means of delivery to the brain has been intracerebral infusion. Intranasal administration offers a non-surgical means of bypassing the BBB to deliver neurotrophic factors, and the genes encoding them, directly to the brain. AREAS COVERED This review summarizes: i) evidence demonstrating intranasal delivery to the brain of a number of biomolecules having therapeutic potential for various CNS disorders; and ii) evidence demonstrating neuroprotective efficacy of a subset of biomolecules specifically for PD. The intersection of these two spheres represents the area of opportunity for development of new intranasal gene therapies for PD. To that end, our laboratory showed that intranasal administration of glial cell line-derived neurotrophic factor (GDNF), or plasmid DNA nanoparticles encoding GDNF, provides neuroprotection in a rat model of PD, and that the cells transfected by the nanoparticle vector are likely to be pericytes. EXPERT OPINION A number of genes encoding neurotrophic factors have therapeutic potential for PD, but few have been tested by the intranasal route and shown to be neuroprotective in a model of PD. Intranasal delivery provides a largely unexplored, promising approach for development of a non-invasive gene therapy for PD.
Collapse
Affiliation(s)
- Amirah E-E Aly
- a 1 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA
| | - Barbara L Waszczak
- b 2 Northeastern University, School of Pharmacy, Bouvé College of Health Sciences, Department of Pharmaceutical Sciences , Boston, MA 02115, USA +1 617 373 3312 ; +1 617 373 8886 ;
| |
Collapse
|
38
|
Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. Behav Brain Res 2015. [PMID: 26210934 DOI: 10.1016/j.bbr.2015.07.043] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by a decline in cognitive abilities and the appearance of β-amyloid plaques in the brain. Although the pathogenic mechanisms associated with AD are not fully understood, activated microglia releasing various neurotoxic factors, including pro-inflammatory cytokines and oxidative stress mediators, appear to play major roles. Here, we investigated the therapeutic benefits of a serum-free conditioned medium (CM) derived from the stem cells of human exfoliated deciduous teeth (SHEDs) in a mouse model of AD. The intranasal administration of SHEDs in these mice resulted in substantially improved cognitive function. SHED-CM contained factors involved in multiple neuroregenerative mechanisms, such as neuroprotection, axonal elongation, neurotransmission, the suppression of inflammation, and microglial regulation. Notably, SHED-CM attenuated the pro-inflammatory responses induced by β-amyloid plaques, and generated an anti-inflammatory/tissue-regenerating environment, which was accompanied by the induction of anti-inflammatory M2-like microglia. Our data suggest that SHED-CM may provide significant therapeutic benefits for AD.
Collapse
|
39
|
Chauhan MB, Chauhan NB. Brain Uptake of Neurotherapeutics after Intranasal versus Intraperitoneal Delivery in Mice. JOURNAL OF NEUROLOGY AND NEUROSURGERY 2015; 2:009. [PMID: 26366437 PMCID: PMC4567259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There is a growing global prevalence of neurodegenerative diseases such as Alzheimer's disease and dementia. Current treatment for neurodegenerative diseases is limited due to the blood brain barrier's ability to restrict the entry of therapeutics to the brain. In that context, direct delivery of drugs from nose to brain has gained emerging interest as an important alternative to oral and parenteral routes of administration. Although there are considerable reports showing promising results after intranasal drug delivery in various disease-models and investigatory human clinical trials, there are very few studies showing a detailed pharmacokinetics with regard to the uptake and retention of intranasally delivered material(s) within specific brain regions, which are critical determining factors for dosing conditions and optimal treatment regimen. This investigation compared a time-dependent brain uptake and resident time of various radiolabeled candidate neurotherapeutics after a single bolus intranasal or intraperitoneal administration in mice. Results indicate that the brain uptake of intranasally delivered therapeutic(s) is > 5 times greater than that after intraperitoneal delivery. The peak uptake and resident time of all intranasally delivered test therapeutics for all brain regions is observed to be between 30min-12h, depending upon the distance of brain region from the site of administration, followed by gradual fading of radioactive counts by 24h post intranasal administration. Current study confirms the usefulness of intranasal administration as a non- invasive and efficient means of delivering therapeutics to the brain to treat neurodegenerative diseases including Alzheimer's disease.
Collapse
Affiliation(s)
| | - Neelima B. Chauhan
- Department of pediatrics, University of Illinois at Chicago, Children’s Hospital of the University of Illinois, Chicago, IL, USA
- Neuroscience Research, R & D, Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Conformational targeting of intracellular Aβ oligomers demonstrates their pathological oligomerization inside the endoplasmic reticulum. Nat Commun 2014; 5:3867. [PMID: 24861166 PMCID: PMC4050278 DOI: 10.1038/ncomms4867] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/10/2014] [Indexed: 01/18/2023] Open
Abstract
Aβ oligomers (AβOs) are crucially involved in Alzheimer’s Disease (AD). However, the lack of selective approaches for targeting these polymorphic Aβ assemblies represents a major hurdle in understanding their biosynthesis, traffic and actions in living cells. Here, we established a subcellularly localized conformational-selective interference (CSI) approach, based on the expression of a recombinant antibody fragment against AβOs in the endoplasmic reticulum (ER). By CSI, we can control extra- and intracellular pools of AβOs produced in an AD-relevant cell model, without interfering with the maturation and processing of the Aβ precursor protein. The anti-AβOs intrabody selectively intercepts critical AβO conformers in the ER, modulating their assembly and controlling their actions in pathways of cellular homeostasis and synaptic signalling. Our results demonstrate that intracellular Aβ undergoes pathological oligomerization through critical conformations formed inside the ER. This establishes intracellular AβOs as key targets for AD treatment and presents CSI as a potential targeting strategy. Intracellular Aß oligomers have been linked to Alzheimer’s disease but details about their biosynthesis and function have been hard to obtain due to the lack of selective approaches for targeting them. Here, Meli et al. develop a strategy using recombinant antibodies to target Aß oligomers in the endoplasmic reticulum of cells, and perform mechanistic studies in cellular models of the disease.
Collapse
|
41
|
Herradón G, Pérez-García C. Targeting midkine and pleiotrophin signalling pathways in addiction and neurodegenerative disorders: recent progress and perspectives. Br J Pharmacol 2014; 171:837-48. [PMID: 23889475 PMCID: PMC3925022 DOI: 10.1111/bph.12312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/09/2013] [Accepted: 07/21/2013] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Midkine (MK) and pleiotrophin (PTN) are two neurotrophic factors that are highly up-regulated in different brain regions after the administration of various drugs of abuse and in degenerative areas of the brain. A deficiency in both MK and PTN has been suggested to be an important genetic factor, which confers vulnerability to the development of the neurodegenerative disorders associated with drugs of abuse in humans. In this review, evidence demonstrating that MK and PTN limit the rewarding effects of drugs of abuse and, potentially, prevent drug relapse is compiled. There is also convincing evidence that MK and PTN have neuroprotective effects against the neurotoxicity and development of neurodegenerative disorders induced by drugs of abuse. Exogenous administration of MK and/or PTN into the CNS by means of non-invasive methods is proposed as a novel therapeutic strategy for addictive and neurodegenerative diseases. Identification of new molecular targets downstream of the MK and PTN signalling pathways or pharmacological modulation of those already known may also provide a more traditional, but probably effective, therapeutic strategy for treating addictive and neurodegenerative disorders. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- G Herradón
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| | - C Pérez-García
- Pharmacology lab Department of Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San PabloBoadilla del Monte, Madrid, Spain
| |
Collapse
|
42
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
Affiliation(s)
- Robert D Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
43
|
Glicksman MA. The 14th International Conference on Alzheimer's Drug Discovery, 9 - 10 September 2013, in Jersey City, New Jersey. Expert Opin Drug Discov 2014; 9:215-20. [PMID: 24444088 DOI: 10.1517/17460441.2014.877441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The following conference was the 14th International Conference on Alzheimer's Drug Discovery held 9 - 10 September 2013, in Jersey City, NJ. The conference attracted about 140 attendees with 49% from academia, 36% from industry and private practice, 10% from nonprofit organizations and 2% from the government. The meeting had two plenary speakers that kicked off each morning of the conference and then two sessions each day to cover different aspects of Alzheimer's disease drug discovery. There were sessions on neuroprotection, mitochondrial function, biomarkers, ApoE, tau and protein clearance. The conference was organized by the Alzheimer's Drug Discovery Foundation (ADDF) with all of the presenters supported by grants awarded by the ADDF. The conference had financial support from the pharmaceutical companies Merck & Co., Eli Lilly & Co. and Pfizer, Inc. Friends, exhibitors and media partners also helped financially support the conference.
Collapse
Affiliation(s)
- Marcie A Glicksman
- Brigham and Women's Hospital, Harvard Medical School, Department of Neurology , 65 Landsdowne Street, Cambridge, MA 02139 , USA
| |
Collapse
|
44
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
45
|
Xiao C, Davis FJ, Chauhan BC, Viola KL, Lacor PN, Velasco PT, Klein WL, Chauhan NB. Brain transit and ameliorative effects of intranasally delivered anti-amyloid-β oligomer antibody in 5XFAD mice. J Alzheimers Dis 2013; 35:777-88. [PMID: 23542865 DOI: 10.3233/jad-122419] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a global health crisis with limited treatment options. Despite major advances in neurotherapeutics, poor brain penetration due to the blood-brain barrier continues to pose a big challenge in overcoming the access of therapeutics to the central nervous system. In that regard, the non-invasive intranasal route of brain targeting is gaining considerable attention. The nasal mucosa offers a large surface area, rapid absorption, and avoidance of first-pass metabolism increasing drug bioavailability with less systemic side effects. Intranasal delivery is known to utilize olfactory, rostral migratory stream, and trigeminal routes to reach the brain. This investigation confirmed that intranasal delivery of oligomeric amyloid-β antibody (NU4) utilized all three routes to enter the brain with a resident time of 96 hours post single bolus intranasal administration, and showed evidence of perikaryal and parenchymal uptake of NU4 in 5XFAD mouse brain, confirming the intranasal route as a non-invasive and efficient way of delivering therapeutics to the brain. In addition, this study demonstrated that intranasal delivery of NU4 antibody lowered cerebral amyloid-β and improved spatial learning in 5XFAD mice.
Collapse
Affiliation(s)
- Chun Xiao
- Neuroscience Research, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
APP regulates NGF receptor trafficking and NGF-mediated neuronal differentiation and survival. PLoS One 2013; 8:e80571. [PMID: 24224055 PMCID: PMC3815101 DOI: 10.1371/journal.pone.0080571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
β-amyloid precursor protein (APP) is a key factor in Alzheimer's disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.
Collapse
|
47
|
Liu H, Zhou Y, Chen S, Bu M, Xin J, Li S. Current sustained delivery strategies for the design of local neurotrophic factors in treatment of neurological disorders. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
48
|
Kopec AM, Carew TJ. Growth factor signaling and memory formation: temporal and spatial integration of a molecular network. Learn Mem 2013; 20:531-9. [PMID: 24042849 PMCID: PMC3768197 DOI: 10.1101/lm.031377.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g., Ras–MEK–MAPK) to mediate overlapping functional endpoints. Several GFs have been implicated in memory formation, but due to a high level of convergent signaling, the unique contributions of individual GFs as well as the interactions between GF signaling cascades during the induction of memory is not well known. In this review, we highlight the unique roles of specific GFs in dendritic plasticity, and discuss the spatial and temporal profiles of different GFs during memory formation. Collectively, the data suggest that the roles of GF signaling in long-lasting behavioral and structural plasticity may be best viewed as interactive components in a complex molecular network.
Collapse
Affiliation(s)
- Ashley M Kopec
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | |
Collapse
|
49
|
Matrone C. A new molecular explanation for age-related neurodegeneration: the Tyr682 residue of amyloid precursor protein. Bioessays 2013; 35:847-52. [PMID: 23943322 PMCID: PMC4033529 DOI: 10.1002/bies.201300041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emerging evidence supports the role for the intracellular domains of amyloid precursor protein (APP) in the physiology and function of APP. In this short report, I discuss the hypothesis that mutation of Tyr682 on the Y682ENPTY687 C-terminal motif of APP may be directly or indirectly associated with alterations in APP functioning and activity, leading to neuronal defects and deficits. Mutation of Tyr682 induces an early and progressive age-dependent cognitive and locomotor decline that is associated with a loss of synaptic connections, a decrease in cholinergic tone, and defects in NGF signaling. These findings support a model in which APP-C-terminal domain exerts a pathogenic function in neuronal development and decline, and suggest that Tyr682 potentially could modulate the properties of APP metabolites in humans.
Collapse
Affiliation(s)
- Carmela Matrone
- Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
50
|
Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology 2013; 76 Pt A:27-50. [PMID: 23891641 DOI: 10.1016/j.neuropharm.2013.07.004] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. The etiology is multifactorial, and pathophysiology of the disease is complex. Data indicate an exponential rise in the number of cases of AD, emphasizing the need for developing an effective treatment. AD also imposes tremendous emotional and financial burden to the patient's family and community. The disease has been studied over a century, but acetylcholinesterase inhibitors and memantine are the only drugs currently approved for its management. These drugs provide symptomatic improvement alone but do less to modify the disease process. The extensive insight into the molecular and cellular pathomechanism in AD over the past few decades has provided us significant progress in the understanding of the disease. A number of novel strategies that seek to modify the disease process have been developed. The major developments in this direction are the amyloid and tau based therapeutics, which could hold the key to treatment of AD in the near future. Several putative drugs have been thoroughly investigated in preclinical studies, but many of them have failed to produce results in the clinical scenario; therefore it is only prudent that lessons be learnt from the past mistakes. The current rationales and targets evaluated for therapeutic benefit in AD are reviewed in this article. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- R Anand
- Department of Biochemistry, Christian Medical College, Vellore 632002, Tamilnadu, India.
| | | | | |
Collapse
|